PHYS 160 - Exam \#2 - Triangle Waves

Don't forget your name or plot titles. For all plots in this quiz, please plot over the values $t=0 \ldots 4$. Write your name in the upper corner of this exam and turn it it when you leave.

Prep-work (15pts)

- Go online and look up the triangle wave function. Remember that any sine wave can be written as:

$$
a \sin (\omega(t+\phi))
$$

Write three helper functions, as we did for the square wave:

- $a(k)$, the amplitude of the kth sine wave in the series
- $\operatorname{term}(t, k, \omega, \phi)$
- triangle $(t, \omega, \phi, N 1, N 2)$

Where $N 1, N 2$ are the starting and ending number of terms in the summation.

Plotting (30pts)

- Plot the triangle wave with the first 50 terms, no phase angle and $\omega=1$.
- On a new plot, adjust ω until you get a period of exactly 1 . We will use this ω for the rest of the exercise and call it ω_{0}.
- Plot the triangle series with only a single term.
- Is a single term a good approximation?
- Observe the effect of all the other terms by plotting the triangle series with one term, and overlaying another plot with the other terms $(N 1=1, N 2=100)$.

Interference (35pts)

- Write a new helper function called $\operatorname{overlap}(t, \Delta)$ that returns the sum of two triangle waves, each with $N 1=0, N 2=50$, a period of 1 , but differing phase angles. The first should have $\phi_{1}=0$ and the second should have $\phi_{2}=\Delta$. When you define the function here, use the unapply method.

$$
\operatorname{overlap}(t, \Delta)=\operatorname{triangle}\left(t, \omega_{0}, 0,0,50\right)+\operatorname{triangle}\left(t, \omega_{0}, \Delta, 0,50\right)
$$

- Plot overlap $(t, 1.8)$, triangle $\left(t, \omega_{0}, 0,0,50\right)$ and triangle $\left(t, \omega_{0}, 1.8,0,50\right)$ on the same plot and describe what you see (note the amplitude!).
- Animate, over 100 frames the range $\Delta=0 \ldots 1$ the function triangle $\left(t, \omega_{0}, \Delta, 0,50\right)$. If you've done this correctly it should simply slide across the screen.
- Animate, over 100 frames the range $\Delta=0 \ldots 1$ the overlap function.
- Describe what happens during this animation at $\Delta=1 / 2$, both from a graphical perspective and a physical one.

Points of interest (20pts)

- Solve for all points of intersection of the two functions: triangle $\left(t, \omega_{0}, 0,0,50\right)$ and triangle $\left(t, \omega_{0}, 0.4,0,50\right)$.
- On a single picture, plot each of the above graphs with a third plot (in point style) indicating the points of intersection.

