PHYS 160 - Homework \#6

Finite Differences

This assignment is to practice the use of finite difference formulae to compute the derivative of a function given numerically on an equally spaced lattice.

Let the numerical lattice be defined by the domain, $x_{\text {min }}$ and $x_{\max }$, and the number of equally spaced points, $N_{\text {grid }}$. The constant spacing between the points on the numerical lattice is given by $d x=\frac{x_{\max }-x_{\min }}{N_{\text {grid }}-1}$. The coordinate of the $i^{t h}$ point is then given by $x_{i}=x_{m i n}+(i-1) d x$ with the convention that the first point at $x=x_{\text {min }}$ is labeled by $i=1$. A convenient notation for a function $f(x)$ evaluated at the $i^{\text {th }}$ point on the lattice is $f_{i}=f\left(x_{i}\right)$.

We saw in class the forward, backward and symmetric forms to compute the first derivative based on the tabulated function values f_{i}.

$$
\begin{gather*}
\text { slope }_{i}^{f}=\frac{f_{i+1}-f_{i}}{d x} \tag{1}\\
\text { slope }_{i}^{b}=\frac{f_{i}-f_{i-1}}{d x} \tag{2}\\
\text { slope }_{i}^{s}=\frac{f_{i+1}-f_{i-1}}{2 d x} \tag{3}
\end{gather*}
$$

In this assignment you will use the sample function

$$
\begin{gather*}
f(x)=\frac{1}{2} x^{3}+2 x^{2}+x-\frac{1}{5} \tag{4}\\
g(x)=f(x) e^{-x^{2}} \tag{5}
\end{gather*}
$$

Using Grids

- Define a x-grid using $x_{\min }=-3, x_{\max }=3$ and $N_{\text {grid }}=35$
- Calculate $g(x)$ on this grid
- Plot $g(x)$, point-style
- Calculate the first derivative of $g(x)$ via the forward, backward and symmetric forms respectively
- Plot these three approximate derivatives (again, point-style)
- Guess (read off the graph) the location of the maxima and minima of $g(x)$ and the values of $g(x)$ at those points. Write your answers as a comment

Using Maple

- Define $g(x)$ and then $f(x)$
- Plot $g(x)$ in the domain $x=[-3,3]$
- Calculate $\operatorname{slope}(x)=\frac{d g(x)}{d x}$, the exact (analytical) derivative of $g(x)$
- Plot slope (x) in the domain $x=[-3,3]$
- Find the location and the function $g(x)$ values at the maxima and minima of $g(x)$ in the interval $x=[-3,3]$
- How good (percent error) were your previous estimate of these maxima and minima?

Numerical vs Exact

- Calculate the (numerically) exact derivative of $g(x)$ from the grid method by typing in the analytical formula for it as generated in Maple
- Plot the first derivative of $g(x)$ as obtained by the symmetric formula and the (numerically) exact one above
- Plot the difference between the first derivative of $g(x)$ as obtained by the symmetric formula and the (numerically) exact one above

Oops - we forgot an extremum!

In reality there is another maximum or minimum somewhere outside of the interval $x=[-3,3]$. Use Maple to find the location of this extremum and the $g(x)$ function value at this particular point.

Hint: Find the zeros of $f(x)$.

