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Abstract. An unoriginal but more detailed derivation that typical is pre-
sented of the master equation.

1. Assumptions

We begin by outlining the assumptions which enable the canonical derivation
of the master equation. Our general assumption is that our system is a harmonic

oscillator (aa†) which interacts with a bath of oscillators (
∑

i bib
†
i ). Specifically:

(1) We assume that the energy spectrum of the bath of oscillators is spaced
tightly enough relative to its overall domain, i.e. ωi ≪ (ωN −ω0) such that
the approximation

∑

i →
∫

dωig(ωi), where g(ωi) is the density of states
of the reservoir, is a physically acceptable mathematical assumption.

(2) Related to the previous assumption, we assume that the bath is large
enough and in a state of equilibrium such that any perturbations caused
by the individual system on the bath is negligible. This is to say, the fu-
ture state of the system-bath density operator is determined by its current
state, and is not a function of the history of the bath (that is, we assume
ρsb = ρs(t) ⊗ ρb(0)).This is the Markoffian assumption.

(3) We assume the rotating wave approximation regime. The interaction of the
bath and system will have terms such as ab, a†b, ab†, a†b†. The lowering-
lowering and raising-raising coupling has a much slower varying contribu-
tion to the state of the system, and so are excluded to give the interaction

Hamiltonian
∑

i gi

(

a†bi + ab†i

)

where gi is a real coupling constant. Obvi-

ously, one must be certain the system one models can be simplified as such
in order to apply the general master equation.

2. Construction of the Hamiltonian and Density Operators

We assume the system can be modeled with the Hamiltonian,

(2.1) Hs = ~ωa†a, [a, a†] = 1

Separately we assume that there exists a bath which can be modeled with the
Hamiltonian,

(2.2) Hb =
∑

i

~ωib
†
ibi, [bi, b

†
k] = δik

Finally, as stated before, the interaction of the bath and system is taken in the
form of

(2.3)
∑

i

gi

(

a†bi + ab†i

)

, gi ∈ ℜ
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The total Hamiltonian is,

(2.4) H =

H0

︷ ︸︸ ︷

~ωa†a +
∑

j

~ωjb
†
jbj +

∑

i

gi(a
†bi + ab†i )

︸ ︷︷ ︸

HI

We assume uncertainty in the preparation of states, so we switch to the density
operator regime. We call the density operator corresponding to our bath coupled
system ρSB (S: Single original oscillator; B: Environment) where the individual
density operators can be retrieved via a trace, i.e.

ρS = TrB(ρSB) =
∑

B

〈B|ρSB |B〉 Trace over environment states

ρB = TrS(ρSB) =
∑

S

〈S|ρSB|S〉 Trace over local states

The dynamics of the system evolve as (Liouville equation),

(2.5) i~
dρSE

dt
= [H, ρSE ]

We commit a unitary transform to simplify this equation as follows (the so-called
interaction picture). It can be shown that,

(2.6) exp(αA)B exp(−αA) = B + α[A, B] +
α2

2!
[A, [A, B]] + · · ·

Furthermore, from the premises of Quantum Mechanics, it is legitimate to commit
transforms of the type,

(2.7) G′ = ΛGΛ†, Λ ∈ Unitary

These so called similarity transformations preserve rank, determinant, trace, and
eigenvalues. We let,

(2.8) ρse = exp

(
i

~
Hot

)

ρSE exp

(

−
i

~
Hot

)

We take the time derivative and find,

(2.9)
dρse

dt
=

i

~
[Ho, ρse] −

i

~
exp

(
i

~
Hot

)

[H, ρSE ] exp

(

−
i

~
Hot

)

From equation 2.6, since

ΛGHΛ† = ΛGΛ†ΛHΛ†

and [Ho, Ho] = 0,

exp

(
i

~
Hot

)

Ho exp

(

−
i

~
Hot

)

= Ho

(2.10)
dρse

dt
= −

i

~
[Hi, ρse]

where Hi is the transform of HI and can be calculated as follows. We know that,

[a†a, a†] = a†aa† − a†a†a = [a, a†]a† = a†

[a†a, a] = a†aa − aa†a = [a†, a]a = −a

and whereas Ho = ~ωa†a, equation 2.6 gives

exp
(
αa†a

)
a† exp(−αaa†) = exp(α)a†,

exp
(
αa†a

)
a exp(−αaa†) = exp(−α)a, α ∈ ℑ
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Hi can be calculated in this fashion for both the aa† and the multiple set bib
†
i ,

where it is thus now trivial to find that,

(2.11) Hi(t) =
∑

i

~gi

(

a†bj exp((i(ω − ωi)t) + ab†i exp (−i(ω − ωi)t)
)

If we now define

G(t) ≡
∑

i

gibi exp (i(ω − ωj)t)

we can simplify to

(2.12) Hi(t) = ~
(
G(t)a† + G†(t)a

)

Since the bath is in equilibrium, we can construct ρe(0) easily. Let Zi = exp (−~ωi/kT ).
Then the probability that one mode (i) of the field is excited with n photons is

(2.13) Pi,n =
Zn

i
∑

n Zn
i

= (1 − Zi)Z
n
i =

(

1 − exp

(
−~ωi

kT

))

exp

(
−n~ωi

kT

)

The density matrix for this mode is then

ρe,i =

(

1 − exp

(
−~ωi

kT

))
∑

n

exp

(
−n~ωi

kT

)

|n〉〈n|(2.14)

=
∑

n

(

1 − exp

(
−~ωi

kT

))

exp

(

−b†ibi~ωi

kT

)

|n〉〈n|

To simplify this further, we imagine a three states system in which we can represent
b†b|n〉 = n|n〉 as, for example letting n = 2,





0 0 0
0 1 0
0 0 2









0
0
1



 = 2





0
0
1





The above sum could then be written,

0





1
0
0




[

1 0 0
]
+ 1





0
1
0




[

0 1 0
]
+ 2





0
0
1




[

0 0 1
]

We recover the matrix, and so we can write just as well,

(2.15) ρe,i =

(

1 − exp

(
−~ωi

kT

))

exp

(

−b†ibi~ωi

kT

)

By the rules of probability, the density operator for the entire bath becomes,

(2.16) ρe =
∏

i

(

1 − exp

(
−~ωi

kT

))

exp

(

−b†ibi~ωi

kT

)

By our assumptions, this is the state of the bath for all time, and so we will not write
this as a function of time. The form ρs(t) will take will be much more complicated,
and it is the purpose of this report to derive the differential equation defining its
time evolution.

3



3. The Integration

Beginning with Equation 2.10, we take the first integration to get,

(3.1) ρse(t) = ρse(0) +
1

i~

∫ t

0

[Hi(t
′), ρse(t

′)] dt′

Taking this result, we plug it into itself and get,
(3.2)

ρse(t) = ρse(0)+
1

i~

∫ t

0

[Hi(t
′), ρse(0)] dt′−

1

~2

∫ t

0

∫ t′

0

[Hi(t
′), [Hi(t

′′), ρse(t
′′)] dt′′dt′

Quoting Narducci, “now we do something unexpected” and differentiate this equa-
tion. Since,

dρse

dt
|t=0 =

1

i~
[Hi(0), ρse(0)]

and
∫ 0

0

anything = 0

we get the result,

(3.3)
ρse(t)

dt
=

1

i~
[Hi(t), ρse(0)] −

1

~2

∫ t

0

[Hi(t), [Hi(t
′), ρse(t

′)]]

4. The Trace

To extract ρs we now need to trace over the environmental variables, i.e. average
out the environmental degrees of freedom. We can most quickly see that,

(4.1) Tre[Hi(t), ρse] = 0

as Hi is linear with b and b†j , ρse = ρsrhoe, and it is self evident that

Trej
bj exp(−~ωjb

†
jbj/kT ) = 0

Thus we are left with,

(4.2)
dρs(t)

dt
= −

1

~2

∫ t

0

Tre [Hi(t), [Hi(t
′), ρse(t

′)]] dt′

To proceed from here will require some care.

4.1. The partition. We first note that

[Hi(t
′), ρse(t

′)] = Hi(t
′)ρse(t

′) − ρse(t
′)Hi(t

′)

which we use to write [Hi(t), [Hi(t
′), ρse(t

′)]] =

A
︷ ︸︸ ︷

Hi(t)Hi(t
′)ρse(t

′)−Hi(t)ρse(t
′)Hi(t

′)
︸ ︷︷ ︸

B

−

C
︷ ︸︸ ︷

Hi(t
′)ρse(t

′)Hi(t) + ρse(t
′)Hi(t

′)Hi(t)
︸ ︷︷ ︸

D

We will now proceed to treat the integration case by case.
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4.2. Case A.

Hi(t)Hi(t
′)ρse(t

′) =

~
2
(
G(t)a† + G†(t)a

) (
G(t′)a† + G†(t′)a

)
ρs(t

′)
∏

i

(

1 − exp

(
−~ωi

kT

))

exp

(

−b†ibi~ωi

kT

)

The first term we can extract is,

~
2
(
G(t)a†G†(t′)a

)
ρs(t

′)
∏

i

(

1 − exp

(
−~ωi

kT

))

exp

(

−b†ibi~ωi

kT

)

We recall that

G(t) =
∑

j

gjbj exp(i(ω − ωj)t)

so we can rewrite the term as (with ζ = ~
2a†aρs(t

′) and χi =
[
1 − exp

(
−~ωi

kT

)]
),

ζ




∑

j

gjbj exp(i(ω − ωj)t)








∑

j

gjb
†
j exp(−i(ω − ωj)t

′)




∏

i

χi exp

(

−b†ibi~ωi

kT

)

It is easily seen that when we take the trace, all terms will involve bjb
†
k and will

vanish unless j = k, so we can write the term as,

ζ




∑

j

g2
j bjb

†
j exp(i(ω − ωj)(t − t′))




∏

i

χi exp

(

−b†ibi~ωi

kT

)

But again, we can use the same argument to write the term as,

ζ
∑

j

χjg
2
j bjb

†
j exp(i(ω − ωj)(t − t′)) exp

(

−b†jbj~ωj

kT

)

We can now easily take the trace, noting that Tr[Bρ] =< B >, and with n = b†b
with [b, b†] = 1.

Tr






ζ
∑

j

χjg
2
j bjb

†
j exp(i(ω − ωj)(t − t′)) exp

(

−b†jbj~ωj

kT

)






= ζ
∑

j

g2
j (1 + n̄j) exp(i(ω − ωj)(t − t′))

For the reader interested in the total details of the previous calculation, [1] is a
good reference, where it is also demonstrated that, for example,

(4.3)

∑∞
0 〈n|b†be−λb†b|n〉
∑∞

0 〈n|e−λb†b|n〉
= (1 − e−λ)

∞∑

0

ne−λn =
1

eλ − 1
= n̄

In any case, we now have a general formula we can use, that is,

〈G(t)G(t′)〉 = 〈G†(t)G†(t′)〉 = 0(4.4)

〈G(t)G†(t′)〉 =
∑

j

(1 + n̄j) exp(i(ω − ωj)(t − t′))(4.5)

〈G†(t)G(t′)〉 =
∑

j

(n̄j) exp(−i(ω − ωj)(t − t′))(4.6)

The other non zero trace will be, with η = ~
2aa†ρs(t

′) and γj = exp(i(ω−ωj)(t−t′))

Tr

[

η
(
G(t)†G(t′)

)∏

i

χi exp

(

−b†ibi~ωi

kT

)]

= η
∑

j

g2
j n̄jγ

†
j

5



4.3. Case B.

Hi(t)ρse(t
′)Hi(t

′) = ~
2
(
G(t)a† + G†(t)a

)
ρse(t

′)
(
G(t′)a† + G†(t′)a

)

Based on arguments of Case B, we consider, α = ~
2a†ρs(t

′)a, β = ~
2aρs(t

′)a†,

~
2a†ρs(t

′)aG(t)ρeG
†(t′) → αTr







∑

j

χjg
2
j γjbj exp

(

−b†ibi~ωi

kT

)

b†j







~
2aρs(t

′)a†G†(t)ρeG(t′) → βTr







∑

j

χjg
2
j γjb

†
j exp

(

−b†ibi~ωi

kT

)

bj







To these calculations we simply must note that,

〈n|be−b†bb†|n〉 = (n + 1)〈n + 1|e−bdaggerb|n + 1〉

Thus 4.3 becomes,
(
1 − e−λ

)
e−λ

∑

n

(n + 1)e−λn = e−λ(1 + n̄)

We notice that,

(4.7)
1

eλ − 1
= ¯̄n →

1 + n̄

n̄
= eλ,

n̄

1 + n̄
= e−λ

~
2a†ρs(t

′)aG(t)ρeG
†(t′) → α

∑

j

g2
j n̄jγj

~
2aρs(t

′)a†G†(t)ρeG(t′) → β
∑

j

g2
j (1 + n̄j)γ

†
j

4.4. Case C,D. The remaining cases are easy to project from the two previous
cases:

Original Term 1 + n̄ result n̄ result
A

︷ ︸︸ ︷

Hi(t)Hi(t
′)ρse(t

′) ~
2a†aρs(t

′)
∑

j g2
j (1 + n̄j)γj ~

2aa†ρs(t
′)
∑

j g2
j n̄jγ

†
j

ρse(t
′)Hi(t

′)Hi(t)
︸ ︷︷ ︸

D

~
2ρs(t

′)a†a
∑

j g2
j (1 + n̄j)γ

†
j ~

2ρs(t
′)aa†

∑

j g2
j n̄jγj

−

B
︷ ︸︸ ︷

Hi(t)ρse(t
′)Hi(t

′) −~
2aρs(t

′)a†
∑

j g2
j (1 + n̄j)γ

†
j −~

2a†ρs(t
′)a
∑

j g2
j n̄jγj

−Hi(t
′)ρse(t

′)Hi(t)
︸ ︷︷ ︸

C

−~
2aρs(t

′)a†
∑

j g2
j (1 + n̄j)γj −~

2a†ρs(t
′)a
∑

j g2
j n̄jγ

†
j

5. The Summation Transform

In the approximation of the spectrum as continuous, we can use the transform,

(5.1)
∑

j

→

∫

dωjD(ωj)

1 + n̄ result n̄ result

~
2a†aρs(t

′)
∫

dωjD(ωj)g(ωj)
2(1 + n̄j)γj ~

2aa†ρs(t
′)
∫

dωjD(ωj)g(ωj)
2n̄jγ

†
j

~
2ρs(t

′)a†a
∫

dωjD(ωj)g(ωj)
2(1 + n̄j)γ

†
j ~

2ρs(t
′)aa†

∫
dωjD(ωj)g(ωj)

2n̄jγj

−~
2aρs(t

′)a†
∫

dωjD(ωj)g(ωj)
2(1 + n̄j)γ

†
j −~

2a†ρs(t
′)a
∫

dωjD(ωj)g(ωj)
2n̄jγj

−~
2aρs(t

′)a†
∫

dωjD(ωj)g(ωj)
2(1 + n̄j)γj −~

2a†ρs(t
′)a
∫

dωjD(ωj)g(ωj)
2n̄jγ

†
j
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6. Sokhotskyi-Plemelj formula

The proper method of limiting this point to the real axis is to give the line
of integration a small semi-circle bump below the real axis to accommodate the
point. One then takes the radius of this semi-circle to zero and achieves the proper
integral. It can be shown that the proper form of this integration is given by

(6.1) lim
y↓0

∫ ∞

−∞

f(x)

x − x0 − iy
dx = p.v

∫ ∞

−∞

f(x)

x − x0
dx + lim

y↓0

∫

S

f(η)

η − x0
dη

The latter is taken over a semicircle which can be shrunk in the limit and thus
equals πif(x0). Using the postulate of the Dirac delta function, we can write,

(6.2) lim
y↓0

∫ ∞

−∞

f(x)

x − x0 − iy
dx = p.v

∫ ∞

−∞

f(x)

x − x0
dx + iπ

∫ ∞

−∞

δ(x − x0)f(x)dx

This is typically approximated in theoretical physics as,

(6.3) lim
y↓0

1

x − x0 − iy
≈ p.v.

1

x − x0
+ iπδ(x − x0)

We note that, with τ = t − t′, dτ = −dt′,

(6.4) −

∫ t

0

exp(i(ω − ωj)τ)dτ =

(
i

ω − ωj

)

[1 − exp(i(ω − ωj)t)]

The exponential term approximately averages out over the ω integration, and we
have the approximation,

(6.5)

∫ t

0

dt′e±(ω−ωj)(t−t′) = πδ(ω − ωj) ± iP (
1

ω − ωj

)

Now looking at the table of calculations on the previous page, we see that many
principal value part terms will cancel out, specifically, the B and C terms (i.e. γ
cancels γ† whenever all other terms are equal).

For the A D terms, we must do something fancy, that is, use that aa† = 1 + a†a
to convert all terms to a†a terms. This will create terms with a operators, but we
notice the symmetry between these terms and that they cancel. We also see the
antisymmetry across each row for the A and D terms, but since 1 + n̄ − n̄ = 1, we
are left with only one set of terms which retain their principal value part.

We could articulate these details, but we feel that it will profit the reader to
examine this by the table presented in this report.

The Dirac delta function will act as we would expect and drop out the ωj terms
to ω, and so we will have our final terms.

7. Result

Once we finally take account of all terms, we find that, with ε = πg(ω)2D(ω),
and

∆ω = P

∫ ∞

0

g(ωj)
2D(ωj)

ω − ωj

dωj

dρs

dt
= −i∆ω[a†a, ρs(t)] − ε(1 + n̄)

(
ρs(t)a

†a + a†aρs(t) − 2aρs(t)a
†
)

−ε(n̄)
(
ρs(t)aa† + aa†ρs(t) − 2a†ρs(t)a

)
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