PHYS 160 - Homework \#4

Model Signal

You are to help your scientific friend with her model of an electronic signal. She describes this signal via a Fourier Series as

$$
\operatorname{signal}(N 1, N 2, t)=\sum_{n=N 1}^{N 2} \operatorname{term}(2 n-1, t)
$$

where n is the sum index which ranges over the values from $N 1$ to $N 2$. The variable t is the time. The $\operatorname{term}(n, t)$ function is defined as

$$
\operatorname{term}(n, t)=a(n) \sin \left(\pi n t / T_{0}\right)
$$

where T_{0} is a constant and the amplitude $a(n)$ is

$$
a(n)=\frac{4}{\pi} \frac{1}{n}
$$

Using Maple

- Define $\operatorname{signal}(N 1, N 2, t), \operatorname{term}(n, t)$ and $a(n)$
- Assign the constant: $T_{0}=1.125$
- Plot the signal function, signal $(N 1, N 2, t)$, with the first 150 terms included in the series starting from the fundamental frequency, $N 1=1$, over the time domain $t=[0,5]$. Label this plot with a title.

Power Spectrum

The power (energy/time) per frequency intervals carried by a signal modeled via a Fourier Series can be demonstrated to be proportional to the square of the amplitude, $a(n)^{2}$.

- Plot point style $a(n)^{2}$ as a function of n for the first 15 terms appearing in the Fourier Series of the signal. Label this plot with a title.
- Repeat the plot using a semi-log plot (log scale vertically - linear scale horizontally) to better illustrate the range in values. Label this plot with a title.
Hint: Look in the plots library for a suitable plot command.
- Comment on the advantage of the semi-log plot in this case.

Threshold Values in Truncated Signals

A signal can be electronically modified, either on purpose or by accident (poor design or malfunction). In the language of the Fourier Series this corresponds to applying a filter to the signal to cut or modify either the low or high frequency terms, or both.

- High frequency filter. Plot the filtered signal function, $\operatorname{signal}(N 1, N 2, t)$, with the first 5 terms included in the series starting from the fundamental frequency, $N 1=1$, over the time domain $t=[0,5]$. Label this plot with a title.
- Repeat the plot above with an added horizontal line at 1.0 and over the time domain $t=\left[0,2 T_{0}\right]$
- Find the time interval(s) during which the 5 terms filtered signal is larger than 1.0 within the time domain $t=\left[0,2 T_{0}\right]$
- Consider a threshold function: threshold $(t)=-0.5+0.15 t-0.05 t^{2}$

Find the time interval during which the 5 terms filtered signal is smaller than the threshold function within the time domain $t=\left[0,2 T_{0}\right]$

- Plot a composite graph of the 5 terms filtered signal function over the time domain $t=\left[0,2 T_{0}\right]$ and the threshold function over the time interval found above.

More on Filters

A filter applies a modification to the signal by multiplying the amplitude $a(n)$ of each term in the Fourier Series by a filtering function that depends on n. For example, consider the following filtering function

$$
\operatorname{filter}(n)=\frac{1}{1+\exp (n-9)}
$$

It will be applied to the Fourier Series via

$$
\text { filtered_signal }(N 1, N 2, t)=\sum_{n=N 1}^{N 2} \text { filter }(2 n-1) \operatorname{term}(2 n-1, t)
$$

- Define filter (n)
- Plot filter (n) over a domain $n=[0,15]$. Label this plot with a title. Note that the function is very close to 1 for small n and dies off quickly for large n.
- Is this a low frequency or a high frequency filter?
- Define the filtered signal filtered_signal ($N 1, N 2, t)$
- Plot this filtered signal for $N 1=1$ and $N 2=50$ over the time domain $t=[0,5]$. Label this plot with a title.
- Comment on the differences between this filtered signal and the one in the previous section when the filter resulted in simply cutting off all terms beyond the first 5 terms.

