
PHYS 231 Lecture Notes – Week 1

Reading from Maoz (2nd edition):

• Chapter 1 (mainly background, not examinable)

• Sec. 2.1

• Sec. 2.2.1

• Sec. 2.2.3

• Sec. 2.2.4

Much of this week’s material is quite descriptive, but some mathematical and physical points may
benefit from expansion here. I provide here expanded coverage of material covered in class but
not fully discussed in the Maoz text. For material covered in the text, I’ll mostly just give some
generalities and a reference. References to slides on the web page are in the format “slidesx.y/nn,”
where x is week, y is lecture, and nn is slide number.

1.1 Kepler’s Laws and Planetary Orbits

Kepler’s laws describe the motions of the planets:

I Planets move in elliptical orbits with the Sun at one focus.

II Planets obey the equal areas law, which is just the law of conservation of angular momentum
expressed another way.

III The square of a planet’s orbital period is proportional to the cube of its semimajor axis.

The figure below sketches the basic parts of an ellipse; the following table lists some basic planetary
properties. (We’ll return later to how we measure the masses of solar-system objects.)
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The long axis of an ellipse is by definition twice the semi-major axis a. The short axis—
the “width” of the ellipse, perpendicular to the long axis—is twice the semi-minor axis, b. The
eccentricity is defined as

e =

√
1− b2

a2
.

Thus, an eccentricity of 0 means a perfect circle, and 1 is the maximum possible (since 0 < b ≤ a).
Less obvious from this definition, but important when actually working with orbital properties, the
distance from the focus to the center of the ellipse (the intersection of the major and minor axes)
is ae. Note that all planetary eccentricities are small enough that the orbits are almost circular.
The largest eccentricity is that of Mercury, and even in this case, some quick math shows that
bMercury ≈ 0.98 aMercury.

Planet semimajor period eccentricity inclination mass radius
axis (AU) (yr) (degrees) (Earth) (Earth)

Mercury 0.387 0.241 0.206 7.0 0.0553 0.383
Venus 0.723 0.615 0.0068 3.4 0.815 0.950
Earth 1 1 0.0167 0 1 1
Mars 1.52 1.88 0.0934 1.9 0.107 0.532
Jupiter 5.20 11.9 0.0485 1.3 318 11.0
Saturn 9.54 29.5 0.0557 2.5 95.2 9.14
Uranus 19.2 84.0 0.0472 0.77 14.5 3.98
Neptune 30.1 165 0.00858 1.8 17.2 3.87

Kepler’s laws were derived for the inner planets (Mercury through Mars), and the fact that
they hold for the outer planets too means that they are more than simple empirical fits. They
have predictive power too, even though Kepler did not understand why planets orbit the Sun—that
understanding would have to wait nearly 7 decades for Isaac Newton to develop his Laws of Motion
and Gravity, along with the mathematical tools to solve the problem.

The planets obey Kepler’s laws because they have to. Newtonian mechanics and gravity demand
it. Perhaps more interesting are the planetary dynamical properties that aren’t mandated by
Newton.

• All planets move in nearly circular orbits.

• All planets orbit in nearly the same plane.

• That plane is also the equatorial plane of the Sun.

• All planets orbit the Sun in the same sense—counterclockwise when viewed from above the
north pole.

• The Sun rotates in the same sense.

These properties are telling us a lot about how the solar system formed, not about the basic
gravitational physics that holds it together.
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1.2 The Scale of the Solar System

Kepler’s laws provide us with a map of the solar system without a scale marker. We can determine
the shapes and orientations of the planets’ orbits, but we only know their relative sizes. Measuring
a planet’s orbital period in years only tells us its orbital size relative to Earth’s orbit, which is not
itself determined:

a

a⊕
=

(
P

P⊕

)2/3

.

We call Earth’s orbital period P⊕ a year (1 yr). Earth’s semimajor axis a⊕ is called an astronomical
unit (1 AU). But how to measure it? We need an independent distance measurement to accomplish
this. Once we have done that, all planetary scales in the solar system are known.

There are many ways to make such an independent measurement. Perhaps the simplest (today)
is to use radar ranging to determine the distance to a nearby planet—Venus. Imagine for simplicity
an instant when Earth and Venus are exactly aligned in their (circular) orbits with the Sun. Venus
has a semimajor axis of 0.7 AU, Earth 1.0 AU. The distance between them is therefore 0.3 AU. A
radar beam from a large instrument on Earth (such as the 300 m disk at Arecibo, Puerto Rico)
will strike Venus, reflect off, and some of it will be detected at Earth roughly 5 minutes later, after
an 0.6 AU round trip at speed c = 3× 108 m/s. Hence we can say

0.6AU = 300 s× 3× 108 m/s = 9× 1010 m,

and so 1 AU = 1.5× 1011 m.

1.3 Sizing Up the Sun

Now that we know the value of 1 AU, we can figure out some basic properties of the Sun.

1. The Sun’s angular diameter is about 0.53 degrees, or 0.0092 radians. At a distance of 1 AU,
simple geometry tells us that this corresponds to a distance of 9.2 × 10−3 × 1.5 × 1011 m =
1.4× 108 m. A more accurate calculation gives a radius of R� = 696, 000 km.

2. Knowing Earth’s a = 1 AU and orbital period P = 1 yr, we can determine the mass of the
Sun, much as we did for the Moon. The result is

M� =
4π2r3

GP 2
= 2.0× 1030 kg.

1.4 Distances to Nearby Stars

Once we know the scale of the solar system, we can use elementary geometry to measure the
distances to nearby stars. As discussed in the Lecture 1 slides (slides1.1/15–19), and in §2.2.1 of
the Maoz text, nearby stars appear to move relative to distant ones as Earth orbits the Sun. This
allows us to construct a long, skinny triangle right triangle with Earth, the Sun, and the distant
star at the three vertices. The parallactic angle p is at the star, the opposite side is 1 AU, and the
adjacent side is the distance D to the star. The small angle formula then says

p(radians) =
1AU

D
.

Since p is generally very small, it is normally measured in arcseconds, where 1 arcsecond (1′′) =
1

3600

◦
= 1

206000 radians. If we plug in p = 1′′ we find D = 206, 000 AU, a distance called 1 parsec
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that defines the distance unit used throughout astronomy. If we measure distances in parsecs, the
above formula takes on a particularly simple form:

p(arcsec) =
1

D(pc)
.

Parallaxes as small as ∼ 0.01′′ can be reliably measured from the ground. (Even though stellar
images are generally much larger than this, it is possible to measure a shift in the position of a blob
that is much smaller than the blob’s size.) This corresponds to distances of ∼ 100 pc.

The Hipparcos satellite, launched in 1989, could accurately measure parallaxes as small as
1 − 2 × 10−3 arcsec. Again, the errors in individual measurements were considerably larger than
this (tens of milliarcseconds), but by combining multiple measurements and fitting a curve to
the results, much higher accuracy could be obtained. The above figure (from M. Perryman, the
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Hipparcos project leader) shows how this works for one particular (unnamed) star. Each straight
line in the graph indicates the observed position of the star at some particular time. (The precise
location along this line was not determined by the satellite.) The curve is the stellar path that best
fits all the measurements. The amplitude of the “loops” gives the star’s parallax, due to Earth’s
motion. The superimposed linear motion is the star’s true real spatial motion transverse to the
line of sight (called proper motion in astronomical jargon).

The Gaia mission, launched by the European Space Agency in December 2013, has been re-
turning high-quality data since 2015. It can measure parallactic angles with errors as small as 10
microarcseconds, extending the useful distance range to ∼10 kpc. The current data release contains
position, velocity, brightness and color data for almost 1.7 billion stars, spanning a large portion of
the Milky Way Galaxy.

1.5 Stellar Velocities

Let’s continue our inventory of stellar properties. We have seen how simple geometry (trigonometric
parallax) can be used to measure the distances to many stars. We can use similar geometric
reasoning to measure a star’s transverse velocity relative to the Sun—that is, the component of
its relative velocity that lies perpendicular to the line of sight (see the notes for lecture 3 for a
diagram). In time ∆t the star moves a transverse distance vt∆t, so, seen from Earth, it moves
through an angle

∆θ =
vt∆t

D
so

∆θ

∆t
=

vt
D
.

The quantity on the left hand side is the proper motion, or angular speed of the star across the sky,
usually denoted by the symbol µ and expressed in arcsec/yr. Thus if the distance D is known, we
can use the proper motion to determine the transverse velocity. In “astronomical” units, we have

vt (km/s) = 4.74D (pc) µ (arcsec/yr).

Proper motions of stars are generally very small—a star at a distance of 100 pc moving with a
transverse velocity of 30 km/s relative to the Sun (pretty typical for our Galactic neighborhood)
would have a proper motion of just 0.06 arcsec/yr. By and large, proper motions, and hence
transverse velocities, are well known only for relatively nearby stars, although HST and Gaia have
recently pushed the useful range out to several kiloparsecs.

What about the other component of the star’s motion? Often, if the star is bright enough, its
radial velocity can be accurately measured from the Doppler shift of its spectrum. Recall from your
intro Physics class that when a wave source is moving with respect to an observer, the observer sees
a longer or shorter wavelength than was emitted, depending on its motion away from or toward the
source. For sound waves, where you probably first saw the derivation, the wavelength shift depends
in slightly different ways on the speed of the source and the speed of the observer relative to the
medium through which the wave moves. Light is actually much simpler. The Doppler shift depends
only on the relative radial motion v of the source and the observer, and (in terms of wavelength)
takes the form

λobserved = λsource

√
1 + v/c

1− v/c
,
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where by convention v > 0 when the observer is moving away from the source. For v � c, this
simplifies, to first order (i.e. neglecting terms of order v2/c2 and higher), to

λobserved = λsource

(
1 +

v

c

)
.

In terms of the change in wavelength ∆λ (or frequency ∆ν/ν), we have

∆λ

λ
= − ∆ν

ν
=

v

c
,

Thus, all spectral features (see below) observed in a star with a radial velocity of +30 km/s away
from the Sun will be Doppler shifted by v/c = 30/300000 = 10−4, so a 500 nm feature will be
observed at 500.05 nm—a small shift, but easily measurable with modern instruments.

We’ll see in a moment that light has both wave and particle properties. But even in particle
mode (photons), the wavelength of light is subject to the Doppler effect, so the above discussion
still applies.

It’s worth noting that, when we know the distance to a star, we can determine its three-
dimensional location in space, since we know all three coordinates in spherical polar coordinates
relative to the Sun. For many of the same stars, whose proper motions and Doppler shifts can be
measured, we can also reconstruct their three-dimensional spatial velocities. Thus, for an increasing
number of stars in our Galaxy, we have full six-dimensional dynamical information on their positions
and velocities, a fact that will ultimately be critical to our understanding of the dynamics of our
Galaxy.

1.6 Gravitational Acceleration at Earth’s Surface

Now let’s turn to measurement of masses in astronomy. Newton’s laws provide the key.
Newton’s law of gravity says that the gravitational force between two bodies of masses M

(Earth, say) and m (you, perhaps) is

Fgrav =
GMm

r2

where r is the distance between the bodies and G is a fundamental constant. The force is attractive,
and is directed along the line between the two bodies.

This force produces an acceleration a. By Newton’s second law,

Fgrav = ma

so

a =
GM

r2
.

Note that a is independent of m. Actually, this is because we did some sleight of hand in the two
Fgrav equations above—we assumed that we could use the same m in each. In other words, we
assumed that the m that couples to gravity is the same m that gives matter inertia. This turns out
to be true—at least, no experiment has ever succeeded in finding a difference between the two. The
equality of the so-called gravitational mass and the inertial mass turns out to be a very fundamental
statement of physics—called the equivalence principle—that forms the basis for Einstein’s general
theory of relativity. But more on that later!

On Earth’s surface (at distance R from Earth’s center), the gravitational acceleration is easily
measured to be

g ≈ 9.80 m/s2
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so we can write

g =
GM

R2
.

Newton never knew the value of G. The best he could do was to determine the combination GM .
However, G has subsequently been measured in numerous laboratory experiments (carried out since
the late 19th century) as G = 6.67× 10−11 m3/kg s2. Knowing G, we can turn the equation around
to say

M =
gR2

G
.

In other words, we can use our knowledge of gravity to weigh our planet! Plugging in g, G, and
R = 6400 km, we find

M⊕ = 5.97× 1024 kg

(the subscript ⊕ is the conventional astronomical symbol for Earth).
This is essentially how all masses in astronomy are measured. We have to see some sort of

gravitational interaction between two (or more) bodies—and assume the equivalence principle—in
order to say anything about the masses involved.

1.7 The Moon and the Inverse Square Law

The apple that may or may not have landed on Newton’s head gets all the credit for his law of
gravity, but his laws of motion really deserve the honor. Newton was trying to understand what
causes objects to fall toward Earth, and in particular how it (whatever it is) scales with distance.
He postulated that the force responsible for the apple’s acceleration at distance r = R⊕ is also
responsible for keeping the Moon in orbit around Earth, at distance rM = 384, 000 km.

The Moon orbits Earth every 27.3 days, so (assuming a circular orbit—not quite true), its
orbital speed is

vM =
2πrM

27.3 days
= 1.02 km/s.

From Physics I, the moon’s acceleration therefore is

aM =
v2M
rM

= 2.7× 10−3 m/s2.

Thus aM/g = 2.8 × 10−4, which is the same as R2
⊕/r

2
M , setting Newton on course for the critical

scaling of his law of gravity, a ∝ r−2. The accelerations of the planets, as described by Kepler’s laws,
are also consistent with this inverse-square fall-off, indicating to Newton that his law of gravitation
really might be universal in nature.

1.8 Orbital Motion

Now consider an object (a spacecraft or a satellite) in orbit at distance r around our mass M . For
simplicity, let’s take the orbit to be circular. If the orbital speed is v, then the acceleration is

a =
v2

r
.

Equating this to the acceleration due to gravity at that distance, we find

v2

r
=
GM

r2
,
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so

v =

√
GM

r
.

The orbital period P is just distance divided by speed, so

P =
2πr

v
= 2π

√
r3

GM
.

Note that P 2 ∝ r3, which is Kepler’s third law of planetary motion.
A few examples:

1. The Hubble Space Telescope orbits about 100 km above Earth’s surface, at r ≈ 6500 km.
Using the above numbers we find, for Hubble,

v = 7.83 km/s

P = 1.45 hours.

2. GPS satellites have orbital periods of exactly 12 hours. Turning around the above relation
for the period, we find that they have r = 26, 600 km.

3. Geosynchronous satellites have P = 24 hours, a factor of 2 larger, so from the above propor-
tionality they lie 22/3 = 1.59 times farther out, at r = 42, 200 km. Because it orbits at exactly
the same rate as Earth rotates, a geosynchronous satellite orbiting in Earth’s equatorial plane
always stays above the same point on the planet, and so appears fixed in the sky.

1.9 The Two-Body Problem

In the previous sections we studied Kepler’s laws and Newtonian gravity as they relate to the one-
body problem—a test particle of negligible mass orbiting a massive body such as the Sun. We saw
(at least for a circular orbit, but the result is general) that Newton’s version of Kepler’s third law
is

P 2 =
4π2 a3

GM
,

where P is period, a is semimajor axis, and M is the central mass. If we measure P in years, a in
AU, and M in solar masses, the relation is even simpler:

P 2 =
a3

M
.

Now let’s consider the two-body problem: two bodies of masses m2 and m2 interacting gravita-
tionally, where now the masses are arbitrary, and may be comparable. Let the bodies have position
vectors x1 and x2. The accelerations of the two bodies are

a1 =
Gm2 (x2 − x1)

r3

a2 =
Gm1 (x1 − x2)

r3

where r = |x2 − x1| (and note that the forces F1 = m1a1 and F2 = m2a2 are indeed equal and
opposite, as required by Newton’s third law).
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The center of mass of the system is

xCM =
m1x1 +m2x2

m1 +m2
,

and the center of mass acceleration is

aCM =
m1a1 +m2a2

M

=
F1 + F2

M
= 0.

Here M = m1 + m2 is the total mass of the system. In other words, the center of mass moves
with constant velocity. If the particles were each subject to an external force F , the center of mass
would have acceleration F /M—it would move through space like a single particle of mass M .

Now let’s consider the relative motion of the two bodies. Let r = x2 − x1 and a = a2 − a1.
Then

a = −Gm1r

r3
− Gm2r

r3

= −GMr

r3
.

In other words, the relative motion is exactly the same as one-body motion around a mass M . If
we let

r1 = x1 − xCM

r2 = x2 − xCM

with similar expressions for the velocities v1 and v2, then it is easily shown that

m1r1 +m2r2 = 0

r1 =
m2

M
r

r2 = −m1

M
r,

and similarly for the velocities. Thus the relative motion is an ellipse described by Kepler’s third
law as above, and the component stars execute similar ellipses with the center of mass as the
common focus, with the same period and semimajor axes

a1 =
m2

M
a

a2 =
m1

M
a.

Problem solved!

1.10 Conservation Laws

Going back to the one-body problem,

a = −GMr

r3
,
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we can straightforwardly derive a couple of important conservation laws. Gravity is a conservative
force, meaning that the acceleration can be written as the gradient of a potential φ, where

φ(r) = −GM
r
.

You can verify for yourself that a = −φ′(r). We have conventionally taken φ to go to zero as r →∞.
The sum of the kinetic and potential energies (expressed here per unit mass, for convenience)—the
energy—is a conserved quantity of the motion:

E = 1
2v

2 − GM

r
.

Angular momentum is also conserved. Let L = r × v. Then

dL

dt
=

dr

dt
× v + r × dv

dt
= v × v + r × a

= 0.

Since the angular momentum defines the normal to the orbit plane, this also implies that the orbit
is planar.

1.11 Bound and Unbound Orbits

It should be clear that positive and negative energies describe two qualitatively different types of
orbit. If E > 0, then it is possible for the distance r to become arbitrarily large and for the velocity
to remain positive. In other words, the particle can escape. If the velocity at infinite separation is
denoted by v∞, then

E = 1
2v

2
∞.

If E < 0, r can’t go to infinity because that would mean v2 = 2E < 0, which is not physical.
This is the bound elliptical orbit we have been discussing up to now. Note that, for a circular orbit,
with v2 = GM/r, we have

Ecirc = −GM
2r

.

The dividing line, E = 0 is a special case where the particle just makes it to infinity, but with
zero velocity. For a given initial separation r, the critical speed that separates bound and unbound
motion is called the escape speed, vesc. It is given by

v2esc =
2GM

r
.

The orbit in the positive energy case is a geometric shape called a hyperbola that is closely
related to the ellipse by the theory of conic sections, which dates back more than two millennia to
the ancient Greeks. The orbit in the intermediate zero-energy case is a parabola.

1.12 Measuring Stellar Masses

These basic considerations are enough to determine the masses of stars in many observed binary
systems. See §2.2.4 of Maoz. Briefly, the parameters we’d like to know are the semimajor axis,
eccentricity, and inclination of the binary orbit, as well as the masses of the component stars. For
nearby binaries we might know the distance and we may be able to resolve the individual orbits of
the stars. For more distant binaries, we may only have limited velocity information on one or both
components. Broadly speaking,

10



• If we can resolve a binary and know its distance or have velocity information, then we can
determine all the orbital parameters and the component masses.

• If we can’t resolve the binary, but have spectroscopic radial velocity information on both com-
ponents, then we can measure the mass ratio M1/M2, but only M sin i, where the inclination
i is the angle between the line of sight and the normal vector to the binary plane. Thus we
can only determine the masses if the inclination is known. An important example of this is
an eclipsing binary, where we see the orbit edge-on and i = 90◦, so sin i = 1.

• If we only have radial velocity information on one component (M1, say), then only the so-
called mass function

f(M1,M2, i) =
M3

2 sin3 i

(M1 +M2)2

can be determined.

1.13 Light, Particles, and Waves

Wave-particle duality in physics is a huge topic, and one that we can’t deal with in any detail here.
Suffice it to say that the pendulum has shifted from particles to waves and (almost) back over the
last 400 years, and our current “wavicles” understanding is much more nuanced than either.

Simply put, back in the day, the “particle” school of thought held that light was made up
of particles, with (somehow) different particles corresponding to different colors. The competing
“wave” theory viewed light as a wave phenomenon, with color corresponding to wavelength ν or
frequency λ, the two being related by the well known wave relation

λν = c,

where c = 3× 108 m/s is the speed of light.
In the late 17th century, Newton was a strong proponent of the particle theory. His double prism

experiment indicated that, once white light had been split into a spectrum by a prism, once a color
of light was isolated, passing it through another prism produced no further splitting, consistent
with the view that like particles could not be separated again. Of course, the wave theory, which
viewed different colors as different wavelengths of light, could also account for this observation by
asserting that the bending of light by a prism was a wavelength-dependent process.

By the 19th century, the weight of scientific opinion was firmly on the side of the wave theory.
Measurements of the diffraction of light as it passed through an opening, the Young double slit
experiment demonstrating interference of light, and the development of Maxwell’s equations, which
unified all known electromagnetic phenomena, and in addition predicted electromagnetic radiation,
all seemed to indicate conclusively that waves had won the day. Slide 1.2/22 illustrates the range
of properties of electromagnetic waves.

However, the story wasn’t over. Toward the end of the 19th century, a series of experiments
by Hertz, Lenard, and others established the reality of what is now called the photoelectric effect:
A beam of light can dislodge electrons from a metal surface, but in an unexpected way. Below a
critical frequency that depends on the metal in question, no electrons are produced. Above that
critical frequency, the energy of the electrons depends on the frequency of the light, but increasing
the intensity of the beam at constant frequency increases the number of electrons emitted, but not
their energies. None of these results could be explained by the wave theory.

In 1905 Einstein published an explanation of the photoelectric effect that effectively defined the
modern view of radiation. To explain the experimental results, he proposed that light consisted of
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photons—packets of electromagnetic waves—and that the energy E of a photon is proportional to
its frequency ν:

E = hν,

where h = 6.63×10−34 J.s is Planck’s constant. The energy of a photon is transferred to an electron.
The frequency threshold was explained by positing that a fixed amount of energy is needed for the
electron to escape from the metal’s surface. Higher frequency means more energy, higher intensity
means more photons, as observed. This insight won Einstein the 1923 Nobel Prize.

As a rule of thumb, light behaves as a wave on large scales, but as a particle (photon) on small
scales. A corresponding statement can be made about all known elementary matter particles, which
also exhibit both particle and wave properties, depending on circumstances.

1.14 Flux, Luminosity, and the Inverse-Square Law

Let’s imagine a body of radius R radiating isotropically—uniformly in all directions. The amount
of energy it radiates per unit time is its luminosity L (unit: watts).

Now imagine this energy spreading out through space as it travels away from the star. Assuming
no energy is lost from or added to the radiation field as it goes, the amount of energy crossing a
surface of radius D centered on the star must be the same—L. Hence the flux of radiation at
distance D is

f(D) =
L

4πD2
.

The flux decreases as an inverse-square law. This relation between f , L, and D provides us with
a means of measuring the third quantity once the other two are known. For the Sun, we measure
f = 1.4kW/m2 and know D = 1 AU, so the solar luminosity is L� = 3.96 × 1026 W. For nearby
Sirius we measure f = 1.2× 10−7 W/m2 and D = 2.6 pc, so L = 1.0× 1028 W = 25L�. But if we
know the luminosity by some other means (for example, if we recognize a distant object to be of a
type we know from nearby observations), we can turn the inverse-square law around to get

D =

√
L

4πf
.

Such objects, collectively referred to as standard candles, are very useful to astronomers, since they
allow us to extend the distance scale far beyond objects whose parallaxes can be measured. We
will see quite a few examples throughout the course.

1.15 Blackbody Radiation

Few objects (other than masers and lasers) emit radiation at a single frequency. In most cases,
the energy is spread out over a range of frequencies. Some typical spectra of stars are shown in
slides1.2/30. All of this material is discussed in more detail in Maoz, §2.1.

In general, we can characterize the spread of energy contained in a radiation field by its energy
density, uν , the amount of energy per unit volume per unit frequency (unit: J m−3 Hz−1). The
amount of energy per unit volume with frequency between ν and ν + dν is uνdν. The intensity,
Iν , is defined as the amount of energy per unit time per unit area per unit frequency per unit solid
angle (W m−2 Hz−1 ster−1). That is, if the beam has intensity Iν , then the total power per unit
area carried in solid angle dΩ in frequency range [ν, ν + dν) is

Iν dνdΩ W/m2.
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For an isotropic radiation field (uniformly spread over all directions, covering 4π steradians), the
intensity is related to the energy density by

Iν =
c

4π
uν .

A blackbody spectrum is a thermodynamic idealization that approximates fairly well the overall
energy emission of many stars. The detailed distribution, which comes from statistical mechanics,
is

Iν = Bν =
2h

c2
ν3

ehν/kT − 1
.

We could just as well work in terms of Bλ, which is defined per unit wavelength rather than per
unit frequency. Note that Bν and Bλ depend only on a single physical variable—the temperature
T .

The energy flux fν for an isotropic blackbody field is given by

fν = πBν W m−2 Hz−1,

and the total flux is obtained by integrating over all frequencies:

f =
2π5k4

15c2h3
T 4 = σT 4.

This is the Stefan-Boltzmann Law; the quantity σ = 5.7×10−8 Wm−2K−4 is the Stefan-Boltzmann
constant.

We can also look at how the peak of the blackbody distribution depends on temperature.
Differentiating Bν with respect to ν (or Bλ with respect to λ), we can find where the intensity has
a maximum. The result is the Wien displacement law, which may be written for Bν as

hνmax = 2.8 kT,

and for Bλ as
λmaxT = 0.0029 m ·K.

Note that, as the temperature increases, the peak of the emission moves to higher frequencies
(proportional to T ) and shorter wavelengths (inversely proportional to T )—from infrared (warm)
to red-hot to white-hot to blue-hot and beyond. Measurement of this peak gives us our first
estimate of the temperature of a star. Note, however, that most stellar spectra are only roughly
approximated by a blackbody (see slides1.2/30).
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