PHYS 160 - Homework \#8

Data Analysis

This exercise is to practice data analysis. You are to analyze a data set, y versus x, where x measures the distance from the interface between two media. Download the data file potential.csv. The data set has been placed in two columns, x and y,

- (Plot1) Plot y versus x. Label the plot with a title. Note how the data separates in two sub-domains, $x=[0,2]$ and $x=[2,5]$.
- Perform a global linear fit. Record the equation and the R^{2} statistics for this fitted line.
- (Plot2 and Plot3) Re-plot the data in the two sub-domains. Label each plot with a title.
- Perform a linear fit in each sub-domain. Record the equations and the R^{2} statistics for each fitted lines.
- Perform an exponential fit in each sub-domain. Record the equations and the R^{2} statistics for each fitted lines.
- Comment on the quality of these fits.
- (Plot4) Plot the data together with the linear and exponential fits in the sub-domain regions in one graph.

Area under the curves

- Numerically calculate the area under the data via the trapezoidal approach. However be careful that the data set is NOT equally spaced in x. Use a modified trapezoidal rule, namely

$$
\text { area }=\sum_{\text {strips }} \frac{1}{2}\left(y_{i+1}+y_{i}\right)\left(x_{i+1}-x_{i}\right)
$$

to calculate the area.

- The areas under the fitted curves are approximations to the area above. Calculate the areas under the three fitted curves, i.e., the global linear, sub-domain linear and sub-domain exponential fits. You may perform the integrals analytically by hand or use MAPLE.
- Calculate the percent error in each of these three areas as compared to the area calculated based on the data.
- Comment on the accuracy of the three areas calculated based on the three fitted lines. Over the each sub-domain, which fit was the best?

