
PHYS 501: Mathematical Physics I

Fall 2022

Solutions to Homework #4

1. (a) (i) Setting z = 1, we find

∞∑
n=0

Pn(1)hn =
(
1− 2h+ h2

)−1/2
= (1− h)−1.

Application of the binomial theorem gives

(1− h)−1 =

∞∑
n=0

hn,

so Pn(1) = 1 for all n.

(ii) Setting z = 0, we have
∞∑
n=0

Pn(1)hn =
(
1 + h2

)−1/2
.

The binomial expansion of the expression on the right is(
1 + h2

)−1/2
= 1− 1

2h
2 + 3

8h
4 + · · ·+ (−1)m1.3.5...(2m− 1)

2mm!
h2m + · · ·

Thus P2m+1(0) = 0 (no odd powers of h) and

P2m(0) =
(−1)m1.3.5...(2m− 1)

2mm!
=

(−1)m(2m− 1)!!

2mm!
=

(−1)m(2m)!

22m(m!)2
.

(iii) Differentiating the generating function equation with respect to z gives

h
(
1− 2zh+ h2

)−3/2
=

∞∑
n=0

P ′n(z)hn,

so

∞∑
n=0

P ′n(1)hn = h(1− h)−3 = h

(
1 + 3h+ · · ·+ (−3).(−4)...(−n− 2)

n!
(−h)n + · · ·

)

=

∞∑
n=0

1
2(n+ 1)(n+ 2)hn+1

=

∞∑
m=1

1
2m(m+ 1)hm

so
P ′m(1) = 1

2m(m+ 1).



Since P0(z) = 1, the result is true for m = 0 too.

(iv) Similarly,

∞∑
n=0

P ′n(0)hn = h
(
1 + h2

)−3/2
= h− 3

2h
3 + · · ·+ (−3)(−5)...(−2m− 1)

2mm!
h2m+1 + · · ·

so P ′2m(0) = 0 and

P ′2m+1(0) =
(−1)m(2m+ 1)!!

2mm!
=

(−1)m(2m+ 1)!

22m(m!)2
= (2m+ 1)P2m(0).

(b) Using Stirling’s formula, as m→∞

P2m(0) =
(−1)m(2m)!

22m(m!)2

≈ (−1)m
√

4πm (2m)2me−2m

22m
(√

2πmmme−m
)2

= (−1)m
√

4πm

2πm

=
(−1)m√
πm

.

(c) Since P0(x) = 1, the integral is
∫ 1
−1 P0(x)Pn(x) dx = 2δn0 by the orthogonality property

of the Pn.

(d) We can use one of the recurrence relations to write

Pn(x) =
P ′n+1(x)− P ′n−1(x)

2n+ 1
,

so

In ≡
∫ 1

0
Pn(x)dx =

1

2n+ 1
[Pn+1(1)− Pn+1(0)− (Pn−1(1)− Pn−1(0))]

=
1

2n+ 1
[Pn−1(0)− Pn+1(0)] .

Thus the integral is zero for even n; for odd n = 2m + 1, using the result from part (a)(ii),
we find

I2m+1 =
1

4m+ 3

[
(−1)m(2m)!

22m(m!)2
− (−1)m+1(2m+ 2)!

22m+2[(m+ 1)!]2

]
=

(−1)m(2m)!

(4m+ 3)22m(m!)2

[
1 +

2m+ 1

2(m+ 1)

]
=

(−1)m(2m)!

22m+1(m+ 1)(m!)2
.



2. (a) The general solution to Laplace’s equation is

Φ(r, θ, φ) =
∞∑
l=0

l∑
m=−l

(
αlmr

l + βlmr
−l−1

)
Y m
l (θ, φ).

For r < b, the solution must satisfy the boundary condition that Φ = Φ0 when r = a. Hence

∞∑
l=0

l∑
m=−l

(
αlma

l + βlma
−l−1

)
Y m
l (θ, φ) = Φ0 =

√
4π Y 0

0 (θ, φ)Φ0

(since
√

4π Y 0
0 = 1). For equality to hold, it must do so for every (l,m) pair. Hence

α00 + β00 a
−1 =

√
4πΦ0

αlma
l + βlm a

−l−1 = 0,

so

α00 =
√

4πΦ0 − β00 a−1

αlm = −βlm a−2l−1 (l 6= 0,m 6= 0).

(b) For r > b (replacing α and β inside by γ and δ outside) the boundary condition at infinity
implies γlm = 0.

(c) The solutions then are

Φ(r, θ, φ) =



∞∑
l=0

l∑
m=−l

(
αlmr

l + βlmr
−l−1

)
Y m
l (θ, φ) (r < b),

∞∑
l=0

l∑
m=−l

δlmr
−l−1 Y m

l (θ, φ) (r > b).

Continuity at r = b implies

αlm b
l + βlm b

−l−1 = δlm b
−l−1.

for all l,m.

(d) Due to the surface charge on the shell, the radial component of the electric field −∂Φ/∂r
has a discontinuous jump at r = b, as described by Gauss’s Law:(

−∂Φ

∂r

)
r=b+

−
(
−∂Φ

∂r

)
r=b−

=
σ

ε0
.

If σ is expressed as a spherical harmonic expansion

σ(b, θ, φ) =

∞∑
l=0

l∑
m=−l

σlm Y
m
l (θ, φ),

then, applying this condition term by term, we must have

(l + 1) δlm b
−l−2 −

[
−l αlm bl−1 + (l + 1)βlm b

−l−2
]

=
σlm
ε0
.



Note that the given expression for σ consists of just two modes (using the conventional
definitions of Y m

l given in Riley & Hobson, p. 340):

σ21 = −
√

8π

15
σ0

σ2,−1 = −iσ21.

We can now solve for αlm, βlm, and δlm. Dropping the subscripts to avoid clutter, we have
two cases:

(i) For l = m = 0, we have

α+ β a−1 =
√

4πΦ0

α+ β b−1 = δ b−1

δ b−2 − β b−2 =
σ

ε0
= 0 here.

The solutions are easily shown to be

α = 0

β = δ =
√

4π aΦ0.

(ii) For other l and m, we have

α+ β a−2l−1 = 0

α bl + β b−l−1 = δ b−l−1

(l + 1)δ b−l−2 + lαbl−1 − (l + 1)β b−l−2 =
σ

ε0
.

The solutions are

α =
σb−l+1

(2l + 1)ε0

β = − σbl+2

(2l + 1)ε0

(a
b

)2l+1

δ =
σbl+2

(2l + 1)ε0

[
1−

(a
b

)2l+1
]
.

Putting together the pieces, the complete solution for r < a is

Φ(r, θ, φ) = β00r
−1 Y 0

0 + α21r
2 Y21 + β21r

−3 Y21 + α2,−1r
2 Y2,−1 + β2,−1r

−3 Y2,−1

= Φ0

(a
r

)
+
σ0b

5ε0

[(r
b

)2
−
(a
b

)5( b
r

)3
]

sin 2θ cosφ.

For r > b,

Φ(r, θ, φ) = δ00r
−1 Y 0

0 + δ21r
−3 Y21 + δ2,−1r

−3 Y2,−1

= Φ0

(a
r

)
+
σ0b

5ε0

[
1−

(a
b

)5]( b
r

)3

sin 2θ cosφ.



3. (a) Inside the spherical cavity formed by the two hemispheres, the general solution of Laplace’s
equation is

φ =

∞∑
l=0

l∑
m=−l

(
blmr

−l−1 + clmr
l
)
Pml (cos θ) eimφ,

where r, θ, φ are spherical polar coordinates and the line of contact between the hemispheres
is at θ = π

2 . For φ to be regular at r = 0 we must have blm = 0; axial symmetry implies that
clm = 0 for m 6= 0. Thus the solution is of the form

φ(r, θ) =
∞∑
l=0

cl r
l Pl(cos θ).

The boundary condition at r = a is

φ(a, θ) =
∞∑
l=0

cl a
l Pl(cos θ) =

{
+V0, 0 ≤ θ < π

2 ,
−V0, π

2 < θ ≤ π.

Inverting this Legendre series, we find

cl a
l

(
2

2l + 1

)
=

∫ π

0
φ(a, θ)Pl(cos θ)d(cos θ)

= V0

[∫ 0

−1
−Pl(µ)dµ+

∫ 1

0
Pl(µ)dµ

]

=


0 (l even)

2V0

∫ 1

0
Pl(µ)dµ (l odd)

Hence, for l = 2m + 1, we can evaluate the integral using the solution to problem 1(d), to
find

φ(r, θ) = V0

∞∑
m=0

(−1)m(4m+ 3)(2m)!

22m+1(m+ 1)(m!)2

(r
a

)2m+1
P2m+1(cos θ) .

(b) Now we are seeking a solution to the wave equation

∇2Φ− 1

c2
∂2Φ

∂t2
= 0,

with boundary conditions specified on the same hemispheres as in part (a), except that now
the boundary values are variable,

Φ(t, r = a) = ±V0e−iωt,

and we want the solution for r > a.

As usual, we seek e−iωt time dependence, so the spatial part χ of the solution satisfies the
Helmholtz equation

∇2χ+ k2χ = 0,

with k = ω/c. We require axisymmetry, so the general solution is

Φ(r, θ, t) = e−iωt
∑
l

[Aljl(kr) +Blnl(kr)] Pl(cos θ),



where we must retain both the jl and the nl solutions for r > a. Since the asymptotic forms
are

jl(x) ∼ 1

x
cos
[
x− π

2 (l + 1)
]
, nl(x) ∼ 1

x
sin
[
x− π

2 (l + 1)
]
,

as x→∞, the combination h
(1)
l = jl + inl clearly satisfies the “outgoing wave” condition as

r →∞ and the solution takes the form

Φ(r, θ, t) = e−iωt
∑
l

Clh
(1)
l (kr)Pl(cos θ).

At r = a,

Φ(a, θ, t) = e−iωt
∑
l

Clh
(1)
l (ka)Pl(cos θ) = ±V0e−iωt,

and the solution is essentially the same as in part (a), with l = 2m+ 1 and al replaced with

h
(1)
l (ka):

c2m+1 h
(1)
2m+1(ka) = V0

4m+ 3

I2m+1
.

(again using the terminology of Problem 1d). The complete solution therefore is

φ(r, θ, t) = V0e
−iωt

∞∑
m=0

(−1)m(4m+ 3)(2m)!

22m+1(m+ 1)(m!)2
h
(1)
2n+1(kr)

h
(1)
2n+1(ka)

P2m+1(cos θ) .

4. We wish to evaluate

φ =

∫
d3r1

∫
d3r2 ψ

∗(r1)ψ
∗(r2)

e2

r12
ψ(r1)ψ(r2) ,

where ψ(r) =
(
Z3

πa30

)1/2
e−Zr/a0 , r12 = |r1 − r2|, and Z = 2 here. Expand the r−112 term in

spherical harmonics:

1

r12
=
∞∑
l=0

l∑
m=−l

4π

2l + 1
Y m
l (θ1, φ1)

∗ Y m
l (θ1, φ2)

rl<

rl+1
>

,

where r< = min(r1, r2) and r> = max(r1, r2), with r = |r|. Writing d3r = r2drdΩ, the
angular (Ω1 and Ω2) integrals give zero except for l = m = 0, and∫

dΩ1 Y
0
0 (θ1, φ1)

∗ =

∫
dΩ2 Y

0
0 (θ2, φ2) =

√
4π ,

so

φ = 16π2e2
(
Z3

πa30

)2 ∫
r21dr1

∫
r22dr2 e

−2Zr1/a0e−2Zr2/a0
1

max(r1, r2)
.

Splitting the r2 integral into two parts (0 < r2 < r1 and r1 < r2 <∞), we have

φ =
16Z6e2

a60

∫ ∞
0

dr1 r1 e
−2Zr1/a0

[∫ r1

0
dr2 r

2
2e
−2Zr2/a0 + r1

∫ ∞
r1

dr2 r2e
−2Zr2/a0

]
.

After some algebra (or application of Maple), this yields the desired result

φ =
5Ze2

8a0
=

5e2

4a0
.


