
Selecting Semiconductor Materials For The Quantum Dot Intermediate Band Solar

Cell

A Thesis
Submitted to the Faculty

of
Drexel University

by
Steven Evans Jenks

in partial fulfillment of the
requirements for the degree

of
Doctor of Philosophy

March 2012

c© Copyright 2012
Steven Evans Jenks.

ii

Dedications

This thesis is dedicated to my wife, Jessica. Her patience, love, and support made this work possible.

iii

Acknowledgments

I want to first thank my advisor, Dr. Robert Gilmore, for his willingness to spend the countless hours
that made our research possible. His insight and wisdom uncovered the subtle problems that refined
this work, his guidance and vision always kept me on the right path, and those Friday afternoon
‘discussions’ honed my ability to become a more effective physicist.

The entire physics department has helped me in countless ways throughout my entire career at
Drexel. In particular, I would like to thank Dr. Michael Vogeley for taking a chance on me in 2004
by admitting an interested engineer and helping me navigate the ‘part-time’ student waters. I want
to thank my colleagues Erica Caden, Danny Pan, Donna Yosmanovich, and Travis Hoppe for their
encouragement and helpful correspondence.

I want to thank my parents, John and Linda Jenks, for giving me every opportunity to succeed,
always encouraging excellence, and never allowing me to settle for mediocrity. They instilled the work
ethic, integrity, and values that make up the person I am today. I want to thank my two brothers,
John and Andy Jenks, for their support and teaching me all those ‘things’ that big brothers teach
younger brothers. Lastly, I thank my wonderful wife Jessica for her unconditional love and providing
laughter at moments when I needed it most.

iv

Table of Contents

List of Tables . vi
List of Figures . viii
Abstract . xi
1. Introduction and Background . 1
1.1 Conventional Photovoltaic Device . 3
1.2 Detailed Balance of Efficiency . 5
2. Intermediate Band Solar Cell . 11
2.1 One Intermediate Band Detailed Balance Analysis . 12
2.2 Two Intermediate Band Detailed Balance Analysis . 20
2.3 Remarks . 24
3. Quantum Dot Intermediate Band Solar Cell . 25
3.1 Heterostructures . 25
3.2 Quantum Dot Intermediate Band Solar Cell . 28
3.3 Design Considerations and Results . 30
3.4 Remarks . 33
4. Finite Element Method and its Application to Schrödinger’s Equation . . . 34
4.1 Finite Element Method . 34
4.2 Developing Basis Functions . 42
4.2.1 Elemental Kinetic Matrix In 1D . 44
4.2.2 Elemental Potential Matrix In 1D . 44
4.2.3 Elemental Overlap Matrix In 1D . 45
4.3 Higher Dimensions . 45
4.3.1 Elemental Kinetic Matrix - Higher Dimensions . 46
4.3.2 Elemental Potential Matrix - Higher Dimensions 49
4.3.3 Elemental Overlap Matrix - Higher Dimensions . 50
4.4 Degrees of Freedom . 51
4.5 Remarks . 56
5. Finite Element Program . 57
5.1 Stages of FEM Programming . 57
5.2 FEM Program - Preprocessing Code . 57
5.2.1 Implementation . 60
5.2.2 Examples . 68
5.3 FEM Program - Processing Code . 73
5.4 FEM Program - Post Processing Code . 83
5.5 FEM Program - Benchmarked Solutions . 85
5.5.1 Circular symmetric finite potential well in 2D . 85
5.5.2 Quantum wire square cross-section . 86
5.5.3 Spherically symmetric finite potential well in 3D 87
5.6 Remarks . 89
6. Strain Induced Potential in Quantum Dot Structures 90
6.1 Strain-Stress-Displacement Relations for Quantum Dots 90
6.1.1 Elemental Stiffness Matrix . 94
6.1.2 Elemental Force Vector . 97
6.1.3 Boundary Conditions . 97
6.2 Strain Potential . 98
6.3 Example of a FEM Strain Program . 99
6.4 Remarks . 105
7. Quantum Dot Intermediate Band Solar Cell Materials 106

v

7.1 Assumptions . 106
7.2 Model . 112
7.3 Results . 115
7.4 Remarks . 119
8. Final Remarks and Outlook . 121
Bibliography . 122
Appendix A: Schödinger’s Equation in Variational Form 128
Appendix B: FEM Source Code . 130
B.1 2D Preprocessing Code . 130
B.1.1 Example of a relative edge length function . 131
B.2 3D Preprocessing Code . 131
B.2.1 Five Sided Pyramid Distance Function . 132
B.2.2 Rectangular Prism Distance Function . 133
B.2.3 Polygon Centroid 3D . 134
B.2.4 Triangle point dist 3d . 135
B.2.5 Inhull . 136
B.2.6 Segment Point Dist 3D . 139
B.2.7 Plane Vert Point Dist 3D . 139
B.2.8 Plane vert2std 3d . 140
B.3 2D Processing Code . 141
B.3.1 Jacob 2D . 143
B.3.2 Elem matrix E . 143
B.3.3 Elem matrix V . 144
B.3.4 Elem matrix K . 146
B.3.5 Apply interface bc 2D . 149
B.3.6 Index 2D . 150
B.3.7 Assemble . 150
B.4 3D Processing Code . 150
B.4.1 Jacob 3D . 153
B.4.2 Elem matrix K 3D . 153
B.4.3 Elem matrix V 3D . 160
B.4.4 Elem matrix E 3D . 166
B.4.5 Apply interface bc 3D . 168
B.4.6 Index 3D . 168
B.5 Post Processing Code . 168
B.5.1 Simp psi plot . 169
Vita . 170

vi

List of Tables

3.1 Barrier and quantum dot materials (QD) that produce an efficiency, η, greater than
70% and have two intermediate bands. The energy transitions E1, E2, and E3 refer to
those in Fig. 2.1. 31

3.2 Maximum bandwidth associated with the two intermediate energy levels in a simple
cubic lattice. ∆s is this bandwidth associated with the first energy level, ∆p is the
bandwidth associated with the second energy level, and D is the minimum distance as
measured from the center of one quantum dot to center of next quantum dot needed to
prevent overlapping. 32

4.1 The first four energy eigenvalues of the infinite potential well using FEM approxi-
mation with linear basis functions. The approximation was carried out using 5, 20, and
100 elements. 41

4.2 The C1 basis functions that for the right tetrahedron with vertices located at (0,0,0),
(1,0,0), (0,1,0), and (0,0,1). 55

5.1 The basis functions that are used in 2D processing code for the right triangle with
vertices located at (0,0), (1,0), and (0,1). The basis functions are characterized by the
degree of freedom (dof) per node indicating the type of continuity applied. The local
coordinate system is (ξ,η). 74

5.2 The basis functions that are used in 3D processing code for the right tetrahedron
with vertices located at (0,0,0), (1,0,0), (0,1,0), and (0,0,1). The basis functions are
characterized by the degree of freedom (dof) per node indicating the type of continuity
applied. The local coordinate system is (ξ,η,ζ). 74

5.3 The first five bound state energy eigenvalues of the finite circular potential well with
a = 10Å and V0 = 5 eV using the FEM program with linear and cubic basis functions.
The approximation was carried out using 913 elements. 86

5.4 Conduction band energy levels of a GaAs/Al0.37Ga0.63As quantum wire with square
and rectangular cross section. The parameters mW = 0.0665 · me, mB = 0.0858 · me,
and V0 = 0.276 eV are used with linear and cubic basis functions to compare against
benchmark solution. 87

5.5 The first five bound state energy eigenvalues of the finite spherical potential well
with a = 10Å and V0 = 5 eV using the FEM program with linear and cubic basis
functions. The approximation was carried out using 12309 elements. 88

5.6 Conduction band energy levels of a InP0.35Sb0.65/AlAs0.17Sb0.83 spherical quantum
dot. The parameters mD = 0.009 ·me, mB = 0.131 ·me, a = 35Å , and V0 = 2.15 eV are
used with linear and cubic basis functions to compare against benchmark solution. . . . 88

7.1 Selected experimentally observed data coherent self-assembled S&K growth systems. 107

7.2 Selected band parameters for InAs and GaAs. 115

vii

7.3 The geometric properties of the QD structures used in this analysis. The geometric
properties b, h, and a refer to the dimensions in Fig. 7.1, while r refers to a sphere of
radius r having the same volume as the respective structure. Additionally, we include the
volume of each structure. Structures C and D have a similar volume to those QDs found
in Chap. 3, while structures A,B,E, and F are based on the dimensions of structures C
and D to help bound the analysis. 115

7.4 Potential QD-IBSC material systems that produce the desired efficiency, η, for struc-
ture A under unconcentrated, X = 1, and/or fully concentrated light, X = 1/Fsun. The
energy transitions E1, E2, and E3 refer to those in Fig. 2.1. The lattice mismatch
between the QD and barrier material is designated as 4LC 117

7.5 Potential QD-IBSC material systems that produce the desired efficiency, η, for struc-
ture B under unconcentrated, X = 1, and/or fully concentrated light, X = 1/Fsun. The
energy transitions E1, E2, and E3 refer to those in Fig. 2.1. The lattice mismatch
between the QD and barrier material is designated as 4LC 117

7.6 Potential QD-IBSC material systems that produce the desired efficiency, η, for struc-
ture C under unconcentrated, X = 1, and/or fully concentrated light, X = 1/Fsun. The
energy transitions E1, E2, and E3 refer to those in Fig. 2.1. The lattice mismatch
between the QD and barrier material is designated as 4LC 117

7.7 Potential QD-IBSC material systems that produce the desired efficiency, η, for struc-
ture D under unconcentrated, X = 1, and/or fully concentrated light, X = 1/Fsun. The
energy transitions E1, E2, and E3 refer to those in Fig. 2.1. The lattice mismatch
between the QD and barrier material is designated as 4LC 118

7.8 Potential QD-IBSC material systems that produce the desired efficiency, η, for struc-
ture E under unconcentrated, X = 1, and/or fully concentrated light, X = 1/Fsun. The
energy transitions E1, E2, and E3 refer to those in Fig. 2.1. The lattice mismatch
between the QD and barrier material is designated as 4LC 118

7.9 Potential QD-IBSC material systems that produce the desired efficiency, η, for struc-
ture F under unconcentrated, X = 1, and/or fully concentrated light, X = 1/Fsun. The
energy transitions E1, E2, and E3 refer to those in Fig. 2.1. The lattice mismatch
between the QD and barrier material is designated as 4LC 119

7.10 An exhaustive list of potential QD-IBSC material systems that meet the design
criteria for various molar concentrations. 120

viii

List of Figures

1.1 A band structure that is representative of a semiconductor or insulator. As many
orbitals come together and split, bands are formed. The energy gap between the valence
and conduction band is displayed to show there are no allowable energy levels. 4

1.2 A semiconductor with an energy gap of Eg is struck by two photons, a ‘red’ pho-
ton with energy less than Eg and a ‘blue’ photon with energy greater than Eg. The
blue photon is absorbed and promotes an electron to the conduction band creating an
electron/hole pair. The electron and hole both thermalize to lowest energy level within
the respective band, band edge. In a much slower process, the electron/hole pair will
recombine through a photon emission that is characteristic to the energy gap h̄ω = Eg. 5

1.3 Detail balance limiting efficiency of a photovoltaic device as a function of the band
gap for unconcentrated light X = 1 and fully concentrated light X = 1/Fsun. The
efficiency was calculated assuming the sun is modeled as a blackbody with characteristic
temperature 6000oK. For fully concentrated light, the maximum efficiency of about 41%
occurs approximately at a band gap of Eg = 1.1 eV, while unconcentrated light leads to
a maximum efficiency of about 31% with a band gap of Eg = 1.31 eV. 10

2.1 This 4-Band diagram depicts two intermediate bands and shows the possible elec-
tronic transitions (reverse transitions are not shown but do occur). There is a total of
six upward transitions, with E1, E2, and E3 making up the three independent ones. The
large energy gap, Eg, is the normal gap between the conduction and valence bands. . . . 11

2.2 Limiting efficiency of the IBSC with one intermediate band as a function of the
largest band gap Eg for unconcentrated light X = 1 and fully concentrated light X =
1/Fsun. The efficiency was calculated assuming the sun is modeled as a blackbody
with characteristic temperature 6000oK. For fully concentrated light, the maximum
efficiency of about 63.2% occurs approximately at a band gap of Eg = 1.93 eV, while
unconcentrated light leads to a maximum efficiency of about 46.8% with a band gap of
Eg = 2.40 eV. 16

2.3 Limiting efficiency of the IBSC with one intermediate band as a function of the two
energy transitions E1 and E2 for unconcentrated light X = 1. The color bar on the right
hand side of the contour plot summarizes what efficiencies the various colors represent. . 17

2.4 Limiting efficiency of the IBSC with one intermediate band as a function of the two
energy transitions E1 and E2 for fully concentrated light X = 1/Fsun. The color bar
on the right hand side of the contour plot summarizes what efficiencies the various colors
represent. 18

2.5 Limiting efficiency of a two intermediate band IBSC with band gap Eg = 3.48 eV
as a function of the two energy transitions E1 and E2 for unconcentrated light X = 1.
The color bar on the right hand side of the contour plot summarizes what efficiencies the
various colors represent. 23

ix

2.6 Limiting efficiency of a two intermediate band IBSC with band gap Eg = 2.57
eV as a function of the two energy transitions E1 and E2 for fully concentrated light
X = 1/Fsun. The color bar on the right hand side of the contour plot summarizes what
efficiencies the various colors represent. 23

3.1 The alternating semiconducting material AlAs and GaAs creates a heterostructure.
C and V refer to conduction and valence bands, respectively. Since the bandgaps are of
different sizes, this mimics the one dimensional potential well. The intermediate energy
levels c1, c2, and v1 are in the quantum wells, the offset is the potential well depth. . . 26

3.2 An orthogonal projection of the proposed QD-IBSC with the barrier material sur-
rounding the QDs. The QD material is arranged periodically within the barrier material
and sandwiched in between the normal p-n junction. 28

3.3 Contour plot displaying calculated efficiency of the 4 band solar cell with an energy
gap of Eg = 2.23 eV. The two energy transitions, E1 and E2, are those referred to in Fig.
2.1. 32

4.1 (a) A structured mesh with triangular elements; (b) An unstructured mesh with
triangular elements. In the structured mesh vertices are labeled by integers (1-25) and
elements by circled integers (1-32). 35

4.2 An example of a one dimensional element, α, with two nodes located at j = 0
and k = 1. Within the element, the wavefunction, ψ(x), is represented by ψα(x) and is
approximated by a linear combination of two interpolation basis functions. At node j,
ψα(xj) = ψαj and at node k, ψα(xk) = ψαk . 37

4.3 A five element one dimensional mesh. 39

4.4 A 20 element finite element approximation to the two lowest eigenstates. 41

5.1 Flowchart of finite element programs. 57

5.2 A simple mesh containing four nodes and two triangular elements. 58

5.3 A constrained mesh with refinement around the interface defining the cross section
geometry of a square quantum wire. 60

5.4 The source code for generating a two dimensional quantum wire mesh called QWire mesh.
Comments are preceded by %. 61

5.5 The complete source code for generating a three dimensional quantum dot mesh
called QDot mesh. 64

5.6 A rectangular prism with the vertices labeled 1 through 8. It is made up of 4
tetrahedrons (1,2,3,6), (1,3,4,8), (5,6,8,1), and (6,7,8,3) and 12 surface triangles (1,2,6),
(1,6,5), (2,3,7), (2,7,6), (3,4,8), (3,8,7), (1,4,8), (1,8,5), (1,2,3),(1,4,3), (5,6,7), and (5,8,7). 66

5.7 A tetrahedron with the vertices labeled 1 through 4. Surface triangles are (1,2,3),
(1,3,4), (2,3,4), and (1,2,4). 69

5.8 (a) Circular mesh (b) A circular constrained mesh with refinement around the in-
terface. 69

x

5.9 (a) Triangular mesh (b) A triangular constrained mesh with refinement around the
interface. 70

5.10 (a) More complicated mesh (b) Constrained mesh containing a more complicated
mesh. 71

5.11 (a) Cross section of a rectangular prism quantum dot mesh (b) Constrained mesh
on x− z plane containing quantum dot embedded in barrier material. 72

5.12 (a) Cross section of a five sided pyramid quantum dot mesh (b) constrained mesh
on x− z plane containing quantum dot embedded in barrier material. 73

5.13 (a) Wavefunction for the ground state of circular potential well; (b) Wavefunction
for the first excited state of circular potential well. 86

7.1 The two types of geometry used in our analysis: pyramid and truncated pyramid.
The pyramid is defined by the two dimensions b and h on the figure, while the truncated
pyramid is defined by three dimensions b, h, and a. 107

7.2 Direct band gaps (k = 0) for the III-V binary compound semiconductors (points)
and some of their ternary allows (curves) as a function of their lattice constants. In gen-
eral, QD material will have a larger lattice constant than barrier counterparts. Courtesy
of [1]. 112

7.3 Conduction (filled) and valence (open) band offsets for the III-V binary compound
semiconductors as a function of their lattice constants. The direct band gap for a given
semiconductor corresponds to the difference between the conduction and valence band
positions. Courtesy of [1]. 113

xi

Abstract
Selecting Semiconductor Materials For The Quantum Dot Intermediate Band Solar Cell

Steven Evans Jenks
Robert Gilmore, Ph.D.

The main limitations of the conventional solar conversion device is that low energy photons cannot
excite charge carriers to the conduction band, therefore do not contribute to the devices’s current,
and high energy photons are not efficiently used due to a poor match to the energy gap. However, if
intermediate levels are introduced into the energy gap of a conventional solar cell, then low energy
photons can be used to promote charge carriers in a stepwise manner to the conduction band
thereby enhancing the current while maintaining a large open-circuit voltage. This concept is called
the intermediate band solar cell and increases the efficiency beyond the thermodynamic limits of the
conventional solar cell. A device based on the confined electron levels of quantum dots called the
quantum dot intermediate band solar cell is proposed as a physical realization of the intermediate
band solar cell. In this work, we propose material systems that are considered candidates for the
quantum dot intermediate solar cell.

Need more text...

1

Chapter 1: Introduction and Background

According to the U.S. Energy Information Administration (EIA), the world’s total energy consump-
tion in 2007 was 495.2 quadrillion British Thermal Units (BTU) with 86% derived from fossil fuels1

[2]. If all nonrenewable sources2 are considered, there is an additional 6% from nuclear, bringing the
world’s total energy production from this category to 94%. The current asymmetries in the distri-
bution of nonrenewable sources of energy is unsustainable, meaning we can assume with complete
assurance that with the status quo of energy production, exploitation of nonrenewable resources will
consist in the progressive exhaustion of an initially fixed supply in which there will be no significant
additions. When will nonrenewables be exhausted? This is an outstanding question surrounded
by numerous areas of debate. In 1956, M. King Hubbert explored this concept by realizing that
there will be a point in time when the maximum rate of fossil fuel extraction will be reached and
afterwards the rate of extraction enters a terminal decline until the finite resource is completely
exhausted. The point in time when this maximum rate is reached just before the terminal decline
is called “peak”. He was the first to give rise to the term peak and develop extrapolating mod-
els predicting peak, using his models to accurately determine peak for U.S. oil production would
occur between years of 1965 and 1970 [3]. Further exasperating the exploitation of nonrenewable
resources is the fact that energy demand is increasing. By 2035, the world’s energy consumption is
projected to be 738.7 quadrillion BTU [2] or an increase of 49% from 2007. Our insatiable thirst for
energy coupled with our current dependence on nonrenewables will cause devastating consequences
if the pendulum of energy production doesn’t shift dramatically towards renewables. Some of the
more obvious consequences include conflicts revolving around securing diminishing resources, global
warming and economic turmoil, not to mention the regression of human quality of life as we know
it.

The amount of solar irradiance that hits the earth each year is approximately 763,000 quadrillion
Btu3 or over 1000 times more energy than what human energy consumption is projected to be
2035. If a tiny fraction of energy that earth receives could be converted to useful energy, all our
energy supply problems would be solved. So what is preventing us from tapping into this seemingly
endless amount of energy that falls on the earth everyday to solve the scarcity, environmental, and
economic problems associated with nonrenewables? The two main market penetration barriers of
solar conversion devices include the current state of technology and economics, both intertwined.

Today, the majority of solar conversion devices make electricity available as the end use form of
energy by using either concentrating solar thermal technologies or photovoltaic cells. Concentrating
thermal solar technologies utilize the sun as the heat source to boil water into steam which in turn
is used to turn a large turbine to produce electricity. This process is similar to many power plants
that exist today except that fossil fuel combustion is used as the heat source instead of the sun.
The technology is basically environmentally benign, there are no emissions and it does not consume
fuel. The only environmental impact is the consumption of land and the release of waste heat.
However, the abundant solar resources necessary required for the current technology limit the siting
of concentrating thermal to regions like the southwest United States, where the solar resource can
be as twice as much as other regions in the United States. Photovoltaics (PV) convert sunlight
directly into electricity in a one step process, i.e. photons in and electrons out. When photons

1Coal, crude oil (petroleum), natural gas, and propane are all considered fossil fuels because they were formed
from the buried remains of plants and animals that lived millions of years ago.

2Energy sources are considered nonrenewable if they cannot be replenished (made again) in a short period of time.
On the other hand, renewable energy sources such as solar and wind can be replenished naturally in a short period of
time. All fossil fuels are nonrenewable but not all nonrenewable fuels are considered fossil fuels. Uranium ore, a solid,
is mined and converted to a fuel used at nuclear power plants. Uranium is not a fossil fuel, but is a nonrenewable
fuel.

3This calculation assumes that about 100 W m−2 of solar irradiance hits the earth’s surface, 197 million square
miles, for 12 hours per day and 365 days per year.

2

are absorbed in matter, the associated energy is used to excite electrons to higher energy levels.
Electrons quickly relax back down to their ground state via phonon or photon emission but in a PV
device an asymmetry is built in that causes a permanent electric field to pull the excited electrons
away before they are able to relax and feeds them into an external circuit. The extra energy causes
a potential difference that is used to drive the electrons through a load in the external circuit. As
with concentrating solar thermal technologies, the environmental impact is the consumption of land
and the release of waste heat. Commercial PV technologies typically convert light to electricity at
an efficiency that ranges between 13.5%− 17.5% [4].

Coupled with the current state of technology in both solar thermal and PV conversion is the
reality that the ‘fuel’ is intermittent. The term intermittent includes both the concepts of variability
and uncertainty. Variability describes the change of generation output due to fluctuations of the
irradiance; uncertainty describes the inability to predict in advance the timing and magnitude of the
changes in generation output (weather, cloud cover, etc.). This presents a problem for the current
state of the electricity infrastructure. The electrical grid is a network made up of electric sources,
transmission lines, and electric sinks, which does nothing more than move power from generators
to the places of demand via transmission lines and does not store energy. Grid operators must
constantly balance power supply with power demand, this maintains the reliability of the grid.
Achieving reliability drives up the cost of intermittent source integration, because operators must
hold large amounts of reserve capacity4 to cover an unexpected loss of renewable generation.

Both of the current solar technologies convert the sun’s energy to electricity. According to U.S.
EIA, electricity is the world’s fastest-growing form of end-use energy consumption, as it has been
for the past several decades. Net electricity generation worldwide is predicted to rise by 2.3 percent
per year on average from 2007 to 2035, while total world energy demand is predicted to grow by
1.4 percent per year [2]. Although this form of end use energy is becoming more prevalent and
preferred today, our society still relies heavily on other forms of end use energy. In 2007, electricity
made up 13% of end-use energy consumption and is projected to increase its share to 16% by 2035.
This means that even if all the electricity consumed was supplied by harnessing the sun’s energy,
our energy requirements would still need to be supplemented by another energy source or by an
advanced yet unknown solar conversion technology.

Realizing that nonrenewable sources of energy are not sustainable, harmful to the environment,
and create national security issues should be the driving force necessary for humans to change
behavior and search for alternatives sources of renewable energy at whatever cost is necessary.
We have emphasized should because we live in a society that values energy as a commodity and
places a monetary value on it. Having identified the sun as being a potential candidate to replace
nonrenewable sources of energy is simply not enough, even if it theoretically can supply all our energy
needs. The technological limitations identified significantly harm solar’s ability to economically
compete with fossil fuel. Levelized Cost of Energy (LCOE) is often used as a metric to compare
and assess the overall competitiveness of vastly different electric generating technologies expressed
dollars per megawatt-hour (MWh). LCOE reflects the overnight capital cost, fuel cost, fixed and
variable O&M cost, financing costs, and an assumed utilization rate for each plant type. In the U.S.,
it is estimated that the LCOE for some of the more conventional sources of generation are between
65.1 $/MWh for natural gas combined-cycle plant to 114 $/MWh for advanced nuclear [5]. However,
the LCOE for solar PV is 211 $/MWh while the LCOE for solar thermal is even less competitive at
312.2 $/MWh [5].

Increasing the efficiency of solar PV means that a smaller geographic area is required to produce
an equivalent amount of electricity. More explicitly, an increase of 50% in energy conversion would
reduce the geographic area by 50%. If we assume a linear relationship exists between material costs
and efficiency, there would be a reduction in costs of 50% thereby decreasing the LCOE to 105
$/MWh. This value of LCOE puts solar PV in the same cost range as some of the more conven-
tional electric generating technologies. Is there potential to increase efficiencies of solar PV by this
magnitude? Simply put, yes. As mentioned, commercial solar PV modules are only achieving con-
version efficiencies about 18%. This would indicate we are still in the beginning stages of perfecting

4Utilities have to keep generation capacity on reserve that can be accessed quickly if there is a disruption to the
power supply

3

the technology and significant technology breakthroughs exist.
Although, there are seemingly difficult obstacles in the way of transitioning to renewable energy,

as outlined above, solutions exist to each obstacle. Transitioning is not an option but a necessity
that will require the inherent human quality of ingenuity that has been demonstrated by past
generations. Solutions will not come from any one field of study due to the breadth of the difficulties
but rather from multiple fields working together building upon gained knowledge. This thesis is an
attempt to contribute one significant solution in the many that are needed. More specifically, it is
an attempt at a breakthrough in PV technologies aimed at increasing efficiency based on a high risk,
high reward concept that rethinks the solar cell design. Instead of incrementally increasing solar
cell efficiency that so much of research today is focused on, e.g. light trapping techniques, advanced
anti-reflective coatings, etc., we seek materials that boost efficiencies well beyond the thermodynamic
limits restricting conventional cell designs. We look for materials that will utilize the electromagnetic
spectrum more efficiently through the introduction of an intermediate band between the conduction
and valence band. The aspiration is to create a material breakthrough that will spur additional
research on design attempting to mature the technology.

The main purpose of this chapter is to review the design and operating principles of what we term
the ‘conventional solar cell’, that is the commercial cell that is widely distributed today. The review
will not be exhaustive but only discuss the necessary fundamentals which the ensuing chapters build
upon. In Chap. 2, we introduce, study, and outline the design criteria which is the basis of this
thesis, the intermediate band solar cell (IBSC). In Chap. 3, we introduce and study the quantum
dot intermediate band solar cell (QD-IBSC) and offer explanations as to why it can be considered
a physical realization of the IBSC. In addition, based on certain restrictive assumptions, QD-IBSC
material systems are investigated that theoretically increase solar cell efficiencies greater than 70%.
In Chap. 4, the finite element method is introduced as a method to solve complicated quantum
mechanical problems and we successfully apply the method to Schödinger’s equation in one, two,
and three dimensions. In Chap. 5, we build upon Chap. 4 to describe how a typical finite element
computer code is organized and, in detail, describe the entire finite element program that is used to
determine energy levels and corresponding wavefunctions of quantum heterostuctures. In Chap. 6,
we will investigate how the strain caused by the growth of quantum dots will induce an additional
potential and how to calculate this potential in the framework of the finite element method. We
then make use of the code in Chap. 7 to allow us to relax restrictive assumptions and refine our
search of QD-IBSC that could theoretically result in solar cell efficiency on the order of 45%− 70%.
We conclude in Chap. 8.

1.1 Conventional Photovoltaic Device

When two atoms are brought close together, their orbitals combine and result in levels slightly higher
and lower than the original orbitals. The levels split due to the overlapping of wavefunctions. As
more atoms are brought closer together, the orbitals split into a large number of levels that are
close in energy, effectively forming a continuum or band of levels. The bands formed from different
orbitals may or may not overlap and are occupied based on the whether the original orbitals were
occupied. The highest occupied band is called the valence band and the lowest unoccupied band is
called the conduction band. A metal has overlapping valence and conduction bands, allowing the
valence electrons to be easily scattered to nearby energy levels. As such, this allows metals to be
good transporters of charge and heat. A semiconductor and insulator5 have an energy gap Eg with
no allowable energy levels between the conduction and valence band (see Fig. 1.1). The electrons in
the valence band are completely involved in bonding and will require at least the energy equivalent
to the band gap and an unoccupied site in the conduction band in order for the electron to be
promoted.

When light is absorbed in matter, electrons can be excited to higher energy levels where they are
able to move freely around and, in some cases, emitted from the surface6 [6]. If the excited electron

5The only difference between a semiconductor and insulator is the energy of the band gap. An insulator will have
a larger energy gap than a semiconductor such that at room temperature, the conductivity is negligible.

6Einstein correctly described this phenomena, the photoelectric effect, in 1905 that later won him the Nobel Price

4

Figure 1.1: A band structure that is representative of a semiconductor or insulator. As many
orbitals come together and split, bands are formed. The energy gap between the valence and
conduction band is displayed to show there are no allowable energy levels.

is promoted to an energy level within a continuum of energy levels, as in a metal or within the same
band, the probability that scattering to a lower energy level occurs will be high and happens on the
order of femtoseconds. This is called thermalization and happens through collisions with the lattice,
giving up kinetic energy to produce phonons during the decay. However, if an electron is excited
across an energy gap to a band containing a continuum of energy levels then the electron will quickly
decay to the lowest energy state in the band and then band decay in a much slower process to a
vacant site in its previous energy. It can do this via photon emission that is characteristic of the
energy gap, Eg. This process is characteristic of a semiconductor or insulator that absorbs a photon
of energy greater than the energy gap h̄ω > Eg as displayed in Fig. 1.2 and promotes an electron
to the relatively empty conduction band. A positively charged vacant site is left behind by the
promoted electron that can be filled by another electron. A nearby election can fill the vacancy and
the vacancy ‘moves’ to the neighboring bond. The process can repeat itself and the ‘hole’ behaves
similarly to a positively charged particle. On the other hand, photons of energy less than the energy
gap h̄ω < Eg do not have the ability to promote an electron to the conduction band.

A photovoltaic device is made up of semiconductor material that takes advantage of the relatively
slow band-to-band decay process of electron/hole recombination by having some built-in asymmetry
that pulls the electrons away to an external circuit before the electrons can relax back down to the
valence band. This is called charge separation and the extra energy creates a potential difference
that drives electrons through a load to allow electrical work to be done. It is important to recognize
the necessary operating conditions that must be present in order for any photovoltaic device to
operate. Most obviously, there must be a source of radiation, i.e. the sun. Second, there must
be charge generation. By this, we mean that there was an excitation event that has increased the
number of free charge carriers, i.e. photon absorption by an electron that has promoted the electron
to conduction band and left a hole in the valence band. Lastly, there must be charge separation as
described above.

Knowing the operating conditions, we now describe the design of a conventional photovoltaic
device. Typically, there are two layers of impurity doped semiconductors, i.e. silicon, placed on a
glass substrate. One of the layers is doped with electron donors (n type), the other is doped with
electron acceptors (p type). Both of the layers are bound to conducting contacts with external leads,

in 1921.

5

Figure 1.2: A semiconductor with an energy gap of Eg is struck by two photons, a ‘red’ photon
with energy less than Eg and a ‘blue’ photon with energy greater than Eg. The blue photon is
absorbed and promotes an electron to the conduction band creating an electron/hole pair. The
electron and hole both thermalize to lowest energy level within the respective band, band edge.
In a much slower process, the electron/hole pair will recombine through a photon emission that
is characteristic to the energy gap h̄ω = Eg.

wires, etc. Finally, there is an anti-reflecting coating applied to the top surface with the intent to
reduce loss of incident solar radiation by suppressing reflection. In contrast, the glass substrate is
typically designed to be reflective so that unabsorbed radiation can pass back through the device.
The two impurity doped semiconductors create what is called a p-n junction. Its purpose is to
establish a built-in electric field at the interface (junction) between the two layers so that generated
electrons flow toward the p side and generated holes flow toward the n side. Hence, its purpose is
charge separation.

1.2 Detailed Balance of Efficiency

In the previous section, we briefly described a simple photovoltaic conversion device and the basic
operating principles that are needed for operation. By no means was this intended to be exhaus-
tive but rather provide the qualitative understanding necessary for quantitative analysis involving
efficiency calculations. In this section, we determine the limiting efficiency of a simple photovoltaic
conversion with the view of not just establishing the upper limit but estimating the potential for
current design improvement and uncovering the fundamental quantities that determine this upper
limit, as these become design criteria for real world devices. In a limited sense this is analogous
to Carnots determination of the maximum efficiency that can be attained in the conversion of heat
energy to useful work, which provides a quantitative measure of the degree to which the output effi-
ciency of a real heat engine could still be improved. The merit of the heat engine can be appraised
in terms of the limit set out by the second law of thermodynamics.

In 1961, Shockley and Queisser published a landmark paper aimed at determining a theoretical
justifiable upper efficiency limit [7]. Before then, the treatment of photovoltaic efficiency was based
on empirical values for constants describing the characteristics of the conversion device. In general,
they were all fairly consistent with observed values and were accepted as theoretical limits. Shockley
and Queisser realized that there exists a limit based on a consequence of the nature of atomic
processes required by the basic laws of physics and referred to this upper efficiency limit as the
detailed balance limit. In determining the detailed balance limit, we define the efficiency η in the
usual way as the ratio of power delivered, Pd, to the incident solar power falling on the device, Ps.

6

For the purposes of this calculation, we model the sun as a blackbody that has a surface tem-
perature of Ts = 6000 K. Therefore, the photon and emitted energy flux density respectively are
derived from Planck’s law over the energy range E1 and E2 [8]

Ṅ =
2πF (θ)

h3c2

∫ E2

E1

E2

eE/kBT − 1
dE (1.1)

Ė =
2πF (θ)

h3c2

∫ E2

E1

E3

eE/kBT − 1
dE (1.2)

where T is the temperature, kB is Boltzmann’s constant, and F (θ) = sin2 θ is a geometrical factor
that arises from integrating over the relevant angular range, where θ, 0 ≤ θ ≤ π/2, is defined by
the angle to the solar cell surface normal. For the sun as seen from earth, the angle is θ = 0.26◦

and Fsun(0.26◦) = 2.16 × 10−5 [9]. Integrating over all E gives the total emitted power density
F (θ)σsT

4, where σs is Stefan’s constant.

σs =
2π5k4

B

15h3c2

At the surface of earth’s atmosphere, using the reduced geometric factor Fsun, the incoming power
density falling on a photovoltaic device with planar geometry is Ps = 1584 Watts per meter squared
(W/m−2).

Light intensity on a solar cell is called the number of suns, where 1 sun corresponds to standard
intensity (1584 W/m−2) or X = 1. We are now going to introduce the concept ‘concentrated’
sunlight7, which will be used throughout this thesis, as a system or configuration that increases the
intensity of light. As such, concentrated sunlight incident on a solar cell would be operating at an
increased number of suns. For example 15, 840 W/m−2 incident on a solar cell would be operating
at 10 suns, or at X = 10. Such practical systems include parabolic reflectors or Fresnel lenses that
place the solar conversion device at the focus in either case. Theoretically, a system would achieve
the maximum or ‘full concentration’ when X = 1/Fsun = 46, 198. Incoming power density at full
concentration would be the same as the power density at the sun’s surface Ps = σsT

4 = 63 W/m−2.
Mathematically, increasing concentration is equivalent to increasing the angle for the sun as seen
from earth. At this point, it should be recognized that incoming power density Ps varies with the
levels of concentration X. After observing that Ps is a dependent variable of device efficiency η, it
would be plausible to conclude that η varies with the level concentration of X. We will confirm this
premonition in the latter sections of this chapter when device efficiencies with ‘unconcentrated’ light
X = 1 are compared to fully concentrated light X · Fsun = 1.

As a prerequisite to determining the power density delivered to the circuit Pd, it is necessary
to discuss electron and hole dynamics in the context of detailed balance. At zero temperature the
valence band is filled, while the conduction band is empty. At finite temperatures, some electrons
gain enough energy to be excited to the conduction band. The probability that a state with energy
E is filled is given by the Fermi-Dirac function [10]

f(E, T) =
1

e(E−µ)/kBT + 1
(1.3)

where the variables are those as discussed above and µ is the Fermi level. Eq. 1.3 is valid for
equilibrium conditions and the probability that an electron is in a state in the conduction or valence
band is determined by the single chemical potential. However, when the device is exposed to light or
some applied bias, both the electrons and holes are disturbed from their equilibrium. The electron
population in the conduction band and hole population in the valence band rise above their normal
equilibrium values. This disturbance causes the electrons and holes to relax in what is called quasi-
thermal equilibrium. This causes the Fermi energy level to split and electrons in the conduction
band settle to a chemical potential µn, while the electrons in the valence band settle to a different

7This is a standard term that is used in the field and understood as we have defined it in the text.

7

chemical potential µp. They are both assumed to be constant in each band. Using the quasi-thermal
equilibrium condition, the probability that a hole is in any state in the valence band is determined
by the chemical potential µp and the probability that an electron is in any state in the conduction
band is determined by µn:

fv =
1

e(Ev−µp)/kBT + 1
(1.4)

fc =
1

e(Ec−µn)/kBT + 1
(1.5)

Eq. 1.5 describes the probability distribution for electrons in the valence and conduction band.
In photovoltaic devices, recombination events between the hole and electron degrade efficiency

due to the removal of mobile electrons and holes (carriers). Unlike generation, where there is only
one mechanism, there are several different recombination mechanisms characterized into two groups:
radiative and non-radiative. In radiative recombination, the event produces a photon. Incoming
radiation can not only excite an electron to the conduction band creating an electron/hole pair but
can also stimulate recombination between a mobile electron and hole pair producing an additional
photon in the reverse process. It is also well known that excited electrons will spontaneously emit
a photon in order to recombine with a hole. In non-radiative recombination, the event produces
a phonon to release the excess energy. In determining the limiting efficiency, as in the model
presented by Shockley and Queisser, any irreversible mechanism is prevented besides those inherent
to the photovoltaic operation [11]. Therefore, non-radiative transitions between the conduction
and valence bands are assumed absent and radiative recombination sets the upper limit to carrier
lifetimes. If radiative recombination is only a fraction of all the recombination, then the efficiency of
the device is reduced below the detailed balance limit. Standard reference material for recombination
in semiconductors is [12, 13, 14].

Under the assumption that all electronic transitions within a photovoltaic device require photon
absorption or emission as required in the detailed balance limit, we can determine the number of
recombination events by counting the net number of photons leaving the device. Those electrons
will not contribute to the external circuit. Within the device, photons are continuously absorbed
and emitted by the processes outlined above but only when one leaves will there be a net electronic
transition toward lower energies. Transitions are governed by a first order differential equation using
Fermi’s rule [15] and quasi-thermal probability distribution functions. Let n(ε, z) be the number
of photons with energy ε that occur at a distance z inside the cell, where we define z = 0 at the
front surface and z = 1 at the back surface. The generation of a photon due to stimulated emission,
proportional to n(ε, z), and spontaneous emission, proportional to 1, is [16]

dn(ε, z)

dz
=

n

c

∑
i,j

Hci→vj · (n(ε, z) + 1) · fci
(
1− fvj

)
(1.6)

where Hci→vj is the matrix element coupling the transition from a certain state in the conduction
band ci to a certain state in the valence band vj , fci is the probability that the state ci is occupied,
and 1 − fvj is the probability that the state vj is not occupied. The sum refers to the different
combination of states in the valence and conduction bands producing emission of photons. The
factor n/c (n is the semiconductor index of refraction, not to be confused with n(ε, z), and c is
the speed of light in a vacuum) is intended to transform the time rate into a spacial derivative.
Absorption of a photon, proportional to n(ε, z), is

dn(ε, z)

dz
= −n

c

∑
i,j

Hvj→ci · n(ε, z) · fvj (1− fci) (1.7)

where symmetry ensures the matrix element Hvj→ci = Hci→vj . Combining the process of emission

8

and absorption of photon within the device, we obtain the net photon generation

dn(ε, z)

dz
=

n

c

∑
i,j

[
Hci→vj · (n(ε, z) + 1) · fci

(
1− fvj

)
−Hvj→ci · n(ε, z) · fvj (1− fci)

] (1.8)

After some manipulation, Eq. 1.8 is simplified

dn(ε, z)

dz
= α · (ν − n(ε, z)) (1.9)

α =
n

c

∑
i,j

Hvj→ci ·
(
fvj − fci

)
, ν =

1

e(ε−µ)kBT − 1

ε = Eci − Evj , µ = µn − µp

Observing that Eq. 1.9 is first order differential equation with integrating factor e

∫ z
0
αdz

, the solution
is the following:

n(ε, z) = n(ε, 0)e−αz + ν(1− e−αz). (1.10)

This equation intuitively makes sense, the first part shows the absorption of photons in the mode that
have entered from the source. While the latter shows the emission of photons in the mode through
the recombination mechanisms described above. As αz becomes large, the exponential is negligible
and a constant population independent of αz develops. In the detailed balance limit, the cell is
assumed thick enough to achieve full absorption of photons with enough energy to induce radiative
transitions between the two bands. For simplicity, we make the assumption that full absorption
will be achieved when z = 1 and the emitted photon population from the device in each mode is in
thermal equilibrium

n(ε, 1) =

{
0, 0 ≤ ε < Eg

1
e(ε−µ)/kBT−1

, ε ≥ Eg

}
(1.11)

with a band gap of Eg. For ε ≥ Eg, Eq. 1.11 gives the Bose-Einstein mean occupation number of
photons with energy ε [17]. Thus, the photon flux density behaves like a blackbody flux density as
in Eq. 1.1 and we generalize to define the function

N(E1, E2, T, µ) =
2π

h3c2

∫ E2

E1

E2

e(E−µ)/kBT − 1
dE (1.12)

where all the variables are those outlined above. Equation 1.12 does not include the geometrical
factor F (θ) = sin2 θ and as a result, the photon flux density is F (θ) ·N(E1, E2, T, µ) to account for
the relevant angle range. As an example, lets consider the radiation leaving the solar conversion
device that has a perfect mirror located on the back of the cell so that radiation makes a double
pass through the cell and can only escape through the front area of illumination, i.e. θ = π/2
see Eg. 1.1-1.2. The photon flux density would be described using Eqs. 1.11-1.12 and F (π/2) as
N(Eg,∞, Ta, µ), where Ta is the solar device’s characteristic temperature.

We are now going to compute the power density Pd delivered by a photovoltaic device based
on what we have developed thus far. This might seem odd at a first considering that we have
only discussed incoming and outgoing photon fluxes but it will become clear as certain assumptions
about the conversion device and incoming radiation are described (some of which have already been
discussed). Let us first begin by reviewing the efficiency equation of the photovoltaic conversion
device

η =
Ac · Pd
Ac · Ps

→ Jm · Vm
X · FsunσsT 4

s

→ Jm · Vm
X · 1584

(1.13)

where Ac is the area of the conversion device, Pd is the maximum power density delivered by the
device to an external circuit expressed as the current density Jm multiplied by the voltage Vm, and
Ps is the power density received by the device from the sun. We have made use of the concentration

9

factor X, geometric factor Fsun = 2.16 × 10−5, Stefan’s constant σs, and temperature of the sun
Ts = 6000 K. The following is a list of assumptions that are used in determining the detailed balance
efficiency [7, 18]:

1. The solar cell absorbs blackbody radiation at a temperature of Ts =6000oK and ambient
Ta =300oK and emits blackbody radiation at ambient Ta =300oK;

2. Only radiative transitions occur between the bands;

3. All photons above the lowest energy gap are absorbed;

4. Carrier mobility is infinite and as a consequence, the quasi-Fermi energy levels are constant
throughout the cell so µ = qV ;

5. Only one electron-hole pair is created per photon;

6. A perfect mirror is located on the back of the device so that radiation makes a double pass
through the cell and can only escape through the front area of illumination;

7. The net photon flux (number of incident minus number of emitted photons) is equal to the
number of charge carrier pairs collected at the contacts (detailed balance assumption).

It is important to understand that as photons with energy greater than the bandgap are absorbed
to create an electron-hole pair, any excess energy beyond that of the bandgap will be lost due to
thermalization and the carriers will relax to the band edges before circuit extraction or recombina-
tion. This makes an absorbed photon with h̄ω > Eg have the same effect as an absorbed photon
with energy h̄ω = Eg. It is this reason why we are concerned with the photon flux density and not
the photon energy density.

Since only radiative events are considered, generation and recombination events are signaled by
photon absorption or emission. In addition, we make the assumption that the device has perfect
charge carrier collection meaning that photogenerated charge carriers surviving radiative recombi-
nation will be collected by the external circuit. Therefore, the net photon flux will be equal to the
number of charge carrier pairs collected at the contacts and be equal to charge carrier flux. When
the charge carrier flux is multiplied by the electric charge q, the current density of the device is
found

J(Eg, Ts, Ta, X, V) = q[XFsunN(Eg,∞, Ts, 0) + (1−XFsun)N(Eg,∞, Ta, 0)

− F (π/2)N(Eg,∞, Ta, qV)] (1.14)

where we have made use of Eq. 1.12, the geometric factor F (θ), and the concentration factor
X. The first term on the right hand side in the equation represents the current density generated
from radiation the cell absorbs from the sun at the characteristic temperature Ts over the angular
range 0 < θ < 0.26◦, the second term in the equation represents the current density generated
from radiation the cell absorbs from ambient at the characteristic temperature Ta over the angular
range 0.26◦ < θ < π/28, and the last term in the equation represents the recombination of carriers
through photon emission at the characteristic temperature Ta and uniform potential qV that do not
contribute to the current density over the angular range 0 < θ < π/2.

For each value of Eg, there exists a voltage Vm that maximizes the power density delivered by
the device such that maximum efficiency of the device is

η(Eg, Ts, Ta, X) =
J(Eg, Ts, Ta, X, Vm) · Vm

X · 1584
. (1.15)

Following the prescription of finding the detailed balance limiting efficiency as outlined above, we
have found the maximum efficiency as a function of the band gap Eg for unconcentrated light

8Photon absorption includes a contribution from thermal photons that is assumed to behave like a blackbody over
the rest of the hemisphere. Although the contribution to the current is negligible, it is a standard assumption in
efficiency calculations, see [16, 9, 19].

10

η(Eg, Ts = 6000oK,Ta = 300oK,X = 1) and fully concentrated light η(Eg, Ts = 6000oK,Ta =
300oK,X = 1/Fsun) (see Fig. 1.3). Fully concentrated light has a maximum efficiency of 41% when

Figure 1.3: Detail balance limiting efficiency of a photovoltaic device as a function of the band
gap for unconcentrated light X = 1 and fully concentrated light X = 1/Fsun. The efficiency was
calculated assuming the sun is modeled as a blackbody with characteristic temperature 6000oK.
For fully concentrated light, the maximum efficiency of about 41% occurs approximately at a
band gap of Eg = 1.1 eV, while unconcentrated light leads to a maximum efficiency of about
31% with a band gap of Eg = 1.31 eV.

there is a band gap of 1.1 eV, while unconcentrated light has a maximum efficiency of 31% when
there is a band gap of 1.31 eV. It is clear the assumption that limiting efficiency does change with
different concentration factors is correct. More specifically, as the concentration factor increases so
does the limiting efficiency up to the maximum of 41%.

Efficiency of the single energy gap solar conversion device seems to drop off for small energy gaps,
Eg < 1 eV, and for larger energy gaps, Eg > 2 eV. Intuitively this can be understand in terms of
the power density Pd = J · V that is delivered by the device. For smaller band gaps, most photons
would be absorbed thereby increasing current density but a good portion of the their energy would
be wasted through thermalization. In addition, since the cell operates at a potential difference
proportional to the band gap, each extracted carrier’s potential energy will be small. For larger
band gaps, a good portion of the incident photons would not be absorbed and current density would
decrease. In both cases, efficiency drops off due to the current density being inversely proportional
to the operating voltage.

From the detail balance limiting efficiency calculations, we conclude that efficiency is highly
dependent on the device’s band gap and that photons with energy near the band gap are used
most efficiency. If the solar resource were monochromatic, conversion would be optimal because the
device’s band gap would be tuned to match the light’s energy. Unfortunately the solar resource is
not monochromatic and with a single band gap, low energy photons are not absorbed and higher
energy photons lose energy through thermalization. As such the best conversion based on a single
band gap is 41%.

We now turn our focus on ways to better utilize our solar resource’s radiation.

11

Chapter 2: Intermediate Band Solar Cell

In Chap. 1, we saw how to calculate the limiting efficiency of the conventional solar cell through
a detailed balance argument that follows from a series of assumptions. We found that when the
conversion device absorbs incident unconcentrated light efficiency was 31% and could be increased
to 41% when the conversion device absorbs fully concentrated light. These two limits set the lower
and upper bound for the limiting efficiency of any concentrating light system. We concluded that
efficiency is highly dependent on the device’s band gap and that photons with energy near the band
gap are used most efficiency. The work done per photon decreases as the photon’s energy increases
beyond the band gap with losses occurring from thermalization and goes to zero when the photon’s
energy is less than the band gap. These losses are realized in the conventional solar cell because our
solar resource has a broad energy spectrum and poorly matches the band gap, as reflected in the
limiting efficiency values.

The main limitations of the photovoltaic conversion device is that low energy photons cannot
excite charge carriers to the conduction band, therefore do not contribute to the devices’s current,
and high energy photons are not efficiently used due to a poor match to the energy gap. However, if
intermediate levels are introduced into the energy gap of a conventional solar cell, then low energy
photons can be used to promote charge carriers in a stepwise manner to the conduction band. In
addition, the photons would be better matched with energy transitions between bands. Fig. 2.1
illustrates this type of structure. In this case, there are two intermediate bands between the valence
and conduction bands, allowing for a total of six upward electronic transitions. This type of device
is called an intermediate band solar cell (IBSC) [16]. This is a multi-step or ladder approach to
increase efficiency. It will shown that the maximum efficiency of a photovoltaic conversion device
using one or two intermediate bands is greater than the single band gap conventional device.

Figure 2.1: This 4-Band diagram depicts two intermediate bands and shows the possible
electronic transitions (reverse transitions are not shown but do occur). There is a total of six
upward transitions, with E1, E2, and E3 making up the three independent ones. The large
energy gap, Eg, is the normal gap between the conduction and valence bands.

The objective of this chapter is to understand the IBSC concept and perform some useful effi-
ciency calculations. We begin in Sec. 2.1 with a description of how the IBSC is presumed to operate
and perform a detailed balance analysis on a photovoltaic conversion device with one intermediate

12

band. In addition, the sensitivity of the efficiency as a function of the intermediate band energy
level is investigated. The next section, Sec. 2.2, continues to develop the IBSC concept in a logical
manner by considering two intermediate bands. We conclude with Sec. 2.3.

2.1 One Intermediate Band Detailed Balance Analysis

In a device where there is one intermediate band located between the conduction and valence band,
an electron from the valence band can be excited to either the intermediate or conduction band.
Additionally, an electron located in the intermediate band can be excited to the conduction band.
In total, there are three upward energy transitions in this device: E1, E2, and Eg. E1 represents
valence to intermediate band, E2 represents intermediate to conduction band, and Eg represents the
conventional band gap between the valence and conduction band. The two intermediate transitions
E1 and E2 are independent of each other, while the band gap transition Eg is a function of the two
intermediate ones: Eg = E1 + E2. Proper operation of the IBSC requires that no charge carriers
are to be extracted from the intermediate band [16]. This is important for two reasons. First, this
would deplete the carrier density available for excitation to higher bands, including the conduction
band. Second, charge carriers are extracted from intermediate bands at lower potential differences
than from the conduction band. This would reduce the power output of the IBSC and thus the
conversion efficiency. Since carriers would only be extracted from the valence and conduction bands,
the IBSC would operate similar to the conventional solar cell in the sense that the operating voltage
would be proportional to Eg.

When the conventional solar cell is exposed to light or some applied bias, carrier populations
increase beyond equilibrium and cause the Fermi energy level to split into two chemical potentials µn
and µp. These chemical potentials represent steady state solutions that allow treatment of the carrier
dynamics in each band separately. More specifically, they are used to determine the probability that
an electron will be in any state in the conduction band and a hole will be in any state in the valence
band (see Eq. 1.5). When the IBSC is exposed to light or some applied bias, the Fermi energy level
must split into the number of total bands. In the case with one intermediate band, the Fermi energy
level will split into three chemical potentials µn, µi, and µp that represent steady state solutions
that allow treatment of the carrier dynamics in the conduction, intermediate, and valence band
respectively.

fv =
1

e(Ev−µp)/kBT + 1
(2.1)

fc =
1

e(Ec−µn)/kBT + 1
(2.2)

fI =
1

e(EI−µi)/kBT + 1
(2.3)

Each band in the IBSC must possess its own chemical potential. If the intermediate band is ther-
mally coupled to the conduction or valence band, excited electrons will lose kinetic energy through
phonon emission before the necessary next event occurs for proper IBSC operation: (1) electrons
are not extracted from conduction band or (2) electrons are not promoted from the intermediate
to conduction band. As a result, the Fermi energy level will split into two chemical potentials and
carrier dynamics will be dominated by these two chemical potentials as in the conventional solar
conversion device.

Using performance characteristics and assumptions of the IBSC, we can perform limiting effi-
ciency calculations similar to the detailed balance calculation developed by Shockley and Queisser.
As with the conventional solar conversion device in determining the limiting efficiency, only radiative
recombination exists so that all electronic transitions within a photovoltaic device require photon
absorption or emission. Therefore, we can determine the number of recombination events by count-
ing the net number of photons leaving the device. This sets up a differential equation that is a bit
more complicated than Eq. 1.8 using Fermi’s rule and the quasi-thermal probability distribution
functions. We let n(ε, z) be the number of photons with energy ε that occur at a distance z inside the

13

cell, where we define z = 0 at the front surface and z = 1 at the back surface. Unlike the convention
solar cell, the IBSC has three upward and three downward energy transitions with matrix elements
coupling each transition. Due to symmetry, we make the assumption that the upward matrix ele-
ment coupling a certain transition will be equal to the downward matrix element coupling the same
transition. We let the matrix element Hvj→ci = Hci→vj couple a certain state in the conduction
band ci to a certain state in the valence band vj . We let the matrix element Hvj→Ii = HIi→vj couple
a certain state in the intermediate band Ii to a certain state in the valence band vj . We let the
matrix element Hcj→Ii = HIi→cj couple a certain state in the conduction band cj to a certain state
in the intermediate band Ii. Combining the process of emission and absorption of photon within
the device, we obtain the net photon generation for the IBSC

dn(ε, z)

dz
=

n

c

∑
i,j

Hci→vj · (n(ε, z) + 1) · fci
(
1− fvj

)
−Hvj→ci · n(ε, z) · fvj (1− fci)

+
n

c

∑
i,j

Hci→Ij · (n(ε, z) + 1) · fci
(
1− fIj

)
−HIj→ci · n(ε, z) · fIj (1− fci) (2.4)

+
n

c

∑
i,j

HIi→vj · (n(ε, z) + 1) · fIi
(
1− fvj

)
−Hvj→Ii · n(ε, z) · fvj (1− fIi)

where each line represents one of the three transitions. The sum refers to the different combination
of states in the two bands producing emission of photons. The factor n/c (n is the semiconductor
index of refraction,ot to be confused with n(ε, z), and c is the speed of light in a vacuum) is intended
to transform the time rate into a spacial derivative.

After some manipulation, Eq. 2.5 is simplified

dn(ε, z)

dz
= αcv · (νcv − n(ε, z)) + αcI · (νcI − n(ε, z)) + αIv · (νIv − n(ε, z)) (2.5)

αcv =
n

c

∑
i,j

Hvj→ci ·
(
fcj − fvi

)
, νcv =

1

e(ε−µcv)kBT − 1

αcI =
n

c

∑
i,j

HIj→ci ·
(
fcj − fIi

)
, νcI =

1

e(ε−µcI)kBT − 1

αIv =
n

c

∑
i,j

Hvj→Ii ·
(
fIj − fvi

)
, νIv =

1

e(ε−µIv)kBT − 1

ε = Ecj − Evi = Ecj − EIi = EIj − Evi
µcv = µn − µp, µcI = µn − µI , µIv = µI − µp

Observing that Eq. 2.5 is first order differential equation with integrating factor

e

∫ z
0

(αcv+αcI+αIv)dz
,

the solution is the following:

n(ε, z) = n(ε, 0)e−(αcv+αcI+αIv)z +
αcvνcv + αcIνcI + αIvνIv

αcv + αcI + αIv
· (1− e−(αcv+αcI+αIv)z) (2.6)

Similar to the Eq. 1.10, the first part of the expression on the right shows the absorption of photons
in the mode that have entered from the source. While the second part of the expression on the right
shows the emission of photons in the mode through the radiative recombination mechanisms. As
the term (αcv + αcI + αIv)z becomes large, the exponential is negligible and a constant population
independent of (αcv + αcI + αIv)z develops in the form of the average of the three Bose-Einstein
functions weighted by the absorption coefficients: αcv, αcI , and αIv. In the limiting efficiency, the
IBSC is assumed thick enough to achieve full absorption of photons to induce radiative transitions
between two bands for the relevant range of energies such that only one Bose-Einstein function

14

is needed to describe the photon population. For simplicity, we make the assumption that full
absorption will be achieved when z = 1 and the emitted photon population from the device in each
mode is in thermal equilibrium

n(ε, 1) =


0, 0 ≤ ε < E1

1
e(ε−µIv)/kBT−1

, E1 ≤ ε < E2
1

e(ε−µcI)/kBT−1
, E2 ≤ ε < Eg

1
e(ε−µcv)/kBT−1

, ε ≥ Eg

 (2.7)

with a band gap of Eg = E1 + E2, E1 represents the energy gap between the valence band and
intermediate band, and E2represents the energy gap between the intermediate band and conduction
band. For each energy range ε ≥ E1, Eq. 2.7 is the Bose-Einstein mean occupation number of
photons with energy ε [17]. Thus, the photon flux density behaves like a blackbody flux density as
in Eq. 1.1 and as we did in Chap. 1.2 we generalize to define the function

N(E1, E2, T, µ) =
2π

h3c2

∫ E2

E1

E2

e(E−µ)/kBT − 1
dE (2.8)

As before, Eq. 2.8 does not include the geometrical factor F (θ) = sin2 θ and as a result, the photon
flux density is F (θ) ·N(E1, E2, T, µ) to account for the relevant angle range.

We are now going to develop the limiting efficiency of the IBSC with one intermediate band
using arguments similar to the detailed balance efficiency. The following list of assumptions is used
to carry out limiting efficiency calculations for the IBSC [7, 16]:

1. The solar cell absorbs blackbody radiation at a temperature of Ts =6000oK and ambient
Ta =300oK and emits blackbody radiation at ambient Ta =300oK;

2. Only radiative transitions occur between the bands;

3. All photons above the lowest energy gap are absorbed and no high energy photon is used in a
low energy process;

4. Carrier mobility is infinite and as a consequence, the quasi-Fermi energy levels are constant
throughout the cell;

5. Only one electron-hole pair is created per photon;

6. A perfect mirror is located on the back of the cell so that radiation makes a double pass
through the cell and can only escape through the front area of illumination;

7. No carriers are extracted from the intermediate band(s);

8. The net photon flux (number of incident minus number of emitted photons) is equal to the
number of charge carrier pairs collected at the contacts (detailed balance assumption).

The efficiency equation given by Eq. 1.13 is worth repeating

η =
Jm · Vm
X · 1584

(2.9)

where the power density delivered by the device is current density Jm multiplied by the voltage
Vm. To find the limiting efficiency, our task lies in finding the characteristic IBSC parameters that
maximize the delivered power density.

Photons with energy E1 ≤ h̄ω < E2 are absorbed to promote an electron to the intermediate band
and create a hole in the valence band, any excess energy beyond that of the energy transition E1 will
be lost due to thermalization and carriers will relax to the band edges before another radiative event
occurs. This makes an absorbed photon with E1 < h̄ω < E2 have the same effect as an absorbed
photon with energy h̄ω = E1. Photons with energy E2 ≤ h̄ω < Eg are absorbed to promote an

15

electron from the intermediate band to the conduction band, any excess energy beyond that of the
energy transition E2 will be lost due to thermalization and carriers will relax to the band edges
before circuit extraction or recombination. This makes an absorbed photon with E2 < h̄ω < Eg
have the same effect as an absorbed photon with energy h̄ω = E2. Photons with energy h̄ω ≥ Eg
are absorbed to promote an electron to the conduction band and create a hole in the valence band,
any excess energy beyond that of the energy transition Eg will be lost due to thermalization and
carriers will relax to the band edges before before circuit extraction or recombination. This makes
an absorbed photon with h̄ω > Eg have the same effect as an absorbed photon with energy h̄ω = Eg.
The net photon flux is equal to the number of charge carrier pairs collected at the contacts so that
the current density is just

J(E1, E2, Eg, Ts, Ta, X, V) =

q[XFsunN(Eg,∞, Ts, 0) + (1−XFsun)N(Eg,∞, Ta, 0)− F (π/2)N(Eg,∞, Ta, qV)]

+q[XFsunN(E2, Eg, Ts, 0) + (1−XFsun)N(E2, Eg, Ta, 0)− F (π/2)N(E2, Eq, Ta, µcI)] (2.10)

where we have made use of Eq. 1.12, the geometric factor F (θ), and the concentration factor
X. The terms in the first bracket on the right hand side of the equation represent the current
density generated from the promotion of electrons from the valence band to the conduction band
less recombination events from the reverse transition, while the terms in the second bracket represent
the current density generated from the promotion of electrons from the intermediate band to the
conduction band less recombination events from the reverse transition. In both bracketed terms,
the IBSC absorbs radiation from the sun at the characteristic temperature Ts over the angular
range 0 < θ < 0.26◦ and from ambient at the characteristic temperature Ta over the angular
range 0.26◦ < θ < π/2, while the IBSC emits radiation at the characteristic temperature Ta and
characteristic uniform chemical potential over the angular range 0 < θ < π/2.

For each energy configuration (E1, E2, Eg), there exists a voltage Vm that maximizes the IBSC
power density output Vm · Jm(E1, E2, Eg, Ts, Ta, X, V). However, the current density equation con-
tains an additional chemical potential µcI and we must assign a value if we are going to determine
Eq. 2.10. Proper operation of the IBSC requires that there is no current extracted from the in-
termediate band(s), i.e. the current entering the intermediate must equal the current leaving the
intermediate band. This sets up the constraint

q[XFsunN(E2, Eg, Ts, 0) + (1−XFsun)N(E2, Eg, Ta, 0)− F (π/2)N(E2, Eq, Ta, µcI)]

= q[XFsunN(E1, E2, Ts, 0) + (1−XFsun)N(E1, E2, Ta, 0)− F (π/2)N(E1, E2, Ta, µIv)] (2.11)

and when considered in conjunction with

qV = µcv = µcI + µIv (2.12)

for a given value V , all the chemical potentials are determined and the current density for the IBSC
is solved.

Following the prescription outlined above, we have found the limiting efficiency of the IBSC
as a function of the band gap Eg by varying the energy transition E1 above the valence band for
unconcentrated X = 1 and fully concentrated X = 1/Fsun light (see Fig. 2.2). Fully concentrated
light has a maximum efficiency of 63.2% when the largest band gap is Eg = 1.93 eV, while uncon-
centrated light has a maximum efficiency of 46.8% when the largest band gap is Eg = 2.40 eV. As
the concentration factor increases, so does the limiting efficiency up to the maximum of 63.2%, a
result that is similar to the conventional solar conversion device. We should note that two patterns
have emerged when considering limiting efficiency calculations for both the IBSC and conventional
solar conversion device: (1) as light concentration increases, efficiency increases and (2) the large
band gap Eg decreases as light concentration increases.

As we compare the performance of the one intermediate band IBSC model to the conventional
solar conversion model, it is evident that conversion efficiency has significantly improved. For uncon-
centrated light, performance has increased from 31% to 46.8% which is a 33.7% increase in efficiency.

16

Figure 2.2: Limiting efficiency of the IBSC with one intermediate band as a function of the
largest band gap Eg for unconcentrated light X = 1 and fully concentrated light X = 1/Fsun.
The efficiency was calculated assuming the sun is modeled as a blackbody with characteristic
temperature 6000oK. For fully concentrated light, the maximum efficiency of about 63.2%
occurs approximately at a band gap of Eg = 1.93 eV, while unconcentrated light leads to a
maximum efficiency of about 46.8% with a band gap of Eg = 2.40 eV.

For fully concentrated light, performance has increased from 41% to 63.2% which is a 35% increase
in efficiency. This increase is dramatic and the motivating factor for further research in this type of
structure.

After calculating the significant efficiency improvements of the IBSC, the interest surrounding the
sensitivity of efficiency as a function of the two independent energy transitions E1 and E2 should
be investigated. Presumingly, a physical device that employs the characteristics of an IBSC will
not exactly match the energy band configuration that leads to the theoretical maximum efficiency.
Therefore, it would be prudent to calculate the sensitivity of these energy levels to see how efficiency
responds. Does the limiting efficiency drop off suddenly if energy levels are slightly removed from
the optimized position? To answer this question, we calculated the limiting efficiency of the IBSC as
a function of the two energy transitions E1 and E2 for both unconcentrated and fully concentrated
light (see Figs. 2.3 and 2.4).

For unconcentrated light, the maximum efficiency of 46.8% occurs at the energy band transitions
E1 = 0.92 eV and E2 = 1.48 eV but Fig. 2.3 shows that an efficiency of ≥ 46% can occur at
various band configurations. In comparison with the conventional conversion device, most energy
band configurations of the IBSC have a greater limiting efficiency than 31%. Additionally, it does
not seem that efficiency drops off suddenly for band configurations outside the optimized position.

From Fig. 2.3, the IBSC can achieve a limiting efficiency ≥ 46% for band configurations ranging
between 0.76 eV ≤ E1 ≤ 1.06 eV and 1.30 eV ≤ E2 ≤ 1.65 eV. A useful quantitative computation
is to find analytic expressions for the interval of E2 = [a, b] that results in an efficiency ≥ 46%
given that E1 falls in the interval of [0.76, 1.06]. To do this, we fit a cubic polynomial to describe
the endpoints a and b of interval [a, b]. We choose a cubic polynomial rather than higher degree
polynomials because it is the lowest degree that accurately describes the endpoints.

a(E1) = 0.5689 · (E1)3 − 0.5638 · (E1)2 + 0.6593 · E1 + 0.8796; 0.76 ≤ E1 ≤ 1.06
b(E1) = 11.760 · (E1)3 − 34.351 · (E1)2 + 34.119 · E1 − 9.9329; 0.76 ≤ E1 ≤ 1.06

(2.13)

The two expressions show that for a given E1 within the interval [0.76, 1.06], the efficiency of the
IBSC will be greater than or equal to 46% when E2 is within the range [a, b]. The interval [a, b] can
further be utilized in the design process of an IBSC for unconcentrated light by selecting a device
that displays modeling results of 0.76 eV ≤ E1 ≤ 1.06 and E2 = (b(E1 + a(E1)))/2 to allow for
maximum uncertainty in the physical realization of the device.

17

Figure 2.3: Limiting efficiency of the IBSC with one intermediate band as a function of the
two energy transitions E1 and E2 for unconcentrated light X = 1. The color bar on the right
hand side of the contour plot summarizes what efficiencies the various colors represent.

For fully concentrated light, the maximum efficiency of 63.2% occurs at the energy band tran-
sitions E1 = 0.70 eV and E2 = 1.23 eV but Fig. 2.4 shows that an efficiency of ≥ 62% can occur
at various band configurations. Specifically at band configurations ranging in the intervals 0.57 eV
≤ E1 ≤ 0.88 eV and 1.06 eV ≤ E2 ≤ 1.43 eV. In comparison with the conventional conversion device,
most energy band configurations of the IBSC have a greater limiting efficiency than 41%. Again,
it does not seem that efficiency drops off suddenly for band configurations outside the optimized
position.

We perform a similar computation to find analytic expressions for the interval of E2 = [a, b] that
results in an efficiency ≥ 62% given that 0.57 eV ≤ E1 ≤ 0.88. A cubic polynomial function is fit
to describe the endpoints a and b. Again, we choose a cubic polynomial rather than higher degree
polynomials because it is the lowest degree that accurately describes the endpoints

a(E1) = −0.8724 · (E1)3 + 2.7654 · (E1)2 − 1.4265 · E1 + 1.1338; 0.57 ≤ E1 ≤ 0.88

b(E1) = 5.2569 · (E1)3 − 13.536 · (E1)2 + 12.355 · E1 − 2.5355; 0.57 ≤ E1 ≤ 0.88 (2.14)

The two expressions show that for a given E1 within the interval [0.57, 0.88], the efficiency of the
IBSC will be greater than or equal to 62% when E2 is within the range [a, b]. The interval [a, b]
can further be utilized in the design process of an IBSC for fully concentrated light by selecting a
device that displays modeling results of 0.57 eV ≤ E1 ≤ 0.88 and E2 = (b(E1) + a(E1))/2 to allow
for maximum uncertainty in the physical realization of the device.

Before we proceed to an analysis of the limiting efficiency of the IBSC containing two intermediate
bands, it is important to discuss the integral from Eq. 2.8 and method for solving the chemical
potentials from a practical standpoint. The flux integral plays an important role in solving for the
limiting efficiency of solar conversion devices as we have outlined in the previous sections. It is part of
a class of integrals called Bose-Einstein integrals that are seen throughout physics. Therefore much
effort has been undertaken in studying the properties and solutions, both analytical and numerical.
For the purposes of the work here, only numerical solutions are of interest due to the relative ease

18

Figure 2.4: Limiting efficiency of the IBSC with one intermediate band as a function of the
two energy transitions E1 and E2 for fully concentrated light X = 1/Fsun. The color bar on
the right hand side of the contour plot summarizes what efficiencies the various colors represent.

of implementing in any computer language. The general form is the following,

gv(η) =
1

Γ(v + 1)

∫ ∞
0

EvdE

eE−η − 1
(2.15)

where Γ(v) is the Gamma function and v is an integer. Now it may be shown that gv(η) (when
η < 0) can be turned into [20, 21, 22]

gv(η) =

∞∑
r=1

erη

rv+1
. (2.16)

This series can be evaluated by using only a finite number of terms and bounding the error [19].

gv(η) =

m−1∑
r=1

erη

rv+1
+ ∆ (2.17)

∆ =
emη

mv+1[1− (m
m+1)v+1eη]

(2.18)

In the present analysis, the flux integral has finite limits so this integral expansion is incomplete.
Using a similar expansion, the integral

Iv(η, ε) =
1

Γ(v + 1)

∫ ∞
ε

EvdE

eE−η − 1
(2.19)

can be turned into

Iv(η, ε) =

∞∑
r=1

er(η−ε)

Γ(v + 1)
(
εv

r
+
vεv−1

r2
+
v(v − 1)εv−2

r3
+ . . .) (2.20)

Noticing that there are finite number of terms, it is compactly put into the form

Iv(η, ε) =

v∑
k=0

εv−kgk(η − ε)
(v − k)!

(2.21)

19

where gk(η−ε) is equation Eq. 2.16. If both limits are finite, as is the case with some of the integrals
evaluated, then this summation can be extended to the following form,

Iv(η, ε1, ε2) =

2∑
l

v∑
k=0

(−1)l+1 ε
v−k
l gk(η − εl)

(v − k)!
. (2.22)

These approximations to the integrals can be implemented in code with minimal difficulty. As an
example, we evaluate the integral N(Eg,∞, Ta, qV). First, the integral must be transformed into a
form similar to Eq. 2.21. This is done with the substitution x = E/kBTa and η = qV/kBTa.

N(Eg,∞, Ta, qV) =
2π(kTa)3

h3c2

∫ ∞
E/kTa

x2dx

ex−η − 1

Once in this form, the integral turns into

N(Eg,∞, Ta, qV) =
2π(kTa)3

h3c2
· Γ(3) · I2(qV/kTa, E/kTa) (2.23)

and now this is in a form that can be utilized by a computer.
We now will now turn our discussion to the algorithm used to find the chemical potentials. Since

the intermediate band of the IBSC is thermally isolated, the the current entering the intermediate
band must equal the current leaving the intermediate band. This was the constraint equation
introduced in the analysis, that when combined with the Eq. 2.12, all the chemical potentials can
be found for every band configuration. On the computer, Eq. 2.21 and 2.22 are substituted into
the constraint equation involving the current density. However, this isn’t your typical equation
that can be solved algebraically since it involves many terms from the summation and exponentials.
To remedy, all the terms are put on one side of the equation so that it becomes a root finding
exercise using one dimensional numerical techniques. Newton, bisection, or secant methods are all
appropriate to implement. We chose to use Newton’s method because it can be extended to N-
dimensions, which will be useful in solving the constraint equations for the N-intermediate band
IBSC.

The idea of the Newton’s method in one-dimension is to find the local tangent line for the
function y = f(x) and use the zero of this line (y(x) = 0) as the next approximation to the zero of
the function [23]. Mathematically the tangent line is

y(x) = f(xi) + fx(xi)(x− xi)

where fx(xi) is the derivative of the function evaluated at the guess xi. Substituting y(x) = 0 will
give the next iteration.

xi+1 = xi −
f(xi)

fx(xi)
(2.24)

If the derivative cannot be analytically determined (as in our case) it is done numerically:

fx(xi) =
f(xi + δ)− f(xi)

δ
. (2.25)

Extending Newton’s method to N-dimensions is straightforward, x coordinate is replaced by
the vector x= (x1, x2, . . . , xn), the guess xi is replaced by the vector xi = (x1i, x2i, . . . , xni), the
function f is repaced by the vector f = (f1, f2, . . . , fn), and the derivative fx is replaced by ∇ =
(∂
∂x1

, ∂
∂x2

, . . . , ∂
∂xn

). In two-dimensions, using the coordinates x and y for simplicity, we get two
simultaneous equations

f1(xi, yi) +
∂f1(xi, yi)

∂x
(x− xi) +

∂f1(xi, yi)

∂y
(y − yi) = 0

20

f2(xi, yi) +
∂f2(xi, yi)

∂x
(x− xi) +

∂f2(xi, yi)

∂y
(y − yi) = 0 (2.26)

and they can be solved using Cramer’s rule.[
∂f1(xi,yi)

∂x
∂f1(xi,yi)

∂y
∂f2(xi,yi)

∂x
∂f2(xi,yi)

∂y

]
·
[
x− xi
y − yi

]
=

[
−f1(xi, yi)
−f2(xi, yi)

]
(2.27)

x− xi =
f2
∂f1

∂y − f1
∂f2

∂y

∂f1

∂x ·
∂f2

∂y −
∂f1

∂y ·
∂f2

∂x

(2.28)

y − yi =
f1
∂f2

∂x − f2
∂f1

∂x
∂f1

∂x ·
∂f2

∂y −
∂f1

∂y ·
∂f2

∂x

(2.29)

xi+1 = xi + (x− xi) (2.30)

yi+1 = yi + (y − yi) (2.31)

2.2 Two Intermediate Band Detailed Balance Analysis

In an IBSC device where there are two intermediate bands located between the conduction and
valence band (see Fig. 2.1), there is a total of six upward energy transitions in this device E1, E2,
E3, E4, E5 and Eg: E1 represents valence to first intermediate band, E2 represents first intermediate
to second intermediate band, E3 represents second intermediate to conduction band, E4 represents
valence to second intermediate band, E5 represents first intermediate band to conduction band, and
Eg represents the conventional band gap between the valence and conduction band. The three inter-
mediate transitions E1, E2, and E3 are independent of each other, while the three other transitions
are a function of the intermediate transitions.

E4 = E1 + E2 (2.32)

E5 = E2 + E3 (2.33)

Eg = E1 + E2 + E3 (2.34)

As with the IBSC with one intermediate band, the Fermi energy level must split into the number
of total bands or four separate chemical potentials µn, µi1 , µi2 , and µp that represent steady state
solutions that allow treatment of the carrier dynamics in the conduction, first intermediate, second
intermediate, and valence band respectively.

fv =
1

e(Ev−µp)/kBT + 1
(2.35)

fc =
1

e(Ec−µn)/kBT + 1
(2.36)

fI1 =
1

e(EI1−µi1)/kBT + 1
(2.37)

fI2 =
1

e(EI2−µi2)/kBT + 1
(2.38)

Using the same performance characteristics and assumptions of the IBSC containing one intermediate
band, we can perform limiting efficiency calculations on the IBSC containing two intermediate bands
thereby extending the analysis. The only difference with the analysis is that there are more variables
and more equations to solve. For clarity, we list the assumptions for the IBSC again.

1. The solar cell absorbs blackbody radiation at a temperature of Ts =6000oK and ambient
Ta =300oK and emits blackbody radiation at ambient Ta =300oK;

21

2. Only radiative transitions occur between the bands;

3. All photons above the lowest energy gap are absorbed and no high energy photon is used in a
low energy process;

4. Carrier mobility is infinite and as a consequence, the quasi-Fermi energy levels are constant
throughout the cell;

5. Only one electron-hole pair is created per photon;

6. A perfect mirror is located on the back of the cell so that radiation makes a double pass
through the cell and can only escape through the front area of illumination;

7. No carriers are extracted from the intermediate band(s);

8. The net photon flux (number of incident minus number of emitted photons) is equal to the
number of charge carrier pairs collected at the contacts (detailed balance assumption).

As before, full absorption is achieved and the emitted photon population from the device in each
mode is in thermal equilibrium. If we make the assumption that E1 ≤ E2 ≤ E3 ≤ E4 ≤ E5 ≤ Eg,
results are independent of this configuration, then

n(ε) =



0, 0 ≤ ε < E1
1

e
(ε−µI1v)/kBT−1

, E1 ≤ ε < E2

1

e
(ε−µI2I1)/kBT−1

, E2 ≤ ε < E3

1

e
(ε−µcI2)/kBT−1

, E3 ≤ ε < E4

1

e
(ε−µI2v)/kBT−1

, E4 ≤ ε < E5

1

e
(ε−µcI1)/kBT−1

, E5 ≤ ε < Eg
1

e(ε−µcv)/kBT−1
, ε ≥ Eg


(2.39)

where the chemical potentials are the respective differences between the quasi-Fermi levels. For
simplicity we label the valence band v, first intermediate band I1, second intermediate band I2,
and the conduction band c. The current density will be equal to the charge carriers excited to the
conduction band

J(E1, E2, E3, Ts, Ta, X, V) =

q[XFsunN(Eg,∞, Ts, 0) + (1−XFsun)N(Eg,∞, Ta, 0)− F (π/2)N(Eg,∞, Ta, qV)]

+q[XFsunN(E5, Eg, Ts, 0) + (1−XFsun)N(E5, Eg, Ta, 0)− F (π/2)N(E5, Eq, Ta, µcI1)]

+q[XFsunN(E3, E4, Ts, 0) + (1−XFsun)N(E3, E4, Ta, 0)− F (π/2)N(E3, E4, Ta, µcI2)] (2.40)

where we have made use of Eq. 1.12, the geometric factor F (θ), and the concentration factor
X. The terms in the first bracket on the right hand side of the equation represent the current
density generated from the promotion of electrons from the valence band to the conduction band
less recombination events from the reverse transition, the terms in the second bracket represent the
current density generated from the promotion of electrons from the first intermediate band to the
conduction band less recombination events from the reverse transition, and the terms in the last
bracket represent the current density generated from the promotion of electrons from the second
intermediate band to the conduction band less recombination events for the reverse transition.
In each of the bracketed terms, the IBSC absorbs radiation from the sun at the characteristic
temperature Ts over the angular range 0 < θ < 0.26◦ and from ambient at the characteristic
temperature Ta over the angular range 0.26◦ < θ < π/2, while the IBSC emits radiation at the
characteristic temperature Ta and characteristic uniform chemical potential over the angular range
0 < θ < π/2.

For each energy configuration (E1, E2, E3), there exists a voltage Vm that maximizes the IBSC
power density output Vm · Jm(E1, E2, E3, Ts, Ta, X, V). However, as with the one intermediate

22

band IBSC, the current density contains chemical potentials for which we need to solve for before
calculating. To find all the chemical potentials for a particular energy configuration, we employ the
constraints:

1. The current entering intermediate band I1 must equal the current leaving the intermediate
band I1 (JvI1 = JI1I2 + JI2c) and the current entering intermediate band I2 must equal the
current leaving the intermediate band I2 (JI1I2 + JvI2 = JI2c).

2. The chemical potential µI2v must equal the sum of the chemical potentials µI1v + µI2I1 . The
chemical potential µcI1 must equal the sum of the chemical potentials µI2I1 + µcI2 . Finally
and as before, the chemical potential µcv = qV must equal the sum of the quasi-Fermi levels
µI1v + µI2I1 + µcI2 .

where we have simplified the current density notation such that JvI1 is equal to

q[XFsunN(E1, E2, Ts, 0) + (1−XFsun)N(E1, E2, Ta, 0)− F (π/2)N(E1, E2, Ta, µvI1)]

and so on. The same general approach to find all the chemical potentials (total of 6) is used except
this time we employ Newton’s method in two dimensions and numerically solve the simultaneous
Eqs. 2.26 using Cramer’s rule.

Following the prescription as outlined in the previous sections, we have found the limiting ef-
ficiency of the IBSC by varying the energy transitions E1 and E2 above the valence band for un-
concentrated X = 1 and fully concentrated X = 1/Fsun light. Fully concentrated light has a
maximum efficiency of 72.4% for the energy transitions of 0.59 eV, 0.93 eV, and 1.05 eV for a band
gap Eg = 2.57 eV, while unconcentrated light has a maximum efficiency of 52.1% for the energy
transitions of 0.85 eV, 1.20 eV, and 1.43 eV for a band gap Eg = 3.48 eV. As the concentration factor
increases, so does the limiting efficiency up to the maximum of 72.4%, a result that is directionally
similar to both the conventional solar conversion device and IBSC with one intermediate band. We
should note that the two patterns that we have previously identified by considering the limiting
efficiency calculations is true for the two intermediate band IBSC: (1) efficiency is proportional to
light concentration and (2) the large band gap Eg is inversely proportional to light concentration.

As we compare the performance of the two intermediate band IBSC model to the conventional
solar conversion model, it is evident that conversion efficiency has again significantly improved.
For unconcentrated light, performance has increased from 31% to 52.1% which is a 40.5% increase
in efficiency. For fully concentrated light, performance has increased from 41% to 72.4% which is
a 43.4% increase in efficiency. When we compare the performance of the two intermediate band
IBSC to the one intermediate band IBSC, conversion efficiency improves. For unconcentrated light,
performance has increased from 46.8% to 52.1% which is a 10.2% increase in efficiency. For fully
concentrated light, performance has increased from 63.2% to 72.4% which is a 12.7% increase in
efficiency.

As with the one intermediate band IBSC, it is important to investigate the sensitivity of efficiency
as a function of the two independent energy transitions E1 and E2 with the band gap Eg of the
device held fixed for unconcentrated and fully concentrated light. We do this for the band gap
Eg = 3.48 eV and Eg = 2.57 eV that corresponds to the maximum efficiency of both cases (see Figs.
2.5 and 2.6). For unconcentrated light, the maximum efficiency of 52.1% occurs at the energy band
transitions E1 = 0.85 eV and E2 = 1.20 eV for a band gap of Eg = 3.48 eV but Fig. 2.5 shows that
an efficiency of ≥ 50% can occur at various band configurations. From Fig. 2.5, the IBSC can achieve
a limiting efficiency ≥ 50% for band configurations ranging between 0.79 eV ≤ E1 ≤ 0.88 eV and
1.16 eV ≤ E2 ≤ 1.25 eV. It is possible to fit a polynomial to find the interval of E2 = [a(E1), b(E1)]
that results in an efficiency ≥ 50% as we have done for the one intermediate band IBSC. However,
due to an additional degree of freedom, each band gap will have its own efficiency profile in terms
of the two energies E1 and E2. The analytic expressions describing a desired interval for one band
gap will not be the same for another band gap, making this type of calculation less useful.

For fully concentrated light, the maximum efficiency of 72.4% occurs at the energy band transi-
tions E1 = 0.59 eV and E2 = 0.93 eV for a band gap of Eg = 2.57 eV but Fig. 2.6 shows that an
efficiency of ≥ 70% can occur at various band configurations. From Fig. 2.6, the IBSC can achieve

23

Figure 2.5: Limiting efficiency of a two intermediate band IBSC with band gap Eg = 3.48
eV as a function of the two energy transitions E1 and E2 for unconcentrated light X = 1. The
color bar on the right hand side of the contour plot summarizes what efficiencies the various
colors represent.

Figure 2.6: Limiting efficiency of a two intermediate band IBSC with band gap Eg = 2.57 eV
as a function of the two energy transitions E1 and E2 for fully concentrated light X = 1/Fsun.
The color bar on the right hand side of the contour plot summarizes what efficiencies the various
colors represent.

24

a limiting efficiency ≥ 70% for band configurations ranging between 0.54 eV ≤ E1 ≤ 0.61 eV and
0.91 eV ≤ E2 ≤ 0.97 eV.

2.3 Remarks

In this chapter, we have introduced a theoretical device called the intermediate band solar cell that
would contain intermediate bands between the valence and conduction bands aimed at increasing
conversion efficiency. The intermediate bands allow for low energy photons to promote charge carriers
in a stepwise manner to the conduction band that would normally be lost as heat or not absorbed
by the conversion device. In addition, incoming photons would be better matched with energy
transitions between bands thereby reducing charge carrier thermalization. We described that proper
operation of the IBSC would require that no charge carriers are allowed to be extracted from the
intermediate bands. This is important for two reasons. First, this would deplete the carrier density
available for excitation to higher bands, including the conduction band. Second, charge carriers are
extracted from intermediate bands at lower potential differences than from the conduction band.
This would reduce the power output of the IBSC and thus the conversion efficiency. Since carriers
would only be extracted from the valence and conduction band, the IBSC would operate similar to
the conventional solar cell in the sense that the operating voltage would be proportional to the band
gap.

We then performed limiting efficiency calculations on the IBSC and compared them to the
detailed balance of the conventional solar cell. For an IBSC that contains one intermediate band,
we calculated a limiting efficiency of 63.2% when the largest band gap is Eg = 1.93 eV, while
unconcentrated light has a maximum efficiency of 46.8% when the largest band gap is Eg = 2.40
eV. For an IBSC that contains two intermediate bands, we calculated a limiting efficiency of 72.4%
when the largest band gap is Eg = 2.57 eV, while unconcentrated light has a maximum efficiency
of 52.1% when the largest band gap is Eg = 3.48 eV. These efficiencies are significant because of
the potential increase in efficiency of an IBSC over the conventional solar conversion device. By
rethinking the design and operation, significant conversion improvements were realized and this is
the motivating factor for further research in this type of structure. This is the first step to design a
real world solar conversion device having an optimal intermediate band structure.

25

Chapter 3: Quantum Dot Intermediate Band Solar Cell

In the previous chapters, we have have studied the limiting efficiency of various solar conversion
devices and showed how efficiency responds to the inclusion of intermediate bands placed in the
forbidden band gap of a normal semiconductor. We described how the presumed operation of the
IBSC leads to the efficiencies that are far superior to the conventional conversion device. The
increases can be attributed to utilization of lower energy photons and energy transitions that better
match the solar spectrum. For an IBSC that contains one intermediate band, we calculated a
limiting efficiency of 63.2% under fully concentrated light and 46.8% under unconcentrated light.
For an IBSC that contains two intermediate bands, we calculated a limiting efficiency of 72.4% under
fully concentrated light and 52.1% under unconcentrated light. In addition, we found the energy
band configurations that correspond to the limiting efficiency and performed sensitivity analyses
that showed slight variations do not affect performance. However, we made no mention of how a
real device could be designed and operated such that its behavior would exhibit that of an IBSC.

With the advance in microfabrication technology, it is possible to coherently grow two or more
dissimilar semiconductors that force quantum confinement for charge carriers. These types of struc-
tures are called heterostructers [10]. Heterostructers that confine charge carriers in one direction,
two directions, and three directions are called quantum wells, quantum wires, and quantum dots
respectively. In this chapter, we introduce a device based on quantum dot technology as a physical
realization of the IBSC called the quantum dot intermediate band solar cell (QD-IBSC). We begin
in Sec. 3.1 by describing the types of heterostructures and how confinement leads to discrete energy
levels that can appear in the forbidden band gap of a semiconductor. We expand this idea in Sec.
3.2 by introducing the QD-IBSC and explain how it can lead to an IBSC device. The QD-IBSC is
further examined in Sec. 3.3 by outlining design criteria necessary to achieve the IBSC operation.
We show, based on a simplistic model, how quantum dot materials and parameters can be identified
that closely match the intermediate band energies that provide the maximum theoretical efficiency.
We conclude with Sec. 3.4.

3.1 Heterostructures

A heterostructure consists of two or more different semiconductors that are grown coherently with
one common crystal structure [10]. Of real interest in these types of structures are the effects
caused by the different band gaps and relative energy alignment with respect to each other. As an
example, we consider a heterostructure consisting of compound semiconductors aluminum arsenide
and gallium arsenide (AlAs/GaAs) material that alternates along the z-direction (see Fig. 3.1).
The band gap of the pure compound semiconductor AlAs is larger than the band gap of the pure
compound semiconductor GaAs. In addition to the size of the band gaps, the relative band alignment
between the two permits the GaAs conduction band to sit below the conduction band of AlAs and
the GaAs valence band to sit above the valence band of AlAs. As a result, there is an energy
separation between the GaAs and AlAs valence bands. This is called the valence band offset (see
Fig. 3.1). The conduction band offset is defined similarly. The alternating materials and offsets
create one dimensional potential wells. Within each well, additional GaAs energy levels below its
valence band could lie above the AlAs valence band (energy level v1 in Fig. 3.1). Similarly, energy
levels arise between the conduction bands of GaAs and AlAs (energy level c1 and c2 in Fig. 3.1). As
the number of quantum wells increases, these energy levels will split and spread into bands. Such
bands occur as intermediate bands between the band gap of AlAs in the AlAl/GaAs heterostructure.

In a photovoltaic device, carrier dynamics take place at energies near the conduction band mini-
mum and valence band maximum, see discussion on thermalization in Sec. 1.1. It is these stationary

26

Figure 3.1: The alternating semiconducting material AlAs and GaAs creates a heterostructure.
C and V refer to conduction and valence bands, respectively. Since the bandgaps are of different
sizes, this mimics the one dimensional potential well. The intermediate energy levels c1, c2,
and v1 are in the quantum wells, the offset is the potential well depth.

points that determine the band gap of the semiconductor1. If we expand the energy around the ex-
trema, in both bands, as a function of the wavevector ~k, a useful approximation emerges that will be
used throughout this text in calculations. In the conduction band, the minimum energy is located
at Ec(~k0c) and we expand around the point ~k0c such that

Ec(~k) = Ec(~k0c) +
∂Ec(~k)

∂k
|k0c

(~k − ~k0c)︸ ︷︷ ︸
=0

+
1

2

∂2Ec(~k)

∂k2
|k0c

(~k − ~k0c)
2 (3.1)

= Ec(~k0c) +
h̄2(~k − ~k0c)

2

2m∗c
(3.2)

where we have made use of a parameter m∗c that has the dimensions of mass. It is defined using the
following relation

1

m∗c
=

1

h̄2

∂2Ec(~k)

∂k2
|k0c (3.3)

and the effective mass m∗c is analogous to the mass of the free electron m but differs through the
different forces experienced in the lattice. The effective mass can be greater or less than m depending
on the atomic potentials. Near the band edge, m∗c is often isotropic and can be approximated by a
constant [9]. Literature containing a comprehensive review of semiconductor band parameters will
list m∗c in terms of the electron mass, an example is a review by Vurgaftman et al. [1] that we have
made use of extensively. We make the observation from Eq. 3.2 that the energy of an electron near
the conduction band minimum in a lattice is similar to that of a free electron but differs by m∗c .

1There are two types of band gaps that can occur in semiconductors, direct and indirect. A direct band gap is
when the momentum h̄k is the same for both the conduction band minimum and valence band maximum, while an
indirect band gap is when the momentum for the conduction band minimum is different than the momentum for
the valence band maximum. An electron transition from the valence to conduction band (or reverse transition) for a
direct band gap semiconductor only requires a photon. However, an indirect band gap semiconductor band transition
requires a photon and shift in momentum, supplied by phonons.

27

In the valence band, we look for an expression for the energy of a hole near the valence band
maximum energy Ev(~k0v). Similar to the conduction band, the energy is expanded in terms of the

wavevector ~k around the point ~k0v such that

Ev(~k) = Ev(~k0v) +
∂Ev(~k)

∂k
|k0v

(~k − ~k0v)︸ ︷︷ ︸
=0

+
1

2

∂2Ev(~k)

∂k2
|k0v

(~k − ~k0v)
2 (3.4)

= Ev(~k0v)−
h̄2(~k − ~k0v)

2

2m∗v
(3.5)

where we have made use of the effective mass of a hole in the valence band m∗v. It is defined using
the following relation

1

m∗v
= − 1

h̄2

∂2Ev(~k)

∂k2
|k0v (3.6)

so that the effective mass is normally positive. Similar to Eq. 3.2, we make the observation that
Eq. 3.5 near the valence band maximum in a lattice is similar to that of a free electron but differs
by m∗v. The above equations represent what is called the parabolic band approximation [24].

We should note that, in general, the effective mass in each band is represented by a tensor and
anisotropic. However near band extrema, such as ~k0c and ~k0v, the effective mass is often isotropic
and can be described by one constant. In cases where the conduction band minimum and valence
band maximum occur at different ~k, i.e. indirect band gap, the effective mass near the extrema is
anisotropic and can characterized by two constants: longitudinal and traverse effective mass. For
the reasons described below in Sec. 3.3, we will only be considering materials with direct band gaps
such that the effective mass is isotropic as represented by one constant. As such, in the equations
and derivations that follow, only one constant representing the effective mass is necessary.

Returning to the quantum well heterostructure described above, discrete energy levels occur in
the z−direction, while there is no confinement in the quantum well in-plane direction. This confines
charge carriers in one direction and produces the energy spectrum of the form Ed+ h̄2(k2

x+k2
y)/2m∗,

where Ed are discrete energies associated with confinement in the z−direction, h̄kx and h̄ky are the
in-plane momentum components, and m∗ is the charge carrier effective mass. In order to find the
discrete energy levels within each band, we substitute the effective mass for the mass in Schrödinger’s
time-independent equation and solve for the z−direction subject to boundary conditions. In Carte-
sian coordinates, using the effective mass approximation, Schrödinger’s equation is

−h̄2

2m∗

(
d2

dx2
+

d

dy2
+

d2

dz2
+ V (z)

)
Ψ(x, y, z) = EΨ(x, y, z) (3.7)

where V (z) is the conduction or valence band offset in the z−direction. In order to solve, appropriate
continuity conditions are applied at the heterostructure boundary. For a spatially varying mass, as
with the effective mass, the wavefunction and its inverse mass derivative should be continuous (see
Sec. 4.1 for derivation, specifically Eq. 4.4).

A semiconductor heterostructure that confines charge carriers in two dimensions such that the
energy spectrum is of the form Edx + Edy + h̄2(k2

z)/2m∗, where Edx + Edy are discrete energies

associated with confinement in the traverse direction and h̄2(k2
z)/2m∗ is the longitudinal momentum

component, is called a quantum wire. The discrete energy levels are found by solving Eq. 3.7 with
a potential V (x, y) that represents the conduction or valence band offset (see Eq. 5.15).

Semiconductor heterostructures that restrict the motion of charge carriers in all three spatial
directions are referred to as quantum dots (QDs) [25]. Unlike the quantum well, the QD material
is completely surrounded by a material with a larger band gap (barrier material) so the energy
spectrum is discrete. If the number of QDs is increased and arranged in a periodic lattice, the
energy levels will split and spread out into bands. The width of the band(s) depends on the spacing
of the QDs within the lattice and wavefunction overlap. We will revisit this idea over the next few

28

sections.
Due to the energy levels that appear between the conduction and valence band of the barrier

material, heterostructures are considered for the IBSC. All three types of heterostructures introduced
above contain the necessary intermediate levels required for the IBSC. However, only one of the three
types allows for the proper operation of the IBSC. The quantum well’s intermediate levels provide
a finite density of states lying between the conduction and intermediate bands because of the term
in the energy spectrum h̄2(k2

x + k2
y)/2m∗. Photogenerated charge carriers will lose energy through

thermalization due to the high density of states available in the in-plane direction. The Fermi level
will not split into the number of total bands. Rather, the Fermi level will split into two levels similar
to the solar conversion device with a single energy gap. The lowest lying intermediate band will act as
the conduction band and heterostructure will behave as a single energy gap conversion device. These
ideas have been reviewed by Anderson and Luque et al. in [26, 27]. Similar to the quantum well, the
quantum wire’s intermediate levels provide a finite density of states lying between the conduction
and intermediate bands because of the term h̄2(k2

z)/2m∗ and photogenerated charge carriers will lose
energy through thermalization due to the density of states available in the longitudinal direction.
Again, the Fermi level will not split into the number of total bands but rather split into two levels.

As opposed to the quantum well and wire, a QD heterostructure will provide zero density of
states between the excited bands due to the discrete energy spectrum. With each band thermally
isolated, the Fermi level will split into the number of bands and charge carrier concentration in each
of the bands will be described by its own chemical potential as required for proper IBSC operation.
This will reduce thermalization and is the main reason why QDs are considered for the physical
realization of the IBSC.

3.2 Quantum Dot Intermediate Band Solar Cell

The idea of the quantum dot intermediate band solar cell (QD-IBSC) was first proposed by Marti
et al. [28], where they describe the structure of the design and offer up a proposed QD/barrier
system that, when simplistically modeled, would produce one intermediate band in the conduction
band offset at the ideal energetic location determined by the detailed balance method outlined in
Chap. 2. The QD-IBSC is shown schematically in Fig. 3.2, with the quantum dot material located
in-between the p-n junction. The p-n emitters prevent the intermediate band(s) from touching the
deposited contacts on the external faces so no current is directly extracted from the intermediate
bands in normal operation [29]. As described in Chap. 2, this is a necessary requirement for the
proper operation of the IBSC.

Figure 3.2: An orthogonal projection of the proposed QD-IBSC with the barrier material
surrounding the QDs. The QD material is arranged periodically within the barrier material
and sandwiched in between the normal p-n junction.

The proposed QD-IBSC by Marti et al. is a variation on the p-i-n junction theme used in certain
types of solar cells today. The layer of semiconductor material between p and n, instead of being

29

left undoped or intrinsic, contains a periodic array of QDs embedded within the intrinsic, or barrier
material. It is important for the size and spacing of the quantum dots to be uniform. This helps
establish well-placed intermediate band boundaries. If the dots are organized in a random array or
are diverse in size, the energy levels will tend to be irregularly spaced throughout the offsets due to
symmetry breaking [30]. The intermediate bands would not be created, rather single energy levels
varied throughout the band gap aiding in recombination via thermalization.

One way to grow uniform coherent QD arrays is through the Stanski and Krastanov (S&K)
method, which leads to self-organized growth [31, 32, 33, 34]. A requirement to achieve this growth
is a lattice constant mismatch, ∆lc, between the quantum dot and barrier material. The formulation
of the quantum dots are a result of the ∆lc: as the quantum dot material is deposited on the
surface of barrier material, the quantum dot material will compress to fit the smaller barrier lattice
and 2D growth will continue until it becomes energetically favorable for quantum dots (islands)
to spontaneously form. The layer thickness at which 2D-3D growth occurs is called the critical
thickness and depends on the ∆lc [35]. The QD characteristics such as size and shape are highly
dependent on certain parameters such as growth temperature and growth interruptions. Outside
the scope of this thesis is a discussion of the methods that are used to grow the self-assembled QDs.
There are various growth techniques, such as Metal Organic Chemical Vapor Deposition (MOCVP)
and Molecular Beam Epitaxy (MBE), with each one very different from the next and constantly
evolving. We note that QD growth technology is available and can produce highly uniform QD
arrays. One main requirement for doing so is a lattice mismatch between the quantum dot and
barrier material.

Marti et al. made the assumption that the geometry of the QD is spherical and is characterized
by a QD radius, a, measured in Angstroms, Å. In addition, for simplicity, they assumed that the
energy corresponding to the top of the valence band is the same both in the barrier and the QD
material. This means there is no valence band offset and the only confining potential occurs at the
conduction band offset. Under these assumptions, they calculated the energy levels in the QD using
the effective mass approximation. The charge carrier is confined to the spherical QD of radius a
such that the potential is

V (r) =

{
−V0, 0 ≤ r < a

0, r > a

}
(3.8)

where −V0 is the conduction band offset. We also assume that the charge carrier’s effective mass
varies between the interior and exterior of the well as follows [9]:

m(r)∗ =

{
mD, 0 ≤ r < a
mB , r > a

}
(3.9)

The energy levels in a spherical well are found by factoring the wavefunction into a radial and
angular part (Rnl(r)Y

l
m(θ, φ)) and solving the radial equation subject to the boundary conditions

[15]:
R(r) is finite as as r → 0 and R(r)→ 0 as r →∞ (3.10)

In the interior of the well the solutions are spherical Bessel functions R(r) ' jl(kr) of the first kind,
with E + V0 = h̄2k2/2mD > 0. The second solutions (yl) are rejected because they diverge at the
origin. For r > a and E < 0 the solutions are spherical Bessel functions of imaginary argument
R(r) ' jl(iκr), with E = h̄2(iκ)2/2mB < 0. We use the solution that decreases exponentially to
zero as r →∞. The solutions are determined by enforcing continuity at r = a [36]:

Rinside(r)|r=a = Routside(r)|r=a and
1

mD

Rinside(r)

dr
|r=a =

1

mB

Routside(r)

dr
|r=a (3.11)

The bound state energy eigenvalues are labeled En,l, where n is the number of radial nodes and l is
the orbital angular momentum. The ground state energy is E0,0.

Using the outlined approach, Marti et al. found that the ternary alloy Al0.40Ga0.60As could
be used as the barrier material and the ternary alloy In0.42Ga0.58As as the QD material. Band
parameters for the barrier material are as follows: a band gap of 1.95 eV, an effective mass of

30

0.096m0 expressed as the resting mass of an electron m0, and a lattice constant of 5.5654 Å. Band
parameters for the QD material are as follows: a band gap of 0.87 eV, an effective mass of 0.045m0

expressed as the rest mass of an electron m0, and a lattice constant of 5.7060 Å. The ground state
energy level E0,0 for a QD radius of a = 39 Ålies 1.24 eV above the valence band, which is the
optimal position for achieving 63.2% conversion efficiency as determined from the detailed balance
argument. In addition, there is the necessary lattice mismatch between the QD and barrier material
needed to manufacture the QD array.

Although the proposed QD-IBSC materials seemingly have the desired parameters identified for
an IBSC under fully concentrated light, there exist unjustified assumptions that should be noted.
The valence band offset in the present QD heterostructure is not negligible, rather the depth is 0.37
eV. This confining potential will support energy levels, in fact it will support many energy levels
because holes are generally heavy. This could potentially be a problem because as these energy
levels spread out into bands, some will overlap or those next to the barriers valence band will merge
with that band. This result might reduce the efficiency through unwanted transitions or shrink the
barrier energy gap due to bands merging with the barriers valence band. A second assumption is
that the conduction band offset will only support one energy level. However, the conduction band
offset will support not only the ground state energy level but also support two additional energy
levels E1,1 and E2,2. Additional energy levels will affect efficiency. Similar to the valence band
multiple energy level discussion, when these energy levels spread out into bands they might overlap
with each other or merge into the barrier’s conduction band. Efficiency could be reduced. If, for
example, one of the bands overlaps with the conduction band, the energy gap of the barrier material
will decrease. This will degrade the cell’s operating voltage and decrease the power output of the
cell. If the additional bands are optimally placed as we saw in Chap. 2, they could be used to
enhance efficiency. As such, it is important to calculate the placement and width of the bands. The
tight binding method described by Slater et al. is a suitable method that is used to calculate the
width of the bands throughout the rest of this thesis [37].

3.3 Design Considerations and Results

Levy et al. also found potential QD-IBSC materials that contain an optimally placed intermediate
band with a detailed balance conversion efficiency of 60% [38]. As part of their design criteria,
they selected QD-IBSC materials that have a negligible valence band offset. However, using the
model described in Sec. 3.2 for locating the energy levels and realistic size of quantum dots, two
intermediate bands will most likely emerge. This second band, if strategically placed, will increase
the maximum efficiency of the solar cell from 63.2% [16] (single intermediate band) to 72.4% (see
Fig. 2.6) for an IBSC under full concentration. When searching for materials, this additional band
should be taken advantage of to maximize the QD-IBSC capability. Using the procedure outlined
in Sec. 3.2, the bound state energy levels En,l obtained for typical quantum dot parameters are
organized as follows: E0,0 < E0,1 < E0,2 < E1,0 · · ·. This is an important result for two reasons:

• The first intermediate energy level is found when n = 0, l = 0 and the second intermediate
energy level is found when n = 0, l = 1.

• The quantum dot will support two intermediate energy levels when the second excited state,
n = 0, l = 2, is not bound but first excited state, n = 0, l = 1, is bound.

This knowledge is useful when searching through numerous materials; only the values n = 0 and
l = 0, 1, and 2 are used in calculations to find energy levels.

For an efficiency of an IBSC under full concentration of at least 70%, the barrier energy gap
must be greater than 2.0 eV. This is the first design criterion and begins to narrow down possible
barrier materials.

As mentioned, a valence band offset might form and the confining potential will support many
energy levels. This result might reduce the efficiency through unwanted transitions or shrink the
barrier energy gap due to bands merging with the barrier’s valence band. Therefore, the materials
determined have a negligible valence band offset in order to eliminate these possibilities. This will

31

assure that no minibands are created outside those that are known and calculated in the conduction
band offset.

As a final design criterion, it is desirable to produce solar cells as thin as possible. Thinner solar
cells require less material and will reduce manufacturing costs. One way to reduce the thickness of
the cell is to use direct band gap materials so the absorption coefficient is strong. Only direct band
gap materials are used in this search.

We highlight potential QD-IBSC materials found that satisfy the design considerations and
optimized two intermediate energy levels to achieve a theoretical efficiency greater than 70%. The
two energy levels located in the conduction band offset are found using a computer program utilizing
the method described by Sec. 3.2 in conjunction with band parameters (based on the review from
Vurgaftman et al. [1]), all of which were calculated at room temperature, 300oK. The barrier and
quantum dot materials, along with the energy transitions, lattice mismatch, quantum dot radius,
and efficiency are given in Tab. 3.1. This table lists possible QD-IBSC with efficiencies in excess of

Table 3.1: Barrier and quantum dot materials (QD) that produce an efficiency, η, greater than
70% and have two intermediate bands. The energy transitions E1, E2, and E3 refer to those in
Fig. 2.1.

Barrier material AlAs0.17Sb0.83 AlP0.05Sb0.95 AlAs0.05Sb0.95

QD material InP0.35Sb0.65 GaP0.37Sb0.63 GaAs0.72Sb0.28

QD radius (Å) 35 34 33
E1 (eV) 0.73 1.23 1.31
E2 (eV) 1.31 0.43 0.43
E3 (eV) 0.26 0.57 0.55
η(%) 70.0 72.0 70.0

∆LC(%) 3.45 4.30 5.78

70%.
However, Tab. 3.1 does not give any information about the dependence of efficiency on the

variation of the energy levels. The sensitivity of efficiency as a function of the energy transitions
was investigated. The band gap of the barrier is held fixed and efficiency is calculated at various
energy transitions E1 and E2. For illustrative purposes, the barrier/QD material AlPSb/GaPSb
was used and a contour plot was generated (see Fig. 3.3). Efficiencies greater than 70% can be
attained as long as the energy transitions are within, roughly speaking, an ellipse that ranges between
1.21 eV < E1 < 1.29 eV and 0.37 eV < E2 < 0.45 eV. Outside of these ranges, the efficiency drops
below the desired level and in some cases below the one intermediate band efficiency of 63.2%. As a
consequence, there is a design trade off. Instead of looking to produce the maximum efficiency of a
given system, a slightly less efficient system could be designed that is more robust under parameter
perturbation. As an example, consider AlPSb/GaPSb which might be designed to E1 = 1.25 eV and
E2 = 0.41 eV. This allows for the most deviation, E1 and E2 can vary by ±0.04 eV, while keeping
the efficiency greater than 70%.

The transition energies will spread out into bands as the quantum dots are grown. As men-
tioned, it is important that the intermediate bands do not overlap with each other or with the
conduction/valence bands. Qualitatively, the closer the quantum dots are spaced, the larger the
width of the intermediate energy bands due to the overlap of their wavefunctions. Quantitatively,
there should be some minimum distance between the quantum dots in order to prevent the bands
from overlapping.

Using tight-binding theory and assuming the quantum dots are arranged in a simple cubic lattice,
minimum distances are determined. This distance is measured from the center of one quantum dot
to the center of the next quantum dot. Table 3.2 displays the minimum distance, D, that is required
to prevent an overlap of the minibands and the widths of minibands appearing in the QD, ∆s
and ∆p, at the distance D. For the barrier/QD materials AlPSb/GaPSb and AlAsSb/GaAsSb, the

32

Figure 3.3: Contour plot displaying calculated efficiency of the 4 band solar cell with an energy
gap of Eg = 2.23 eV. The two energy transitions, E1 and E2, are those referred to in Fig. 2.1.

minibands will not overlap even when the QDs touch each other in the lattice. In this case, the
minimum distance is determined by the physical constraint of the QDs rather than the prevention
of miniband overlap.

Table 3.2: Maximum bandwidth associated with the two intermediate energy levels in a simple
cubic lattice. ∆s is this bandwidth associated with the first energy level, ∆p is the bandwidth
associated with the second energy level, and D is the minimum distance as measured from the
center of one quantum dot to center of next quantum dot needed to prevent overlapping.

Barrier AlAs0.17Sb0.83 AlP0.05Sb0.95 AlAs0.05Sb0.95

QD InP0.35Sb0.65 GaP0.37Sb0.63 GaAs0.72Sb0.28

QD radius (Å) 35 34 33
D (Å) 77 68 66

∆s (eV) 0.033 0.129 0.133
∆p (eV) 0.38 0.287 0.296

Although materials were found that produce the intermediate bands necessary to achieve an
efficiency of greater than 70%, these results are based on certain restrictive assumptions: the shape
of the quantum dot is spherical; the quantum dot lattice is cubic; the Hamiltonian includes only the
offset potential; and the QD-IBSC is under full concentration. It remains to be determined how the
efficiency degrades as these assumptions are analyzed and possibly relaxed.

Furthermore, intermediate bands should be approximately half-filled with electrons in order to
receive electrons from lower energy bands and pump electrons to higher energy bands [39]. This
condition might not possible if there is more than one intermediate band [40]. For those intermediate
bands that are mostly empty, light absorption would be weak. A detailed study on how this affects
the 4-band IBSC efficiency and possible solutions should be undertaken.

33

3.4 Remarks

In this chapter, we have studied a possible path to the IBSC through the use of QD technology.
Other types of quantum heterostructures, like the quantum well or wire, were disregarded because of
the finite number of states available in between minibands and do not satisfy the IBSC requirement
that each band’s charge carrier concentration must be described by its own quasi-Fermi level under
normal operation. We described the QD-IBSC structure as a variation on the p-i-n solar cell theme by
asserting that QDs embedded into barrier material would replace the intrinsic material so current
would not be extracted from the formed intermediate band(s). The QDs must be arranged in
a periodic lattice in order to establish well-placed intermediate band boundaries. Current self-
organized growth technology can achieve this requirement when certain criteria are satisfied, such
as a lattice mismatch between the QD and barrier.

We proceeded to highlight potential QD-IBSC materials that have energetic optimized levels to
achieve a theoretical efficiency greater than 70%. The design criteria used to search barrier/quantum
dot material includes negligible valence band offsets between the barrier and quantum dot to prevent
unnecessary bands from forming, direct band materials used to strengthen the absorption coefficient,
and a lattice mismatch between the barrier/quantum dot material so self organized quantum dots
could grow.

Our study indicates that efficiency is somewhat robust for the placement of these bands. It was
determined that if the cell is designed to a slightly lower efficiency it could more easily accommodate
variations in the intermediate band energies. A minimum distance between the quantum dots was
determined to prevent the overlap of the intermediate bands with each other and valence/conduction
bands.

34

Chapter 4: Finite Element Method and its Application to Schrödinger’s
Equation

In Chap. 3, we found QD-IBSC materials that boost thermodynamic efficiencies to over 70% with
two intermediate bands. However, these materials were selected under certain restrictive assumptions
that allowed for analytic solutions to the proposed model. This chapter and the next chapter will
attempt to bridge the gap from the analytic solution to a more refined numerical solution, so the
restrictive assumptions can be relaxed in order to search for a more realistic QD-IBSC. By doing
so, we must diverge from the majority of the discussions thus far and switch our focus to the finite
element method, which will become the bridge that allows for refined solutions. Our research and
development of the finite method is done so with its application to the QD-IBSC in mind. As such,
we will incorporate ideas of the previous chapters as necessary.

Analytic solutions to Schödinger’s equation are few. Two of the more notable ones are the
quantum oscillator potential and Coulomb potential, which Schrödinger solved in his first paper on
quantum mechanics [41]. Other analytic solutions exist for simple potentials that include square or
spherically symmetric potential wells. These solutions are useful in terms of our understanding of the
atomic universe. However, analytic solutions are not available for practical applications, especially
those that involve emerging technology. Today, the advent of computers and desire to understand
typically intractable quantum systems drive numerical methods that turn Schödinger’s equation into
matrix mechanics.

The finite element method is one such method that transforms differential equations into matrix
operations. The method originates in the principal of stationary action, which should resonate
with physicists, and its strength lies at its ability to handle complicated boundary value problems.
Applying FEM to Schödinger’s equation is done in a straightforward manner that allows calculations
in one, two, and three dimensions.

We begin in Sec. 4.1 with an overview of the method in the context of Schödinger’s equation and
apply it to the infinite potential well in one dimension. The next few sections, Sec. 4.2 - 4.4, continue
to develop the method but with levels of sophistication required to find energy levels associated with
the QD-IBSC. We conclude with Sec. 4.5.

4.1 Finite Element Method

The finite element method (FEM) has its origins in structure mechanics but was broadened to
include other areas after it was generalized by Zienkiewicz and Cheung using variational procedures
[42, 43]. Specifically, they interpreted FEM as finding a function minimizing (or maximizing) a
certain specified functional over the whole field involved.

Newton’s laws of motion for a particle experiencing forces, temperature distribution in a ther-
mally conducting system, electrostatic potential in a region occupied by charges, the wavefunction
of a quantum mechanical particle, etc. all obey differential equations that can be derived from the
principal of stationary action1 [44]. The principle of energy minimization and Hamilton’s principle
in classical mechanics are both manifestations of this single principle. There are two equal but
different formulations to these types of problems: (1) attempt to directly solve the governing differ-
ential equation, or (2) evoke the principle of stationary action by casting it into a variational form.
Due to the synthesis of the principle of stationary action and dynamic equations governing physical
quantities, FEM is a natural extension to most branches in physics. Standard FEM references for
material in this chapter are [45, 46, 47, 48, 49].

The application of this method normally takes place in two distinct steps. In the first step,
we define the geometry of the problem and tessellate the region into simplices or elements. In the

1This principle states that for a conservative system the action integral is stationary for the physical quantity.

35

second step, we reformulate the dynamics into a variational problem2 and the geometry defined in
step one is used to transform the variational problem into a matrix problem. Once the problem is in
a matrix representation, we solve to find the energy eigenvalues and the corresponding eigenvectors.
This is the general idea. We begin the discussion at step one by defining what is called a mesh.

The physical region is first discretized by drawing a boundary and then strategically placing
points within the boundary. The adjacent points are then connected by lines. The adjacent lines
are then connected to form areas. The adjacent areas are then connected to form volumes and this
process continues up to the dimension of the physical region. The end result is called a mesh. Those
smaller regions are called elements and the points are called nodes. The nodes and the elements are
independently numbered. Lines in one dimension, areas in two dimensions, and volumes in three
dimensions are all considered elements.

The geometrical shape of elements are polygons in 2D and polyhedra in 3D. The physical domain
and user experience typically determine the type of element used. We will be using triangles in 2D
and tetrahedra in 3D.

Within a mesh, all the elements must have the same geometric shape. However, the elements are
not required to be ‘structured’ in anyway. By this we mean that the nodes, which are the vertices
of elements, are not required to be regularly spaced throughout the mesh. A structured mesh (see
Fig. 4.1a) is easy to generate but not practical of representing complicated regions of space. It is
mostly used for illustrative purposes or as a first step in unstructured mesh code. On the other
hand, a mesh that is generated when various inputs are considered is called unstructured (see Fig.
4.1b). For example, it is sometimes necessary to fix nodes or require more nodes near boundaries.
The resulting mesh is unstructured. Generating this type can be difficult and normally involves
complicated codes. A simple but adaptive unstructured mesh generator available free to the public
called Distmesh[50] was used in generating Fig. 4.1b and all other FEM related problems throughout
this thesis (see Chap. 5). It is a MATLAB based code that determines the node locations by solving
for equilibrium in a truss structure (using piecewise linear force-displacement relations) and resets
the elements by the Delaunay algorithm.

(a) (b)

Figure 4.1: (a) A structured mesh with triangular elements; (b) An unstructured mesh with
triangular elements. In the structured mesh vertices are labeled by integers (1-25) and elements
by circled integers (1-32).

2There are other approaches categorized as finite element methods that do not involve a variation. The method of
weighted residuals is once such technique and includes a variety of different approaches within this category. However,
the variational method is used throughout the text due to its intuitive nature to the types of problems encountered.

36

As mentioned, the mesh is the first step in solving a differential equation using finite elements.
It defines the geometry of the problem, which can be very complicated. This alone makes the
method advantageous. Further, consider nodes that are placed on a region that separates different
materials. An internal boundary between the two materials is now defined and allows implementation
of boundary conditions with relative ease. With respect to Schödinger’s equation, the wavefunction
and its derivative3 are required to be continuous across the boundary. This is handled using finite
elements as demonstrated in the later sections of this chapter.

Schödinger originally derived his equation from the action integral by placing a variation on
function ψ such that any variation of it is stationary [41]. The result was the following4

δ

∫
Ω

(
h̄2

2m
(∇ψ∗(x))(∇ψ(x)) + ψ∗(x)V (x)ψ(x)− ψ∗(x)Eψ(x)

)
dΩ = 0. (4.1)

where the Lagrange multiplier, E, interpreted as energy, is used to enforce the normalizing condition∫
ψ∗(x)ψ(x) = 1. The above equation is not normally expressed in its integral form but rather in its

equivalent second order partial differential equation form. To see this, we carry out an integration
by parts (divergence theorem) on the kinetic portion of the integral and treat ψ∗(x) and ψ(x)
independently∫

Ω

h̄2

2

∇ψ∗(x) · ∇ψ(x)

m(x)
dΩ =

h̄2

2

∫
Γ

ψ(x)∗∇ψ(x)

m(x)
dΓ− h̄2

2

∫
Ω

ψ(x)∗∇ ·
(
∇ψ(x)

m(x)

)
dΩ. (4.2)

When the surface integral vanishes, the kinetic energy is replaced by the second term on the left
hand side of Eq. 4.2 resulting in:

δ

∫
Ω

ψ∗(x)

(
− h̄

2

2
∇ ·
(
∇ψ(x)

m(x)

)
+ V (x)ψ(x)− Eψ(x)

)
dΩ = 0. (4.3)

For the integral to vanish, we recover Schödinger’s equation as a second order differential equation

− h̄2

2
∇ ·
(
∇ψ(x)

m(x)

)
+ V (x)ψ − Eψ(x) = 0. (4.4)

In this derivation, we did not make the assumption that the mass was constant to emphasize the
continuity conditions placed across boundaries. For a spatially varying mass, as in the effective mass
approximation, the wavefunction and its inverse mass derivative should be continuous. However,
when the mass is constant than ‘normal’ continuity conditions are recovered.

It is worth noting that the above process is entirely reversible and one can start with the dif-
ferential equation to construct the action integral. To see this, consider Schödinger’s differential
equation 4.4 and multiply by a test function ϕ and integrate over all space.∫

Ω

(
−h̄2

2m(x)
∇2ψ + V (x)ψ − Eψ

)
ϕdΩ = 0 (4.5)

Using the divergence theorem, we obtain the following

− h̄
2

2

∫
Γ

ϕ∇ψ
m(x)

dΓ︸ ︷︷ ︸
=0

+

∫
Ω

(
h̄2

2m(x)
(∇ϕ)(∇ψ) + ϕV (x)ψ − ϕEψ

)
dΩ = 0. (4.6)

The surface term that arises from the integration will disappear when the wave function vanishes
at infinity5. This will be the case, in general, when there are boundary conditions placed on the

3In the effective mass approximation, the wavefunction and the inverse mass derivative are required to be continuous
across the boundary, see Eq. 4.4

4The steps needed to derive Schödinger’s equation in this manner are detailed in Appendix A.
5In order to obtain the continuous spectrum, Schödinger placed the postulate that ϕ(x) → 0 at infinity or at least

37

wavefunction. Energy eigenvalues will turn out to be discrete and the solution is termed bound. In
the context of this discussion, bound states are the focus and the surface term is dropped accordingly,
which results in:

δ

(∫
Ω

h̄2

2m(x)
(∇ψ)∗(∇ψ) + ψ∗V (x)ψ − ψ∗Eψ

)
dΩ = 0. (4.7)

where we have set ϕ = ψ∗.
The above equation, Eq. 4.7, is in the form that can be exploited using mesh elements. Within

each element, the wave function is approximated by a linear combination of a finite set of basis
functions. These basis functions are defined by their values at each node and are zero outside the
element. For illustration purposes, we show an example of one dimensional basis functions in Fig.
4.2. The two linear basis functions in element α are φαj (x) = 1− x and φαk (x) = x within the range
[0, 1]. At each nodal point (xj = 0 and xk = 1), the respective basis function is unity but drops to
zero at all other nodal points.

Figure 4.2: An example of a one dimensional element, α, with two nodes located at j = 0 and
k = 1. Within the element, the wavefunction, ψ(x), is represented by ψα(x) and is approximated
by a linear combination of two interpolation basis functions. At node j, ψα(xj) = ψαj and at
node k, ψα(xk) = ψαk .

To be more explicit, if the number of elements is NE and each elemental wave function is ψα

ψ(x) =

NE∑
α=1

ψα(x). (4.8)

By substituting Eq. 4.8 into the variational equation Eq. 4.7, each of the terms begins to simplify.
The kinetic energy term is as follows:∫

Ω

h̄2

2m(x)
(∇ψ∗)(∇ψ)dΩ =

∫
Ω

h̄2

2m(x)

NE∑
β=1

∇ψβ(x)∗
NE∑
α=1

∇ψα(x)dΩ⇒
NE∑
α=1

∫
Ωα

h̄2

2m(x)
∇ψ∗α(x)∇ψα(x)dΩ

(4.9)
The elemental wave function ψα(x) is zero outside its element α and similarly ψβ(x) is zero outside

it tends to a finite value at infinity. In the latter case, surface harmonics cause the integral to disappear.

38

its element β. Only when α = β, the kinetic energy term is nonzero and this causes the double sum
to be reduced to the single sum. The potential energy and energy eigenvalue terms are treated the
same way:

NE∑
α=1

∫
Ωα

ψ∗α(x)V (x)ψα(x)dΩ (4.10)

E

NE∑
α=1

∫
Ωα

ψ∗α(x)ψα(x)dΩ (4.11)

In principle, the three expressions above set up the finite element approximation. In order to see
this, we introduce the elemental wave function as:

ψα(x) =

n∑
i=1

ψαi φ
α
i (x) (4.12)

where ψαi are unknown coefficients that represent the amplitude of the wave function at a particular
node6, φαi (x) are basis functions, and the summation’s upper limit is the number of basis functions
per element. Inserting Eq. 4.12 into Eqs. 4.9-4.11 gives the following:

NE∑
α=1

n∑
i,j

ψα∗i

(
h̄2

2mα

∫
Ω

(∇φαi (x))
∗ (∇φαj (x)

)
dΩ

)
︸ ︷︷ ︸

KEα
ij

ψαj ,

NE∑
α=1

n∑
i,j

ψα∗i

(∫
Ω

φα∗i (x)V (x)φαj (x)dΩ

)
︸ ︷︷ ︸

PEα
ij

ψαj , (4.13)

E ·
NE∑
α=1

n∑
i,j

ψα∗i

(∫
Ω

φα∗i (x)φαj (x)dΩ

)
︸ ︷︷ ︸

Oα
ij

ψαj

The integrals are carried out and inserted into Eq. 4.7,

NE∑
α=1

n∑
i,j

ψα∗i
(
KEαij + PEαij − E ·Oαij

)
ψαj = 0, (4.14)

resulting in a generalized eigenvalue equation with E representing the eigenvalues and ψαi represent-
ing the eigenvectors. This equation represents a discretized version of action integral and we have
to place a variation on the variable ψα∗ to exercise the principle of stationary action.

δA

δψα∗
= 0⇒

NE∑
α=1

n∑
i,j

(
KEαij + PEαij − E ·Oαij

)
ψαj (4.15)

Once the boundary conditions are properly treated within the matrix, it is input into any stan-
dard generalized eigenvalue solver. Eigenvalues represent the energy and corresponding eigenvectors
represent nodal wavefunction values.

To make the ideas of the previous paragraphs a bit more concrete, it is useful to demonstrate this
approach on a standard quantum mechanical problem. This allows for the comparison and possible
calibration of the approximate solution to the analytical solution. Lets consider a particle of mass,
m, localized in a one dimensional infinite potential well of width L. Inside the well, 0 < x < L,
the potential is V (x) = 0 and outside the well, x > L, x < 0, V (x) = ∞. The bound energy states

6The coefficients might also represent the amplitude of the derivative of the wave function at a particular node.

39

and corresponding normalized wavefunction are found analytically by solving Schödinger’s equation
directly:

En =
n2h̄2π2

2mL2
, n = (1, 2, 3, . . .)

ψn(x) =

√
2

L
sin(

nπx

L
), n = (1, 2, 3, . . .) (4.16)

The finite element approximation begins by defining a mesh. This is done in almost the simplest
way possible: 6 nodes defining 5 elements consisting of 2 nodes per element, each element has a length
L/5, and the first node’s physical position is x1 = 0 and last node’s physical position is x6 = L
(see Fig. 4.3). Since there are 6 nodes, we are solving for 6 unknown wavefunction amplitudes and
each matrix is 6× 6 due to its represented quadratic form as in Eq. 4.14. The boundary conditions
require the wavefunction to be 0 at nodes x1 and x6. To implement these conditions, the first row
and column that represent ψ1 are removed from each of the matrices. In addition, the last row and
column that represent ψ6 are removed from each of the matrices. Thus the matrices are reduced in
size from 6× 6 to 4× 4.

Figure 4.3: A five element one dimensional mesh.

Each elemental wavefunction is a linear combination of two basis functions:

ψα(x) =

α+1∑
i=α

ψαi φ
α
i (x) (4.17)

with the unknown wavefunction amplitudes ψαi satisfying the requirement

ψαi+1 = ψα+1
i (4.18)

to enforce the continuity of the wavefunction between elements. This allows us to drop the super-
script α from ψαi in Eq. 4.17. The basis functions φαi in Eq. 4.17 are interpolation polynomials
chosen so that the unknown wavefunction, ψ(x), has the nodal wavefunction amplitude ψi at the
node point xi, i.e. ψ(xi) = ψi and drops linearly to zero at the adjacent nodes.

The kinetic energy, KE, and overlap, O, matrices are both symmetric but still involve a lot of
integrals. A practical solution is to define a benchmark element in terms of local coordinates with
local basis functions. The integrals are performed and the benchmark element is linearly mapped to
each global element. Instead of performing integrals for every element located in the mesh, we only
perform those associated with the benchmark element. This technique is developed in Sec. 4.2 and
increases in sophistication when considering higher dimensions and degrees of freedom.

For this approximation, we are going define the benchmark element in the local coordinate system
ξ with the two nodes located at −1 and 1. We use two linear basis functions that have the desired
properties φ1(−1) = 1, φ1(1) = 0, φ2(−1) = 0, and φ2(1) = 1 in order to satisfy the conditions
placed on the nodal wavefunction amplitudes. The resulting functions are

φ1(ξ) =
1− ξ

2
, φ2(ξ) =

1 + ξ

2
− 1 ≤ ξ ≤ 1 (4.19)

40

and the elemental wavefunction originally represented by Eq. 4.17 has now transformed into

ψα(x) =

2∑
i=1

ψ(α−1+i)φi(ξ) (4.20)

The basis functions can also used as the coordinate transformation. This is done by setting

x =

2∑
i=1

xiφi(ξ) (4.21)

where xi is the location of the two nodes from element α. This coordinate transformation and basis
functions allow for the calculation of all matrix elements. Consider element α = 1, the elemental
wavefunction is ψ1(x) = ψ1φ1(ξ) + ψ2φ2(ξ). The kinetic energy matrix consists of the the inner
product of the gradient(

dψ1

dξ

dξ

dx

)∗
·
(
dψ1

dξ

dξ

dx

)
=

1

(x2 − x1)2
× [ψ∗1 ψ∗2]

[
1 −1
−1 1

] [
ψ1

ψ2

]
(4.22)

which is than cast into the integral

h̄2

2m

1

(x2 − x1)2

∫ 1

−1

[ψ∗1 ψ∗2]

[
1 −1
−1 1

] [
ψ1

ψ2

]
dx

dξ
dξ =

h̄2

2m

5

L
[ψ∗1 ψ∗2]

[
1 −1
−1 1

] [
ψ1

ψ2

]
(4.23)

We have replaced x2 − x1 by the length of the element, which is L/5. The overlap matrix is the
inner product of the wavefunction cast into the integral

E ·
∫ 1

−1

[ψ∗1 ψ∗2]

[
φ∗1φ1 φ∗1φ2

φ∗2φ1 φ∗2φ2

] [
ψ1

ψ2

]
dx

dξ
dξ =

E

6

L

5
· [ψ∗1 ψ∗2]

[
2 1
1 2

] [
ψ1

ψ2

]
. (4.24)

All the elemental matrices are solved for and carefully ‘assembled’ into global matricies which rep-
resent the generalized eigenvalue problem.

[ψ1 ψ2 ψ3 ψ4 ψ5 ψ6]


h̄2

2m

5

L
·


1 −1 0 0 0 0
−1 1 + 1 −1 0 0 0
0 −1 1 + 1 −1 0 0
0 0 −1 1 + 1 −1 0
0 0 0 −1 1 + 1 −1
0 0 0 0 −1 1



− E

6

L

5
·


2 1 0 0 0 0
1 2 + 2 1 0 0 0
0 1 2 + 2 1 0 0
0 0 1 2 + 2 1 0
0 0 0 1 2 + 2 1
0 0 0 0 1 2






ψ1

ψ2

ψ3

ψ4

ψ5

ψ6

 = 0 (4.25)

The addition in the diagonals is used to emphasis that the global 6× 6 matrices are assembled from
the local 2 × 2 matrices. Finally, we apply the boundary condition that the wavefunction must be
zero at the ends, ψ(0) = 0 and ψ(L) = 0. This requires ψ1 = ψ6 = 0, thus each of the matrices have
their first and last column terms are removed. In addition, the terms in the first and last row are
removed which enforces ψ∗1 = ψ∗6 = 0.

Most technical computing software has built in algorithms that solve the generalized eigenvalue
problem. Maple and MATLAB are two of the more popular commercial packages that include this

41

feature [51, 52]. In this example, Maple was utilized to find the lower energy levels and corresponding
wavefunction by solving Eq. 4.25 after applying the boundary conditions. Table 4.1 compares the
first four energies obtained from the approximation using 5, 20, and 100 elements to the exact
solution. In all three approximations, the lower energy levels had a better convergence toward the

Table 4.1: The first four energy eigenvalues of the infinite potential well using FEM approx-
imation with linear basis functions. The approximation was carried out using 5, 20, and 100
elements.

Quantum number Energy eignvalues Exact eigenvalue(
h̄2π2 / 2mL2

) (
h̄2π2 / 2mL2

)
5 elements 20 elements 100 elements

1 1.03331 1.00205 1.00008 1
2 4.54812 4.03300 4.00132 4
3 11.76515 9.16775 9.00666 9
4 23.08493 16.53300 16.02106 16

exact energy. As the quantum number increases, the 5 element approximation quickly diverges as
opposed to the 20 and 100 element approximation. There are two important generalizations observed
from this simple calculation: the approximate energy values are most accurate with the lower energy
levels associated with a quantum system and as the number of elements increases.

The wavefunction using a 20 element finite element approximation was determined and superim-
posed on the exact solution to the two lowest eigenvalues, Eq. 4.16 (see Fig. 4.4). The eigenvectors,
which represent the wavefunction amplitudes at each node, are used to approximate the wavefunc-
tion. As seen, there are negligible differences between the exact solution and approximation.

Figure 4.4: A 20 element finite element approximation to the two lowest eigenstates.

The eigenvectors are not orthonormal with each other due to the non-orthogonality of the basis
functions. However, they are orthonormal with respect to the overlap matrix.

ψ∗i,αOijψj,β = δαβ (4.26)

where matrix ψ’s columns refer to the eigenvectors of the corresponding eigenvalue, i.e. wavefunction
amplitude at each node. Here α, β index eigenvectors not elements. Equation 4.26 represents the

42

condition that bound states wavefunctions, Ψi(x), are subject to the normalization condition:∫ ∞
−∞
|Ψi(x)|2dx = 1 (4.27)

Further, the eigenvectors also display the following property with the respect to the total energy,
KE + PE,

ψ∗i,α (KEij + PEij)ψj,β = δαβE(α). (4.28)

It should be noted that the wavefunction can be approximated by the matrix eigenvectors only for
a sufficient number of elements in a mesh. Otherwise, eigenvectors should be used in conjunction
with basis functions in order to determine the wavefunction within each element. We recommend
using the latter version of the wavefunction for applications involving quantitative calculations and
the former for simple qualitative applications, i.e. plotting. As a quantitative example, suppose that
a particle is known to be in a certain bound state, say 1 with wavefunction Ψ1. Then the probability
that this particle will be found in a certain region of space, say Ω, will be

P =

∫
Ω

|Ψ1|2dΩ (4.29)

If NΩ is a set of elements that only fall within the region Ω, then we can transform Eq. 4.29 into

P =

NΩ∑
α=1

∫
Ωα

|ψα|2dΩ (4.30)

where the summation on the right hand side only includes the elements falling within Ω and the
integral only includes their representative elemental wavefunctions ψα. Equation 4.30 is similar to
Eq. 4.11 except it includes contributions from the relevant elemental wavefunctions. In the same
exact manner as the overlap matrix Oij in Eq. 4.14, a probability matrix Pij is developed. Then the
probability that a particle is in region Ω for bound state 1 would just be

P = ψ∗i,1Pijψj,1 (4.31)

where we have multiplied the column eigenvectors on the right and the row eigenvectors on the left.

4.2 Developing Basis Functions

In FEM, the action integral is discretized and the unknown function, ψ(x) in our case, is solved for
using a linear combination of elemental functions. These elemental functions are a linear combination
of basis functions and chosen such that the unknown function has the value ψi at node i, i.e.
ψ(xi) = ψi. Further, these basis functions must ensure nodal continuity between adjacent elements.
If it is desired that only ψ(x) be continuous between elements than this is C0 continuous. However,
in some cases it is desired that both ψ(x) and its derivative (or inverse mass derivative) be continuous
between elements. This is C1 continuous. The type of continuity conditions determine the basis
functions. Once known, basis functions allow the integrals to be carried out.

The focus of this section is to develop the basis functions in one dimension for C0 continuity
and determine the elemental kinetic, potential, and overlap matrices required to solve Schödinger’s
equation in the FEM approximation. After setting up the basic ideas, we will then extend to solve
Schödinger’s equation in two and three dimensions.

To complete the discretization in FEM, we choose a basis that are comprised of piecewise poly-
nomial functions, φ(x), and use this basis to interpolate the wavefunction. Within each element,
basis functions are determined by the constraints placed on each nodal degree of freedom. These
constraints must satisfy the requirement

φi(xj) = δij (4.32)

43

in order for ψ(xi) = ψi. Here, δij equals 1 when i = j and 0 when i 6= j. Let us first consider the line
element that ranges between the interval [x1, x2] and has two nodes, each located on the interval’s
end points. With C0 continuity, there is one degree of freedom per node. Each degree of freedom
requires a basis function to satisfy Eq. 4.32. Basis functions assume the form of an interpolation
polynomial chosen up to the degree necessary to define each one. Therefore, there will be two basis
functions and the polynomial for the element at hand will be linear:

φi = ai + bix i = 1, 2 (4.33)

where ai and bi are coefficients that are determined by the simultaneous equations set up by Eq.
4.32. [

1 x1

1 x2

]
·
[
a1 a2

b1 b2

]
=

[
1 0
0 1

]
(4.34)

The row entries of the matrix on the left refer to the values at nodal point xi, the matrix on the
right contains the unknown coefficients, and the matrix on the right hand side of Eq. 4.34 is just the
identity matrix which imposes the condition Eq. 4.32. A matrix inversion determines the coefficients
in each basis function.[

a1 a2

b1 b2

]
=

[
1 x1

1 x2

]−1

⇒
[
− x2

−x2+x1

x1

−x2+x1
1

−x2+x1
− 1
−x2+x1

]
(4.35)

φ1(x) = − x2

−x2 + x1
+

x

−x2 + x1
=

x− x2

x1 − x2

φ2(x) =
x1

−x2 + x1
− x

−x2 + x1
=

x1 − x
x1 − x2

(4.36)

The above procedure can be extended to include additional nodes within an element. For example,
consider a line element defined to include 3 nodes located at x1, x2, and x3 within the interval
[x1, x3]. Three nodes require three basis functions and the interpolation polynomials are cubic to
satisfy Eq. 4.32. The matrix equations are set up, as in Eq. 4.34, and the coefficients are determined
through a matrix inversion.

It is beneficial in FEM to define a benchmark element and linearly map all elements in the mesh
to the benchmark element. This way only one element is defined and all the integrals can be carried
out since the Jacobian will be constant. We reserve ξ for the benchmark or local coordinate and x
for the global coordinate.

The benchmark line element used to construct the elemental kinetic, potential, and overlap
matrix is defined by two nodes located at ξ1 = −1 and ξ2 = 1 within the [−1, 1] interval. The basis
functions are determined by Eq. 4.36 and are:

φ1(ξ) =
1− ξ

2

φ2(ξ) =
1 + ξ

2
(4.37)

Therefore, each elemental wavefunction will consist of a linear combination of these two basis func-
tions. To define the elemental matrices, we consider the first element α = 1 in a mesh that contains
nodes n = 1, 2 so that the elemental wavefunction is:

Ψ1(x)→ ψ1φ1(ξ) + ψ2φ2(ξ) (4.38)

where ψi is the unknown wavefunction amplitude at node i.

44

4.2.1 Elemental Kinetic Matrix In 1D

The elemental kinetic matrix is constructed from:

h̄2

2m

∫
(∇xΨ1(x))2dx =

h̄2

2m

∫ 1

−1

(∂ξΨ1(ξ) · ∂xξ)2 dx

dξ
dξ (4.39)

where ∂i is the partial derivative with respect to i. We have exploited the change of variables x→ ξ
using the chain rule in the above equation. Conveniently, the global coordinate x itself can be
represented in terms of the basis functions:

x = x1φ1(ξ) + x2φ2(ξ)→ x1
1− ξ

2
+ x2

1 + ξ

2
(4.40)

∂ξx =
x2 − x1

2
(4.41)

∂xξ =
2

x2 − x1
(4.42)

Since the change of variables between x and ξ is linear, the terms ∂xξ and dx
dξ are pulled outside the

integral.
h̄2

2m
· (∂xξ)2 · dx

dξ

∫ 1

−1

(∂ξΨ1(ξ))2dξ (4.43)

The integrals are carried out and the quadratic form of the elemental wavefunction represented in
the kinetic matrix is:

h̄2

2m
· (∂xξ)2 · dx

dξ
× [ψ∗1 ψ∗2]

[
1/2 −1/2
−1/2 1/2

] [
ψ1

ψ2

]
(4.44)

The kinetic energy matrix is symmetric as expected and it only remains to place each elemental
matrix entry in the global N ×N kinetic matrix for an N node mesh.

4.2.2 Elemental Potential Matrix In 1D

The elemental potential matrix is constructed from:∫
Ψ∗1(x)V (x)Ψ1(x)dx (4.45)

where the potential energy V (x) is included in the integral. Under the change of variables as in the
kinetic energy matrix, x → ξ, the wavefunction becomes Ψ∗1(x) → Ψ∗1(ξ) along with the potential
energy V (x) → V (ξ). However, a piecewise linear approximation to the wavefunction has already
taken place (see Eq. 4.38) and, as such, a similar piecewise linear approximation to the potential
energy would be appropriate. If V1 and V2 are the values of the potential located at the nodes, then
the potential energy and integral Eq. 4.45 have transformed to the following:

V (x)→ V1φ1(ξ) + V2φ2(ξ) (4.46)∫ 1

−1

(ψ1φ1(ξ) + ψ2φ2(ξ))2(V1φ1(ξ) + V2φ2(ξ))
dx

dξ
dξ (4.47)

where dx
dξ can be pulled outside of the integral due to the linear change of variables. The integral

in Eq. 4.47 represents a trilinear product of the basis functions and a bilinear product of the
two unknowns ψi. Integrals are carried out and the quadratic form of the elemental wavefunction
represented in the potential matrix is:

dx

dξ
× [ψ∗1 ψ∗2]

[
1/2V1 + 1/6V2 1/6V1 + 1/6V2

1/6V1 + 1/6V2 1/6V1 + 1/2V2

] [
ψ1

ψ2

]
(4.48)

45

Each matrix entry contains both V1 and V2 as a weighted average, a more sophisticated approach
than assuming an average value for potential over the entire element. Similar to the kinetic energy
matrix, the potential energy matrix is also symmetric. It only remains to assemble each elemental
matrix entry in the global N × N potential energy matrix for an N node mesh. If the potential
energy values V1 = V2 in a element, the matrix is proportional to the overlap matrix (see Eq. 4.50).
This is an expected and necessary result.

4.2.3 Elemental Overlap Matrix In 1D

The elemental overlap matrix is constructed from:∫
Ψ∗1(x)Ψ1(x)dx→

∫ 1

−1

(ψ1φ1(ξ) + ψ2φ2(ξ))2 dx

dξ
dξ (4.49)

where again we have exploited the linear change in variables and dx
dξ can be pulled outside the

integral. The integral on the right hand side represents a bilinear product of the basis functions and
a bilinear product of the two unknowns ψi. The integral is carried out and the quadratic form of
the elemental wavefunction represented in the elemental overlap matrix is:

dx

dξ
× [ψ∗1 ψ∗2]

[
2/3 1/3
1/3 2/3

] [
ψ1

ψ2

]
(4.50)

Similar to the kinetic and potential energy matrix, the overlap energy matrix is also symmetric. It
only remains to assemble each elemental matrix entry in the global N × N overlap energy matrix
for an N node mesh.

4.3 Higher Dimensions

An extension of FEM from one dimension to higher dimensions is natural in terms of the ideas already
presented. However, the complexity involved in construction the elemental matrices is greater. In
this section, we first define the basis functions in two and three dimensions for the benchmark
triangle and tetrahedron respectively and then proceed to construct each of the elemental matrices.

The benchmark triangle is referred to as the standard triangle defined in the local coordinates
(ξ, η) with vertices located at (0, 0), (1, 0), and (0, 1). Each triangular element in an FEM mesh has
its vertices located at (xi, yi) i = 1, 2, 3 and is linearly mapped to the benchmark element. As such,
the basis functions for the standard triangle are defined in local coordinates. Similar to 1D basis
functions, 2D basis functions must satisfy a modified version of Eq. 4.32 or φi(ξj , ηj) = δij .

We assume the basis functions have a linear polynomial form and each degree of freedom requires
a basis function. Therefore, there are 3 basis functions with 9 constants (ai, bi, ci) to be determined:

φi = ai + biξ + ciη i = 1, 2, 3 (4.51)

The basis functions are constructed from setting up the simultaneous equations in matrix form as
before.  1 0 0

1 1 0
1 0 1

 ·
 a1 a2 a3

b1 b2 b3
c1 c2 c3

 =

 1 0 0
0 1 0
0 0 1

 (4.52)

A matrix inversion determines (ai, bi, ci) and forms the basis functions:

φ1(ξ, η) = 1− ξ − η
φ2(ξ, η) = ξ (4.53)

φ3(ξ, η) = η

Similar to 1D, triangular elemental wavefunctions Ψα(x, y) and the coordinate transformation (ξ, η)→

46

(x, y) can be expressed as a linear combination of the basis functions:

Ψα(x, y) =

3∑
i=1

ψiφi(ξ, η) (4.54)

x =

3∑
i=1

xiφi(ξ, η) , y =

3∑
i=1

yiφi(ξ, η) (4.55)

where ψi is the unknown wavefunction amplitude at node i and (xi, yi) are the element’s nodal
positions.

In 3D, we assume the benchmark element is the standard tetrahedron and is defined in local
coordinates (ξ, η, ζ) with vertices located at (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1). Each tetrahedral
element in an FEM mesh has its vertices defined in global coordinates located at (xi, yi, zi) i =
1, 2, 3, 4 and is linearly mapped to the benchmark element. As such, the basis functions for the
standard tetrahedron are defined in local coordinates. Similar to 1D and 2D basis functions, 3D
basis functions must satisfy a modified version of Eq. 4.32 or φi(ξj , ηj , ζj) = δij .

We assume the basis functions have a linear polynomial form and each degree of freedom re-
quires a basis function. Therefore, there are 4 basis functions with 12 constants (ai, bi, ci, di) to be
determined:

φi = ai + biξ + ciη + diζ i = 1, 2, 3, 4 (4.56)

The basis functions are constructed by setting up the simultaneous equations in matrix form, as
before, and carrying out a matrix inversion. The resulting basis functions are:

φ1(ξ, η, ζ) = 1− ξ − η − ζ
φ2(ξ, η, ζ) = ξ

φ3(ξ, η, ζ) = η (4.57)

φ4(ξ, η, ζ) = ζ

Similar to 1D and 2D, tetrahedral elemental wavefunctions Ψα(x, y, z) and the coordinate transfor-
mation (ξ, η, ζ)→ (x, y, z) can be expressed as a linear combination of the basis functions:

Ψα(x, y, z) =

4∑
i=1

ψiφi(ξ, η, ζ) (4.58)

x =

4∑
i=1

xiφi(ξ, η, ζ) , y =

4∑
i=1

yiφi(ξ, η, ζ) , z =

4∑
i=1

ziφi(ξ, η, ζ) (4.59)

where ψi is the unknown wavefunction amplitude at node i and (xi, yi, zi) are the element’s nodal
positions. To define the elemental matrices in two and three dimensions, we consider element α = 1
and assume it contains nodes n = 1, 2, 3 or n = 1, 2, 3, 4 for the triangle and tetrahedron respectively.

4.3.1 Elemental Kinetic Matrix - Higher Dimensions

We begin by examining the two dimensional version of the kinetic elemental matrix. It is constructed
from a similar form of Eq. 4.39 or

h̄2

2m

∫ ∫
(∇Ψ1(x, y))2dx dy → h̄2

2m

∫ ∫ (
∂Ψ1(x, y)

∂x

)2

+

(
∂Ψ1(x, y)

∂y

)2

dx dy (4.60)

The partial derivatives of the wavefunction are carried out using the chain rule via the 2× 2 inverse
Jacobian, J−1, for the coordinate transformation. A column vector containing the partial derivatives
of the elemental wavefunction with respect to the global coordinates is represented by the inverse
Jacobian matrix and partial derivatives of the elemental wavefunction with respect to the local

47

coordinates.[
∂Ψ1(x,y)

∂x
∂Ψ1(x,y)

∂y

]
= J−1

[
∂Ψ1(x,y)

∂ξ
∂Ψ1(x,y)

∂η

]
→ J−1

[
∂φ1(ξ,η)

∂ξ
∂φ2(ξ,η)

∂ξ
∂φ3(ξ,η)

∂ξ
∂φ1(ξ,η)

∂η
∂φ2(ξ,η)

∂η
∂φ3(ξ,η)

∂η

] ψ1

ψ2

ψ3

 (4.61)

On the right hand side of Eq. 4.61 we have made use of the benchmark elemental wavefunction from
Eq. 4.55 and decomposed it into a 2× 3 partial derivative matrix D and column vector containing
the wavefunction amplitudes. The integrand of Eq. 4.60 is the inner product of the wavefunction
derivative with itself:[

∂Ψ1(x, y)

∂x

∂Ψ1(x, y)

∂y

] [∂Ψ1(x,y)
∂x

∂Ψ1(x,y)
∂y

]
= [ψ1 ψ2 ψ3] Dt ·

(
J−1

)t · J−1 ·D
 ψ1

ψ2

ψ3

 (4.62)

We can further simplify the right hand side of the equation realizing
(
J−1

)t · J−1 → (
J · Jt

)−1
.

Transforming the integral of Eq. 4.60 into local coordinates, which requires the Jacobian deter-
minant |J |, will represent the quadratic form of the kinetic energy matrix:

[ψ1 ψ2 ψ3]

∫ 1

0

∫ 1−η

0

Dt ·
(
J · Jt

)−1 ·D |J | dξ dη
 ψ1

ψ2

ψ3

 (4.63)

with the limits of integration over the standard triangle.
One of the advantages of defining a benchmark element is to carry out the integrals only once.

If this were not the case, the FEM procedure demands solving integrals for every element within a
mesh through whatever means necessary. Numerical integration techniques are employed, typically
Gaussian quadrature, potentially introducing error and increasing numerical operations. In Eq.

4.63, it is observed that
(
J · Jt

)−1
can not simply be brought outside of the integral even though its

entries are constant, matrix multiplication is not commutative. This makes carrying out the integrals
for Eq. 4.63 in the present form cumbersome and unappealing. A more sophisticated approach is
to represent the quadratic form of the kinetic energy matrix through a trace operation involving a

matrix P, defined below, multiplied by
(
J · Jt

)−1
.

We first define four 3× 3 matrices Mµ,ν , with µ = (ξ, η) and ν = (ξ, η) , as integrals consisting
of a product of basis function derivatives with respect to local coordinates ξ, η:

Mµ,ν(i, j) =

∫ 1

0

∫ 1−η

0

∇µφi(ξ, η) · ∇νφj(ξ, η) dξ dη 1 ≤ i, j ≤ 3 (4.64)

Each 2× 2 matrix Pij consists of a combination of the four matrices Mµ,ν with its entries

Pij =

[
Mξ,ξ(i, j) Mξ,η(i, j)
Mη,ξ(i, j) Mη,η(i, j)

]
1 ≤ i, j ≤ 3 (4.65)

Finally, the quadratic form of the kinetic energy matrix is built up from the trace

KEij =
h̄2

2m
|J |ψiTr

(
Pij ·

(
J · Jt

)−1)
ψj (4.66)

and is equivalent to Eq. 4.63. In this form, the terms involving the Jacobian matrix are brought
outside of the integral. Each matrix Mµ,ν in Eq. 4.64 is solved for

Mξ,ξ =

 1/2 −1/2 0
−1/2 1/2 0

0 0 0

 , Mξ,η =

 1/2 0 −1/2
−1/2 0 1/2

0 0 0

 ,

48

Mη,ξ = Mt
ξ,η , Mη,η =

 1/2 0 −1/2
0 0 0
−1/2 0 1/2

 (4.67)

and the elemental matrices are constructed. Now it only remains to assemble each elemental matrix
entry in the global N ×N kinetic energy matrix for an N node mesh.

In 3D, the kinetic energy matrix is built up exactly the same way as in 2D. The three dimensional
version of the kinetic energy matrix is the following

h̄2

2m

∫ ∫ ∫ (
∂Ψ1(x, y, z)

∂x

)2

+

(
∂Ψ1(x, y, z)

∂y

)2

+

(
∂Ψ1(x, y, z)

∂z

)2

dx dy dz (4.68)

and we utilize the 3 × 3 inverse Jacobian, J−1, for the coordinate transformation. The column
vector containing the partial derivatives of the elemental wavefunction with respect to the global
coordinates as in Eq. 4.61 is represented in the three dimensional form.

∂Ψ1(x,y,z)
∂x

∂Ψ1(x,y,z)
∂y

∂Ψ1(x,y,z)
∂z

 = J−1


∂φ1(ξ,η,ζ)

∂ξ
∂φ2(ξ,η,ζ)

∂ξ
∂φ3(ξ,η,ζ)

∂ξ
∂φ4(ξ,η,ζ)

∂ξ
∂φ1(ξ,η,ζ)

∂η
∂φ2(ξ,η,ζ)

∂η
∂φ3(ξ,η,ζ)

∂η
∂φ4(ξ,η,ζ)

∂η
∂φ1(ξ,η,ζ)

∂ζ
∂φ2(ξ,η,ζ)

∂ζ
∂φ3(ξ,η,ζ)

∂ζ
∂φ4(ξ,η,ζ)

∂ζ



ψ1

ψ2

ψ3

ψ4

 (4.69)

On the right hand side of Eq. 4.69 we have made use of the benchmark elemental wavefunction from
Eq. 4.59 and decomposed it into the 3× 4 partial derivate matrix D and column vector containing
the wavefunction amplitudes. The integrand of Eq. 4.68 is the inner product of the wavefunction
derivative with itself resulting in

[ψ1 ψ2 ψ3 ψ4] Dt ·
(
J · Jt

)−1 ·D

ψ1

ψ2

ψ3

ψ4

 (4.70)

where we have made use of the simplification
(
J−1

)t · J−1 → (
J · Jt

)−1
. This result along with the

Jacobian determinant, J , is used to transform Eq. 4.68 into the local coordinates and will represent
the quadratic form of the kinetic energy matrix:

[ψ1 ψ2 ψ3 ψ4]

∫ 1

0

∫ 1−η

0

∫ 1−η−ζ

0

Dt ·
(
J · Jt

)−1 ·D |J | dξ dη dζ

ψ1

ψ2

ψ3

ψ4

 (4.71)

with the limits of integration over the standard tetrahedron. A more sophisticated form of elemental
kinetic energy matrix can be constructed through the same means as in the two dimensional case.
In fact, the resulting equation is exactly the same as Eq. 4.66. Differences emerge as we consider
matrices Mµ,ν and P in the context of this additional dimension. The extra dimension requires
µ = (ξ, η, ζ) and ν = (ξ, η, ζ), so there are nine 4× 4 matrices Mµ,ν instead of four 3× 3 matrices.
Again, they are defined as integrals consisting of a product of basis function derivatives with respect
to local coordinates ξ, η, ζ:

Mµ,ν(i, j) =

∫ 1

0

∫ 1−η

0

∫ 1−η−ζ

0

∇µφi(ξ, η) · ∇νφj(ξ, η) dξ dη dζ 1 ≤ i, j ≤ 4 (4.72)

Each 3× 3 matrix Pij is constructed from a combination of the nine matrices Mµ,ν with its entries

Pij =

 Mξ,ξ(i, j) Mξ,η(i, j) Mξ,ζ(i, j)
Mη,ξ(i, j) Mη,η(i, j) Mη,ζ(i, j)
Mζ,ξ(i, j) Mζ,η(i, j) Mζ,ζ(i, j)

 1 ≤ i, j ≤ 4 (4.73)

49

The quadratic form of the kinetic energy matrix is built up from Eq. 4.66, which is equivalent to
Eq. 4.71. Each matrix Mµ,ν in Eq. 4.72 is solved and the elemental matrices are constructed. Now
it only remains to assemble each elemental matrix entry in the global N ×N kinetic energy matrix
for an N node mesh.

4.3.2 Elemental Potential Matrix - Higher Dimensions

We begin by examining the two dimensional version of the potential energy matrix. It is constructed
from a similar form of Eq. 4.45 or∫ ∫

Ψ∗1(x, y)V (x, y)Ψ1(x, y) dxdy (4.74)

where the potential energy V (x, y) is included in the integral. Under the change of variables as in
the kinetic energy matrix, (x, y)→ (ξ, η), the wavefunction becomes Ψ1(x, y)→ Ψ1(ξ, η) along with
the potential energy V (x, y) → V (ξ, η). How the potential energy is handled will determine the
elemental potential energy matrix. A simplistic, less accurate approach is to average the potential
energy within each element, V (x, y)→ V . This kind of treatment would transform Eq. 4.74 into

V

∫ ∫
Ψ∗1(x, y)Ψ1(x, y) dx dy (4.75)

where V has been brought outside the integral. The above integral is exactly the same as the overlap
integral (see Eq. 4.83) and will take on a very similar elemental matrix form. A more sophisticated
approach is to assume a linear combination of the potential energy using the same basis functions
defining the elemental wavefunction. If V1, V2, and V3 are the values of the potential at each node
in the triangular element, then we have the following linear approximation

V (x, y)→ V1φ1(ξ, η) + V2φ2(ξ, η) + V3φ3(ξ, η) (4.76)∫ 1

0

∫ 1−η

0

(ψ1φ1(ξ, η) + ψ2φ2(ξ, η) + ψ3φ3(ξ, η))2 ·

(V1φ1(ξ, η) + V2φ2(ξ, η) + V3φ3(ξ, η)) |J |dξ dη (4.77)

where the limits of integration are over the standard triangle and the Jacobian determinant |J | is
constant due to the linear change of variables. The integral in Eq. 4.77 represents a trilinear product
of the basis functions and a bilinear product of the three unknowns ψi. Integrals are carried out and
the quadratic form of the elemental wavefunction represented in the potential matrix is:

|J | × 1

120
[ψ∗1 ψ∗2 ψ∗3]


6V1 + 2V2 + 2V3 2V1 + 2V2 + 1V3 2V1 + 1V2 + 2V3

2V1 + 2V2 + 1V3 2V1 + 6V2 + 2V3 1V1 + 2V2 + 2V3

2V1 + 1V2 + 2V3 1V1 + 2V2 + 2V3 2V1 + 2V2 + 6V3


 ψ1

ψ2

ψ3

 (4.78)

Each matrix entry contains V1, V2, and V3 as a weighted average. Similar to the kinetic energy
matrix, the potential energy matrix is also symmetric. It only remains to assemble each elemental
matrix entry in the global N × N potential energy matrix for an N node mesh. If the potential
energy values V1 = V2 = V3 in a element, the matrix is proportional to the overlap matrix or Eq.
4.75. This is an expected and necessary result. Of course, one always has the option to compute the
potential energy matrix by carrying out the integral Ψ∗1(ξ, η)V (ξ, η)Ψ1(ξ, η) through whatever means
necessary and consider no approximation to the potential energy. However, a linear approximation
to the wavefunction is already at play so it is suggested that either one of the two methods presented
above is used to represent the potential.

In 3D, the potential energy matrix is built up exactly the same way as in 2D. The three dimen-

50

sional version of the potential energy matrix is the following∫ ∫ ∫
Ψ∗1(x, y, z)V (x, y, z)Ψ1(x, y, z) dx dy dz (4.79)

where the potential energy V (x, y, z) is included in the integral. Under the change of variables as in
the kinetic energy matrix, (x, y, z) → (ξ, η, ζ), the wavefunction becomes Ψ1(x, y, z) → Ψ1(ξ, η, ζ)
along with the potential energy V (x, y, z) → V (ξ, η, ζ). Again as we saw before, how we treat the
potential energy will determine the elemental potential energy matrix. The simplistic, less accurate
approach is to average the potential energy within each element, V (x, y, z) → V . This kind of
treatment would transform Eq. 4.79 into the overlap integral (see Eq. 4.85) and V is brought
outside the integral. The second, more sophisticated approach is to assume a linear combination of
the potential energy using the same basis functions defining the elemental wavefunction. If V1, V2,
V3, and V4 are the values of the potential at each node in the tetrahedral element, then we have the
following linear approximation

V (x, y, z)→ V1φ1(ξ, η, ζ) + V2φ2(ξ, η, ζ) + V3φ3(ξ, η, ζ) + V4φ4(ξ, η, ζ) (4.80)∫ 1

0

∫ 1−η

0

∫ 1−η−ζ

0

(ψ1φ1(ξ, η, ζ) + ψ2φ2(ξ, η, ζ) + ψ3φ3(ξ, η, ζ) + ψ4φ4(ξ, η, ζ))2 ·

(V1φ1(ξ, η, ζ) + V2φ2(ξ, η, ζ) + V3φ3(ξ, η, ζ) + V4φ4(ξ, η, ζ)) |J |dξ dη dζ (4.81)

where the limits of integration are over the standard tetrahedron and the Jacobian determinant |J |
is constant due to the linear change of variables. The integral in Eq. 4.81 represents a trilinear
product of the basis functions and a bilinear product of the four unknowns ψi. Integrals are carried
out and the quadratic form of the elemental wavefunction represented in the potential matrix is:

|J | × 1

720
[ψ∗1 ψ∗2 ψ∗3 ψ∗4]


(6, 2, 2, 2) (2, 2, 1, 1) (2, 1, 2, 1) (2, 1, 1, 2)
(2, 2, 1, 1) (2, 6, 2, 2) (1, 2, 2, 1) (1, 1, 2, 2)
(2, 1, 2, 1) (1, 2, 2, 1) (2, 2, 6, 2) (1, 1, 2, 2)
(2, 1, 1, 2) (1, 2, 1, 2) (1, 1, 2, 2) (2, 2, 2, 6)



ψ1

ψ2

ψ3

ψ4

 (4.82)

where the matrix has been simplified with the following notation: each element entry is represented
by the inner product of the integer coefficients and the column vector (V1, V2, V3, V4). For example,
element entry (1, 1) is (6, 2, 2, 2)× (V1, V2, V3, V4)t = 6 ·V1 + 2 ·V2 + 2 ·V3 + 2 ·V4. It only remains to
assemble each elemental matrix entry in the global N × N potential energy matrix for an N node
mesh. If the potential energy values V1 = V2 = V3 = V4 in a element, the matrix is proportional
to the overlap matrix. This is an expected and necessary result. Finally there is a third option,
compute the potential energy matrix by carrying out the integral Ψ∗1(ξ, η, ζ)V (ξ, η, ζ)Ψ1(ξ, η, ζ)
through whatever means necessary and consider no approximation to the potential energy. However,
a linear approximation to the wavefunction is already at play so it is suggested that either one of
the two methods presented above is used to represent the potential.

4.3.3 Elemental Overlap Matrix - Higher Dimensions

We begin by examining the two dimensional version of the overlap matrix. It is constructed from a
similar form of Eq. 4.49 or∫ ∫

Ψ∗1(x, y)Ψ1(x, y) dx dy →
∫ 1

0

∫ 1−η

0

(ψ1φ1(ξ, η) + ψ2φ2(ξ, η) + ψ3φ3(ξ, η))2 |J | dξ dη (4.83)

where again the limits of integration are over the standard triangle and we have exploited the linear
change in variables with the Jacobian determinant, |J |, which is constant. The integral on the right
hand side represents a bilinear product of the basis functions and a bilinear product of the unknowns
ψi. The integral is carried out and the quadratic form of the elemental wavefunction represented in

51

the elemental overlap matrix is

|J | × 1

24
[ψ∗1 ψ∗2 ψ∗3]

 2 1 1
1 2 1
1 1 2

 ψ1

ψ2

ψ3

 (4.84)

Similar to the kinetic and potential energy matrix, the overlap energy matrix is also symmetric. It
only remains to assemble each elemental matrix entry in the global N × N overlap energy matrix
for an N node mesh.

In 3D, the overlap matrix is built up exactly the same way as in 2D. The three dimensional
version of the overlap matrix is the following ∫ ∫ ∫

Ψ∗1(x, y, z)Ψ1(x, y, z) dx dy dz →∫ 1

0

∫ 1−η

0

∫ 1−η−ζ

0

(ψ1φ1(ξ, η, ζ) + ψ2φ2(ξ, η, ζ) + ψ3φ3(ξ, η, ζ) + ψ4φ4(ξ, η, ζ))2 |J | dξ dη dζ (4.85)

where again the limits of integration are over the standard tetrahedron and we have exploited the
linear change in variables with the Jacobian determinant, |J | which is constant. The integral on the
right hand side represents a bilinear product of the basis functions and a bilinear product of the
two unknowns ψi. The integral is carried out and the quadratic form of the elemental wavefunction
represented in the elemental overlap matrix is

|J | × 1

120
[ψ∗1 ψ∗2 ψ∗3 ψ∗4]


2 1 1 1
1 2 1 1
1 1 2 1
1 1 1 2



ψ1

ψ2

ψ3

ψ4

 (4.86)

Similar to the kinetic and potential energy matrix, the overlap energy matrix is also symmetric. It
only remains to assemble each elemental matrix entry in the global N × N overlap energy matrix
for an N node mesh.

4.4 Degrees of Freedom

In the previous sections, we developed FEM in the context of Schödinger’s equation using linear
basis functions in one, two, and three dimensions enforcing C0 continuity. In this section, we
proceed with another level of sophistication to include the possibility of requiring the wavefunction
and its derivative (or inverse mass derivative) to be continuous at each node. This is C1 continuous
and requires extra degrees of freedom per node. We first define the basis functions in one, two,
and three dimensions, then set up the elemental matrices required to solve Schödinger’s equation
in the FEM approximation within the C1 context, and finally discuss enforcing C1 continuity for a
discontinuous effective mass as in hetrostructures.

In one dimension, we begin with the same premise as before; that is the unknown function,
ψ(x), is solved for using a linear combination of elemental wavefunctions and that each elemental
wavefunction consists of a linear combination of basis functions. However there is an additional
condition placed on the basis functions, they are chosen such that the unknown function has the
value ψi or ψ

′

i at node i, i.e. ψ(xi) = ψi or ∇xψ(x)|i = ψ
′

i. Here, ψ
′

i is the derivative of the
wavefunction amplitude at node i. This extra condition places additional constraints on the basis
functions. Let’s consider the benchmark line element consisting of two nodes located at ξ1 = −1
and ξ2 = 1 within the interval [−1, 1] as before. There is an additional degree of freedom per node,
totaling to four degrees of freedom per element. There is one basis function per degree of freedom,
requiring four basis functions satisfying the following requirements

φi,0(ξj) = δij , φi,1(ξj) = 0

∇ξφi,0(ξj) = 0, ∇ξφi,1(ξj) = δij (4.87)

52

in order for ψ(xi) = ψi or ∇xψ(x)|i = ψ
′

i. The necessary interpolation polynomial needed to define
each of the constraints is cubic or

φi,j(ξ) = ai,j + bi,jξ + ci,jξ
2 + di,jξ

3 i = 1, 2 ; j = 0, 1 (4.88)

where a’s, b’s, c’s, and d’s are coefficients that are determined by the simultaneous equations set up
by Eq. 4.87. 

1 −1 1 −1
0 1 −2 3
1 1 1 1
0 1 2 3

 ·

a1,0 a1,1 a2,0 a2,1

b1,0 b1,1 b2,0 b2,1
c1,0 c1,1 c2,0 c2,1
d1,0 d1,1 d2,0 d2,1

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (4.89)

The row entries of the matrix on the left refer to the values at nodal point ξi evaluated for φi,0(ξ)
or ∇ξφi,1(ξ), the matrix on the right contains the unknown coefficients, and the matrix on the right
hand side of Eq. 4.89 is just the identity matrix, which enforce the condition of Eg. 4.87. A matrix
inversion determines the coefficients in each basis function.

φ1,0(ξ) =
2− 3 ξ + ξ3

4
, φ1,1(ξ) =

1− ξ − ξ2 + ξ3

4

φ2,0(ξ) =
2 + 3 ξ − ξ3

4
, φ2,1(ξ) =

−1− ξ + ξ2 + ξ3

4
(4.90)

Each elemental wavefunction consists of a linear combination of these four basis functions. Since
our basis functions are in terms of local coordinates, there is some extra work required to achieve
the condition ∇xψ(x)|i = ψ

′

i. To see this, let us assume that the elemental wavefunction, Ψα(x)

(and its derivative ∇xΨα(x)) is in terms of the basis functions and amplitudes ψi and ψ
′

i.

Ψα(x)→
2∑
i=1

ψiφi,0(ξ) + ψ
′

iφi,1(ξ) (4.91)

∇xΨα(x)→
2∑
i=1

ψi
dφi,0(ξ)

dξ

dξ

dx
+ ψ

′

i

dφi,1(ξ)

dξ

dξ

dx
(4.92)

At each of the nodes, the wavefunction collapses to the wavefunction amplitude ψi as required.
However, the derivative of the wavefunction collapses to the product of the derivative of the wave-
function amplitude ψ

′

i and an additional factor dξ
dx . We have to unwind the dependence of the local

coordinates. In one dimension, it is easy to just multiply a factor dx
dξ to ψ

′

i in the wavefunction. The
additional factor can be computed using the linear change of variables from Eq. 4.40. We consider
the first element α = 1 in a mesh that contains nodes n = 1, 2, so the wavefunction is

Ψ1(x)→ [φ1,0 φ2,0]

[
ψ1

ψ2

]
+ [φ1,1 φ2,1]

dx

dξ

[
ψ
′

1

ψ
′

2

]
(4.93)

Now that the wavefunction has been represented in terms of unknown quantities ψi and ψ
′

i. We can
proceed by following in the footsteps of the previous prescription. Each elemental matrix is built up
and assembled in the respective 2N × 2N global matrix containing N nodes.

In two and three dimensions, we follow a flow of ideas similar to those presented above for
one dimension. Basis functions are defined for the standard triangle in local coordinates (ξ, η) and
standard tetrahedron in local coordinates (ξ, η, ζ) for two and three dimensions respectively. All
elements are linearly mapped to the basis functions through the same linear transformations defined
for C0 continuity (see Eq. 4.55 and 4.59).

53

For each triangular element, we introduce three unknowns per node identified as

ψi,0 = ψ|i ψi,1 =
∂ψ

∂x
|i ψi,2 =

∂ψ

∂y
|i (4.94)

and the basis functions are chosen such that the wavefunction has the values ψi,0, ψi,1, or ψi,2 at
node i. These extra conditions place additional constraints on the basis functions. Three degrees of
freedom per node and three nodes per triangular element totals nine degrees of freedom per element.
Each degree of freedom requires a basis function and so there will be nine basis functions per element.
The basis functions are constructed in the local coordinate system and must satisfy the following
constraints

φi,0(ξj , ηj) = δij , φi,1(ξj , ηj) = 0, φi,2(ξj , ηj) = 0

∇ξφi,0(ξj , ηj) = 0, ∇ξφi,1(ξj , ηj) = δij , ∇ξφi,2(ξj , ηj) = 0

∇ηφi,0(ξj , ηj) = 0, ∇ηφi,1(ξj , ηj) = 0, ∇ηφi,2(ξj , ηj) = δij (4.95)

The necessary interpolation polynomial needed to define each constraint is cubic

φi,j(ξ, η) = ai,j + bi,j ξ + ci,j η + di,j ξ
2 + ei,j ξη + fi,j η

2 + gi,j ξ
3 +

hi,j ξ
2η + ki,j ξη

2 + li,j η
3 ; i = 1, 2, 3 ; j = 0, 1, 2 (4.96)

where the coefficients are determined by the simultaneous equations set up by Eq. 4.95. This sets up
a 9× 10 matrix, A, containing values at nodal point (ξi, ηi) evaluated for φi,0(ξj , ηj), ∇ξφi,1(ξj , ηj),
and ∇ηφi,2(ξj , ηj) multiplied by a 10 × 9 matrix, B, containing the to be determined coefficients
equaling a 9×9 identity matrix, I. A matrix inversion of A will determine the coefficients. However,
a small problem exists. It is difficult to perform a matrix inversion on a 9×10 matrix. To get around
this, we compute the kernel of the matrix A. This is a vector that is orthogonal to all the nine rows
in this matrix. The kernel consists of one vector with 10 components. It is unique up to sign and
scale. This row vector is appended to the bottom of matrix A to make a 10×10 nonsingular matrix.
Now matrix A can be inverted and the basis functions are determined.

φ1,0 = 1− φ2,0 − φ3,0,

φ1,1 = ξ − φ2,0 − φ2,1 − φ3,1,

φ1,2 = η − φ2,2 − φ3,0 − φ3,2,

φ2,0 = 3ξ2 − 2ξ3,

φ2,1 = −ξ2 + ξ3,

φ2,2 =
1

3

(
ξη + 2ξ2η − ξη2

)
, (4.97)

φ3,0 = 3η2 − 2η3

φ3,1 =
1

3

(
ξη + 2ξη2 − ξ2η

)
φ3,2 = −η2 + η3

φ10 =
1

3

(
−ξη + ξ2η + ξη2

)
With this procedure, an additional basis function φ10 is created whose wavefunction values and first
derivatives vanish at all three vertices. Due to these properties, this extra basis function could be
used to reduce the complexity of the other nine basis functions by an addition or subtraction.

Each elemental wavefunction consists of a linear combination of these nine basis functions. Since
our basis functions are in terms of local coordinates, there is some extra work required to achieve
the condition ψi,1, or ψi,2 at node i. In order to unwind the local coordinate dependence, we use

54

the Jacobian (J) to relate [
φi,1(ξ, η)
φi,2(ξ, η)

]
= J

[
ψj,1(x, y)
ψj,2(x, y)

]
(4.98)

where i, j index the vertices of a triangular element in real space and the local vertices of the
benchmark triangle that it is mapped to. The Jacobian’s entries can be computed using the linear
change of variables from Eq. 4.55. We consider the first element α = 1 in a mesh that contains
nodes n = 1, 2, 3, so the elemental wavefunction is

Ψ1(x, y)→ [φ1,0 φ2,0 φ3,0]

 ψ1,0

ψ2,0

ψ3,0

+

3∑
i=1

[φi,1 φi,2] J

[
ψi,1
ψi,2

]
(4.99)

Now the wavefunction has been represented in terms of unknown quantities ψi,0, ψi,1, and ψi,2. We
proceed by following in the footsteps of the previous prescription. Each elemental matrix is built up
and assembled in the respective 3N × 3N global matrix containing N nodes.

For each tetrahedral element, we introduce four unknowns per node i identified as

ψi,0 = ψ|i ψi,1 =
∂ψ

∂x
|i ψi,2 =

∂ψ

∂y
|i ψi,3 =

∂ψ

∂z
|i (4.100)

and the basis functions are chosen such that the wavefunction has the values ψi,0, ψi,1, ψi,2, or ψi,3
at node i. These extra conditions place additional constraints on the basis functions. Four degrees of
freedom per node and four nodes per tetrahedral element totals 16 degrees of freedom per element.
Each degree of freedom requires a basis function and so there will be 16 basis functions per element.
The basis functions are constructed in the local coordinate system and must satisfy the following
constraints

φi,0(ξj , ηj , ζj) = δij , φi,1(ξj , ηj , ζj) = 0, φi,2(ξj , ηj , ζj) = 0, φi,3(ξj , ηj , ζj) = 0

∇ξφi,0(ξj , ηj , ζj) = 0, ∇ξφi,1(ξj , ηj , ζj) = δij , ∇ξφi,2(ξj , ηj , ζj) = 0, ∇ξφi,3(ξj , ηj , ζj) = 0

∇ηφi,0(ξj , ηj , ζj) = 0, ∇ηφi,1(ξj , ηj , ζj) = 0, ∇ηφi,2(ξj , ηj , ζj) = δij , ∇ηφi,3(ξj , ηj , ζj) = 0

∇ζφi,0(ξj , ηj , ζj) = 0, ∇ζφi,1(ξj , ηj , ζj) = 0, ∇ζφi,2(ξj , ηj , ζj) = 0, ∇ζφi,3(ξj , ηj , ζj) = δij

(4.101)

The necessary interpolation polynomial needed to define each constraint is cubic constructed from
the monomials ξpηqζs, p ≥ 0, q ≥, s ≥ 0, p + q + s ≤ 3 with a similar structure as the two
dimensional version, Eq. 4.96. There are 20 coefficients per basis functions and are determined by
the simultaneous equations set up by Eq. 4.101. This sets up a 16×20 matrix, A, containing values
at nodal point (ξi, ηi, ζi) evaluated for φi,0(ξj , ηj), ∇ξφi,1(ξj , ηj), ∇ηφi,2(ξj , ηj), and ∇ζφi,3(ξj , ηj)
multiplied by a 20 × 16 matrix, B, containing the to be determined coefficients equaling a 16 × 16
identity matrix, I. Before matrix A is inverted to determine the coefficients making up the 16 basis
functions, we compute the kernal of matrix A. There are 4 vectors that are orthogonal to all the 16
rows. These 4 row vectors are appended to the bottom of matrix A to make a 20× 20 nonsingular
matrix. Now matrix A can be inverted and the basis functions are determined. Table 4.2 summarizes
the 16 basis functions. It should be noted that the basis functions have been reduced in complexity
by exploiting the extra functions, φ17−19 = − 1

3xixj + 1
3x

2
ixj + 1

3xix
2
j (1 < i < j < 3), that were

generated in the process.
Each elemental wavefunction consists of a linear combination of these 16 basis functions. Since

our basis functions are in terms of local coordinates, there is some extra work required to achieve
the condition ψi,1, ψi,2, or ψi,3 at node i. In order to unwind the local coordinate dependence, we
use the Jacobian (J) as before. We consider the first element α = 1 in a mesh that contains nodes

55

Table 4.2: The C1 basis functions that for the right tetrahedron with vertices located at
(0,0,0), (1,0,0), (0,1,0), and (0,0,1).

(0,0,0) (1,0,0) (0,1,0) (0,0,1)

φ1,0 = 1− φ2,0 − φ3,0 − φ4,0 φ2,0 = 3ξ2 − 2ξ3 φ3,0 = 3η2 − 2η3 φ4,0 = 3ζ2 − 2ζ3

φ1,1 = ξ − φ2,0 − φ2,1 − φ3,1 − φ4,1 φ2,1 = −ξ2 + ξ3 φ3,1 = ξη2 φ4,1 = ξζ2

φ1,2 = η − φ2,2 − φ3,0 − φ3,2 − φ4,2 φ2,2 = ξ2η φ3,2 = −η2 + η3 φ4,2 = ηζ2

φ1,3 = ζ − φ2,3 − φ3,3 − φ4,0 − φ4,3 φ2,3 = ξ2ζ φ3,3 = η2ζ φ4,3 = −ζ2 + ζ3

n = 1, 2, 3, 4, so the elemental wavefunction is

Ψ1(x, y)→ [φ1,0 φ2,0 φ3,0 φ4,0]


ψ1,0

ψ2,0

ψ3,0

ψ4,0

+

4∑
i=1

[φi,1 φi,2 φi,3] J

 ψi,1
ψi,2
ψi,3

 (4.102)

Now the wavefunction has been represented in terms of unknown quantities ψi,0, ψi,1, ψi,2, and ψi,3.
We proceed by following in the footsteps of the previous prescription. Each elemental matrix is built
up and assembled in the respective 4N × 4N global matrix containing N nodes.

As we have seen, the complexity of the elemental wavefunctions increases due to enforcing C1

continuity at each node. Additionally, the elemental matrices will be larger due to the increased
number of basis functions than its C0 counterpart. However, the prescription for constructing each
of the elemental matrices outlined above for one, two, and three dimensions is generally the same.
There might be one additional step that is needed to remove the unknown derivative amplitude’s
dependence on the local coordinates if the Jacobian in Eq. 4.99 and Eq. 4.102 is not directly included
in the elemental wavefunction. An example of this additional step is found in the MATLAB program
described in the next chapter.

In C1 continuity, we are requiring that the wavefunction and its derivative be continuous at each
node. As we saw in the derivation of Eq. 4.4, for a spatially varying mass, the wavefunction and its
inverse mass derivative should be continuous. So for nodes falling on the interface boundary for two
different effective masses, we should employ the continuity of the wavefunction and its inverse mass
derivative. This can be easily accomplished in FEM by rescaling the derivatives of the nodes falling
on the interface with the proper ratio of masses in the elemental matrix before it is overlaid in the
global matrix. This entails multiplying the corresponding row and column by the appropriate ratio.
To be explicit, lets consider the one dimensional quantum well example from Sec. 4.1 except that
there are only 3 elements and 4 nodes, see Fig. 4.3. Elements 1 and 3 represent barrier material
with an effective mass of mb and element 2 represents the quantum well material with an effective
mass of mw. Nodes 2 and 3 fall on the interface between the materials. We use the form of the
wavefunction from Eq. 4.93 with a slight variation on the nomenclature such that Ψα refers to the
elemental wavefunction and ψαi refer to the unknown coefficients at each node. In addition, the

factor dξ
dx is absorbed in ψα

′

i such that

Ψ1(x)→ ψ1
1φ1,0 + ψ1

2φ2,0 + ψ1′

1 φ1,1 + ψ1′

2 φ2,1

Ψ2(x)→ ψ2
1φ1,0 + ψ2

2φ2,0 + ψ2′

1 φ1,1 + ψ2′

2 φ2,1

Ψ3(x)→ ψ3
1φ1,0 + ψ3

2φ2,0 + ψ3′

1 φ1,1 + ψ3′

2 φ2,1 (4.103)

Now we impose the continuity conditions across the interface

ψα2 = ψ
(α+1)
1

1

mα
ψα
′

2 =
1

mα+1
ψ

(α+1)′

1 → ψ
(α+1)′

1 =
mα+1

mα
ψα
′

2 (4.104)

56

where α = 1, 2. These conditions transform the wavefunctions into the following

Ψ1(x)→ ψ1
1φ1,0 + ψ1

2φ2,0 + ψ1′

1 φ1,1 + ψ1′

2 φ2,1

Ψ2(x)→ ψ1
2φ1,0 + ψ2

2φ2,0 +
mw

mb
ψ1′

2 φ1,1 + ψ2′

2 φ2,1

Ψ3(x)→ ψ2
2φ1,0 + ψ3

2φ2,0 +
mb

mw
ψ2′

2 φ1,1 + ψ3′

2 φ2,1 (4.105)

or equivalently

Ψ1(x)→ ψ1
1φ1,0 + ψ1

2φ2,0 + ψ1′

1 φ1,1 + ψ1′

2 φ2,1

Ψ2(x)→ ψ1
2φ1,0 + ψ3

1φ2,0 +
mw

mb
ψ1′

2 φ1,1 +
mw

mb
ψ3′

1 φ2,1

Ψ3(x)→ ψ3
1φ1,0 + ψ3

2φ2,0 + ψ3′

1 φ1,1 + ψ3′

2 φ2,1 (4.106)

The above equations are easier to implement for computational purposes, especially in higher di-
mensions. Each elemental matrix is constructed from Eq. 4.106 using the outlined prescription
and then overlaid in each respective global matrix. For higher dimensions, we use the following
procedure: (1)for each element, determine if any nodes are located on the interface boundary AND
if the element falls inside the quantum wire or quantum dot structure, (2) construct each elemental
matrix as normal, (3) for those nodes found from (1), multiply the row AND column corresponding
to the derivative by the appropriate ratio, and (4) finally place matrix elements in respective global
matrix.

4.5 Remarks

In this chapter, we have developed FEM in the context of Schödinger’s equation with the sophis-
tication required to find bound state energy levels and wavefunctions associated with a confining
potential in one, two, and three dimensions. We introduced the Schödinger’s equation in its vari-
ational form and derived the method using a linear combination of elemental wavefunctions. The
quadratic forms of the wavefunction were represented for the kinetic, potential, and overlap matrices
in one dimension and applied to the infinite potential well to benchmark its usefulness and accuracy.

We then proceeded to derive basis functions for higher dimensions and higher degrees of freedom
per node. We followed the prescription identified in Sec. 4.2 with appropriate adjustments. For
each added complexity, we developed the necessary quadratic forms of the wavefunction in the form
of the kinetic, potential, and overlap elemental matrices. Finally, we addressed the ability of FEM
to incorporate the boundary conditions for a spatially varying mass when considering C1 continuity.

57

Chapter 5: Finite Element Program

In the previous chapter, FEM was introduced as method that transforms Schrödinger’s equation
into matrix mechanics. Once in matrix form, solutions are obtained through various operations that
normally involve matrix inversion and matrix diagonalization. As such, computer programs utilizing
modern linear algebra algorithms are used to perform these operations fairly quickly. Today, there
are many technical computing software packages that include these algorithms as efficient built-in
functions. This allows for quick efficient programming. MATLAB is one such software package
that includes a large built-in linear algebra library making it a suitable environment to write FEM
code [52]. In addition to technical computing software, there are many commercial FEM software
packages that advertise solving everything from heat flow to stock option pricing [53, 54, 55, 56].
However, most of these packages are developed for the engineer, are customized and difficult to
modify, and expensive.

In this chapter, we begin in Sec. 5.1 with an introduction on how a typical FEM program is
organized, then proceed to Secs. 5.2, 5.3, and 5.4 with a detailed description of the entire MATLAB
FEM program that is used to determine energy levels and corresponding wavefunctions of quantum
heterostuctures in the effective mass approximation. We then validate the FEM program with
benchmarked solutions in Sec. 5.5 and conclude in Sec. 5.6. Throughout these sections, relevant
source code is displayed to supplement the discussions, while the entire FEM program source code
is given in Appendix B.

5.1 Stages of FEM Programming

There are a few commonalities that exist in all FEM code no matter what problem the code is
aiming to solve. There is the preprocessing stage that creates the mesh for the particular problem.
This stage generates the nodal coordinates, elements, and boundary information in data structures
used in the next step of the program called the processing stage. The processing stage is where
the various matrices of the problem are populated or assembled, i.e. kinetic, potential, and overlap
matrices for Schrödinger’s equation. Accordingly, the processing stage is the heart of the finite
element method. Finally, there is the post-processing stage that displays the solution of the problem
with possibly some sort of visualization. Fig. 5.1 shows a flowchart of the three stages required in
an FEM program. The output from each stage is shown above the arrows and used as the input in
the next stage.

Figure 5.1: A flowchart for finite element programs.

5.2 FEM Program - Preprocessing Code

This part of the program defines the physical domain of the problem and tessellates it into elements
and nodes. This is not as trivial as one might think and requires experience rather than a defined
set of rules. To illustrate, consider the domain of a particle in a finite square potential well that
has dimensions of −L < x, y < L and we are searching for bound states. Part of the wavefunction

58

will exist outside the well and asymptotically decay to zero. That means that the physical domain
theoretically extends to infinity. The user will have decide where the wavefunction is ‘sufficiently’
small to apply the asymptotic boundary conditions. This can be tricky for a few reasons:

• In general, a wavefunction will extend further outside the well as the energetic state increases;
and

• The magnitude of the potential well depth effects how far wavefunctions extend outside the
well (compare to infinite wells).

Further, after the physical domain is defined, the user has to decide what relative size the element’s
edges should be. The edges ultimately determine the number of nodes and elements in the mesh.
As we saw in the Chapter 4, the accuracy of the solution improves with an increase in the number
of elements but this comes at an added computational cost. The solution to this accuracy versus
cost dilemma isn’t always easy and ultimately depends on the specific problem.

Before we dig any deeper, it is useful to understand how the nodal and elemental information is
stored for input into the processing stage. Unsurprisingly, node information is organized in an nnodes
× ndim matrix. The variables nnodes and ndim refer to the number of nodes and dimensions of the
domain respectively with each row corresponding to the node number and each column corresponding
to the respective coordinate. Element information is organized in a ‘connectivity’ matrix which tells
the processing stage how nodes in each element are connected. The size of the matrix is nel ×
ndim + 11, with nel number of elements. To illustrate how these matrices are organized, consider
the simple 2D mesh in Fig. 5.2, which consists of four nodes tessellated into two triangular elements.
If the coordinates of the nodes are as follows; node 1 (0, 0), node 2 (1, 0), node 3 (1, 1), and node 4

Figure 5.2: A simple mesh containing four nodes and two triangular elements.

(0, 1), then node matrix is simply Eq. 5.1.

nodes =


0 0
1 0
1 1
0 1

 (5.1)

The connectivity matrix contains the node numbers that represent vertices of each triangular element
in Fig. 5.2 and shown in Eq. 5.2. Notice the elements are all ordered in a counter - clockwise fashion.
This is done so the Jacobians will all be positive.

Connect =

[
1 2 3
1 3 4

]
(5.2)

1This will be true for triangular elements in 2D and tetrahedral elements in 3D.

59

The main pre-processing code is built upon a freely distributed mesh package called Distmesh
[50] that applies a mechanical analogy between elements and a truss structure. Edges of the elements
are considered bars and the nodes are considered the joints connecting the bars. External forces
are applied to the boundary of the truss that produces reactionary forces acting on the joints. The
algorithm solves for equilibrium, iteratively moving the joints and adjusting the topology based on a
technique known as Delaunay triangulation [57]. When the movement of the joints after an iteration
is smaller than a default tolerance, the algorithm is terminated. Those are essentially the steps used
in creating the mesh. Although the code is a few dozen lines long, it is powerful in the sense that
it is easy to understand and intuitive to build upon. The package comes with various MATLAB
function files that supplement the main mesh generating functions (2D version called distmesh2d or
ND version called distmeshnd) and used in the development of our mesh generating pre-processing
code.

One of the key designs the authors used in developing the Distmesh software was to represent
the mesh geometry by defining a signed distance function that is negative inside the represented
boundary. As the name suggests, the distance function determines a signed distance from each
of the nodes to the geometry boundary. Our mesh generating code utilizes this distance function
formulation.

Distmesh also comes with some predefined special distance functions in 2D that can be combined
to create more complex mesh geometries. This is especially convenient when defining geometries that
could be attributed to quantum wires. However, defining distance functions in 3D is more difficult
and Distmesh does not offer the same amenities as it does in 2D. Since we are most interested in
quantum dot geometries, we spent a considerable amount of effort developing efficient polyhedron
distance functions. This work resulted in a template that is used to generate polyhedron meshes.
We will explain how to use this template and demonstrate its use through worked examples.

The final mesh must represent both the quantum and barrier material due to exponentially
decaying wavefunction penetration into the barrier region. As such, the mesh must be cutoff at dis-
tances into the barrier region where the wavefunction is ‘sufficiently’ enough to satisfy the boundary
conditions ‘at infinities’. It is convenient for the cutoff distances to fall on either the edges of a
square or the surfaces of a cube. This is not a requirement but a recommendation due to the sim-
plicity of representing a square or cube in the distance function formulation. It should be recognized
that this recommendation might not generate the most efficient mesh. In the context of FEM, an
efficient mesh contains fewer elements than another mesh containing more elements while producing
similar results with the same degree of accuracy. Ultimately, the decision on how to represent the
barrier geometry should be based on the specific problem at hand while taking into consideration
‘simplicity’ and ‘mesh efficiency’.

The material interface in the final mesh must separate the quantum material from the barrier
material such that every element is located in one region or the other. This requires every node in
an element to be located either in the quantum region, in the barrier region, or on the boundary
between them. If this were not the case, the geometry of the quantum material would be distorted.
Further, the edges of certain elements near the material interface must be constrained to this internal
boundary. This is called a constrained mesh, see Fig. 5.3, and can be difficult to create due to the
underlying algorithm that tessellates the set of points or nodes into simplices (either triangles or
tetrahedrons). As mentioned, the built-in algorithm is based on Delaunay tessellation which trian-
gulates a set of points P in a plane such that no point in P is inside the circumsphere of any triangle.
This method was invented in 1934 by Boris Delaunay [57]. By considering circumhyperspheres2, the
notion of Delaunay tessellation is extended to higher dimensions quite easily. Since the set of nodes
in the final mesh represents both the quantum and barrier material, calling the Delaunay algorithm
might generate elements near the interface containing nodes in both regions, effectively distorting
the region. This can be remedied a number of ways. One common way is to create “non-Delaunay”
elements after the algorithm is called by flipping certain edges or surfaces near the interface. Another
way is to create two or more meshes separately, each of which has the desired interface geometry,
combine and strategically eliminate certain nodes before the algorithm is called. This latter idea is

2A cicumhypersphere is a hypersphere that contains the polyhedron and touches each of the polyhedron’s vertices.

60

used in our code to create the constrained mesh.

Figure 5.3: A constrained mesh with refinement around the interface defining the cross section
geometry of a square quantum wire.

It is also desirable to increase the number of elements near the interface, as seen in Fig. 5.3.
An increased ratio of elements near the interface to the total number of elements in the mesh will
increase the number of evaluations made near the two materials. This improves accuracy since
unique solutions to differential equations are defined by their boundary conditions. An additional
benefit occurs when the interface between the two materials is curved, i.e. spherical, since linear
edges are being used to fit the curved space.

5.2.1 Implementation

The source code for the 2D mesh preprocessor is contained in Fig. 5.4. Comments within the code
are preceded by % and each line of the code is explained in detail below.

The first line of the code specifies the calling sequence of the syntax for the function QWire mesh:

function [p,t,vert] = QWire_Mesh(QW_fd,B_fd,fh,h0,QW_bbox,B_bbox)

This 2D mesh function produces the following output:

• The node positions p. This N × 2 matrix contains the x and y positions for each of the N
nodes.

• The triangle vertices t. This NT × 3 matrix contains the 3 vertices, each referring to the
respective node number, for each of the NT triangles in the mesh.

• The nodes on the interface vert. This vector contains the nodes that fall on the interface.

The input arguments are the following:

• The quantum material geometry is given as a distance function QW fd.

• The barrier material geometry is given as a distance function B fd.

• The relative edge length is given as a function fh.

• The initial edge length is given by the scalar h0.

• The bounding box of the quantum material is given as a 2 × 2 matrix QW bbox
= [xmin, ymin;xmax, ymax].

61

function [p,t,vert] = QWire_Mesh(QW_fd,B_fd,fh,h0,QW_bbox,B_bbox)

% Create a mesh for the quantum wire material using distmesh2D

[QW_coord,QW_nodes]=distmesh2d(QW_fd,fh, h0,QW_bbox,[]);

[QW_coord,QW_nodes]=fixmesh(QW_coord,QW_nodes);

QW_surface=unique(boundedges(QW_coord,QW_nodes));

fixed=[QW_coord(QW_surface(:),1),QW_coord(QW_surface(:),2)];

% Create a mesh for the barrier material using distmesh 2D

%

[B_coord,B_nodes]=distmesh2d(B_fd,fh,h0,B_bbox,fixed);

[B_coord,B_nodes]=fixmesh(B_coord,B_nodes);

B_surface=unique(boundedges(B_coord,B_nodes));

% Convert coordinates to desired significant digits

%

B_coord=round(B_coord*1000)/1000;

QW_coord=round(QW_coord*1000)/1000;

fixed=round(fixed*1000)/1000;

vert = fixed;

%

% 1. Get coordinates of all the nodes on edges of the barrier material

edges=[B_coord(B_surface(:),1),B_coord(B_surface(:),2)];

%

% 2. Start to systematically eliminate nodes associated with outer edges

for i=1:2

for j=1:2

[r c]=find(edges == B_bbox(i,j));

edges(r,:)=[];

end

end

%

% 3. Start to systematically eliminate nodes associated with nodes on

% the QW edges.

[index]=ismember(edges,fixed,’rows’);

edges(index,:)=[];

%

% 4. Eliminate "orphan" nodes

[index]=ismember(B_coord,edges,’rows’);

B_coord(index,:)=[];

%

% 5. Complete the final mesh

p=unique([B_coord;QW_coord],’rows’);

t=delaunayn(p);

%

% 6. View the final mesh

trimesh(t,p(:,1),p(:,2),zeros(size(p,1),1))

view(2),axis equal,axis off,drawnow

end

Figure 5.4: The source code for generating a two dimensional quantum wire mesh called
QWire mesh. Comments are preceded by %.

62

• The bounding box of the barrier material is given as a 2 × 2 matrix QW bbox
= [xmin, ymin;xmax, ymax].

In the beginning of the code, before the numbered steps begin, the quantum mesh is created
by calling distmesh2d using the distance function QW fd. The mesh is ‘cleaned up’ by calling
the function fixmesh which eliminates unused or duplicate nodes and orients the elements correctly.
Following the clean up, the nodes on the edges of the mesh are stored in the array QW surface by
calling the function boundedges and their coordinates are stored in the matrix fixed. Ultimately,
the nodes stored in the QW surface array will be the only nodes located on the barrier/quantum
material interface.

Following the quantum mesh, the barrier mesh is created by calling distmesh2d using the distance
function B fd and supplying the matrix fixed as fixed node positions. Using the same approach,
the barrier mesh is cleaned up and nodes on the edges are stored in the array B surface. Next, the
coordinates of the nodes corresponding the quantum mesh (QW coord), barrier mesh (B coord),
and nodes on the interface (fixed) are converted to desired significant digits.

Now we describe the numbered steps 1 to 6 as indicated in Fig. 5.4.

1. The first step stores the coordinates of all the nodes that fall on the edges of the barrier mesh:
edges=[B_coord(B_surface(:),1),B_coord(B_surface(:),2)];

The first column of the matrix edges stores the x coordinate and the second column stores the
y coordinate.

2. Next, we start to systematically eliminate the nodes from the matrix edges that fall on the outer
edges (the barrier mesh will have the quantum material geometry ‘cut out’ of its center, see
5.2.2):

for i=1:2

for j=1:2

[r c]=find(edges == B_bbox(i,j));

edges(r,:)=[];

end

end

The for loops used in conjunction with the function find are used to search for and store row
indices from matrix edges that fall on the bounding box. Those rows are then deleted from
edges.

3. The next piece of the code eliminates the nodes from the matrix edges that were fixed in the
barrier mesh. These nodes are equivalent to the nodes located on the edges of the quantum
mesh:

[index]=ismember(edges,fixed,’rows’);

edges(index,:)=[];

The function ismember with the option ‘rows’ returns the vector index containing 1 where
the rows of edges are also rows of fixed and 0 otherwise. The rows in edges that correspond
to 1 in index are deleted.

4. Now, the coordinates stored in matrix edges only correspond those nodes on the boundary of
the barrier mesh that fall on the interface but are not commonly shared by the quantum mesh.
For the purposes of this work, they are called ‘orphan’ nodes and are eliminated from the
barrier mesh:

[index]=ismember(B_coord,edges,’rows’);

B_coord(index,:)=[];

Again the function ismember with the option ‘rows’ is used to return the vector index contain-
ing 1 where the rows of B coord are also rows edges and 0 otherwise. The rows in B coord
that correspond to 1 in index are deleted.

63

5. We are now in a position to combine the quantum and barrier meshes into the final mesh:

p=unique([B_coord;QW_coord],’rows’);

t=delaunayn(p);

First, the nodes of the final matrix are stored in matrix p by combining B coord and
QW coord and eliminating similar nodes on the interface by calling the function unique
with the option ‘rows’. The final matrix p represents the matrix referred as Nodes in Eq. 5.1.
Next, the connectivity matrix t is constructed using the coordinates p in conjunction with
the function delaunayn which calls the Delaunay algorithm. The final matrix t represents the
matrix referred as Connect in Eq. 5.2. Requiring the barrier mesh to contain those nodes
on the quantum mesh boundary and eliminating the orphan nodes from the barrier matrix
guarantees the interface nodes will be those that originally fell on the quantum mesh bound-
ary. This method creates a constrained mesh after calling the Delaunay algorithm because
it reduces the likelihood there will be a circumhypersphere containing no points in the set p
spanning the interface. On occasion this method might fail when the number of elements near
the interface are not increased relative to the rest of the mesh (see relative edge length function
example in Sec. 5.2.2. This is a simple, yet effective method for creating a constrained mesh
in both 2D and 3D.

6. The last part of the code is to display the final mesh:

trimesh(t,p(:,1),p(:,2),zeros(size(p,1),1))

view(2),axis equal,axis off,drawnow

end

The source code for the 3D mesh preprocessor is contained in Fig. 5.5. As expected, the source
code is similar to the 2D mesh preprocessor with each line of code performing those same functions as
expressed above. The numbered steps are synchronized to those steps in the 2D mesh preprocessor
so that a detailed explanation of each line is not necessary.

The preprocessing code QWire mesh and Qdot mesh is all that is needed to mesh quantum
wires and dots consisting of complex geometries when the proper distance functions are supplied.
As mentioned, the Distmesh package comes with some special distance functions that can be used
to generate a more complicated mesh. They include rectangular, circular, and polygonal 2D dis-
tance functions and some other special functions that combine geometries. As will be seen in Sec.
5.2.2, these already defined distance functions are normally sufficient for supplying geometries to
Qwire mesh.

The distance functions needed to supply Qdot mesh are inherently more difficult to construct.
As an example, consider defining the distance function for a polyhedron. The code would have to
compute distances of points to line segments and enclosed faces in 3D while trying to avoid inefficient
computer loops. Since the Distmesh package only comes with the distance function for a sphere, we
have written code for the rectangular prism, five sided pyramid and a template for any polyhedron.

1. The distance function for the rectangular prism:

function d_signed=drectangle_3D(p,pv)

%drectangle_3D generates the signed distance from a set up points

%to a rectangular prism. This function is used as a distance function

%in DistMesh.

%

% DRECTANGLE_3D(P,PV)

% D_SIGNED: SIGNED DISTANCE TO RECTANGULAR PRISM SURFACE (Nx1)

% P: POINTS (NX3)

% PV: VERTEX COORDINATES OF RECTANGLULAR PRISM (8X3)

%

%--

% In order to determine the signed distance, we first decompose

64

function [p,t,vert] = QDot_Mesh(QD_fd,B_fd,fh,h0,QD_bbox,B_bbox)

% Create a mesh for the quantum dot material using distmesh ND

[QD_coord,QD_nodes]=distmeshnd(QD_fd,fh, h0,QD_bbox,[]);

[QD_coord,QD_nodes]=fixmesh(QD_coord,QD_nodes);

QD_surface=unique(surftri(QD_coord,QD_nodes));

fixed=[QD_coord(QD_surface(:),1),QD_coord(QD_surface(:),2),QD_coord(QD_surface(:),3)];

% Create a mesh for the barrier material using distmesh ND

%

[B_coord,B_nodes]=distmeshnd(B_fd,fh,h0,B_bbox,fixed);

[B_coord,B_nodes]=fixmesh(B_coord,B_nodes);

B_surface=unique(surftri(B_coord,B_nodes));

% Convert coordinates to desired significant digits

%

B_coord=round(B_coord*1000)/1000;

QD_coord=round(QD_coord*1000)/1000;

fixed=round(fixed*1000)/1000;

vert = fixed;

% 1. Get coordinates of all the nodes on edges of the barrier material

edges=[B_coord(B_surface(:),1),B_coord(B_surface(:),2),B_coord(B_surface(:),3)];

% 2. Start to systematically eliminate nodes on barrier bounding cube

for i=1:2

for j=1:3

[r c]=find(edges == B_bbox(i,j));

edges(r,:)=[];

end

end

% 3. Start to systematically eliminate nodes associated with nodes on

% the QD surface.

%

[index]=ismember(edges,fixed,’rows’);

if (~isempty(index))

edges(index,:)=[];

end

% 4. Eliminate "orphan" nodes

%

[index]=ismember(B_coord,edges,’rows’);

B_coord(index,:)=[];

% 5. Complete the final mesh

%

p=unique([B_coord;QD_coord],’rows’);

t=delaunayn(p);

%

% 6. View mesh

simpplot(p,t,’p(:,2)>0’);

drawnow

end

Figure 5.5: The complete source code for generating a three dimensional quantum dot mesh
called QDot mesh.

65

% the surfaces of the polyhedron into surface triangles. This is

% accomplished by composing surface triangles in an NX3 matrix, with N

% number of surface triangles each containing its 3 vertices.

%

% Variables:

% T: MATRIX REPRESENTING THE SURFACE TRIANGLES (12X3)

% NT: NUMBER OF SURFACE TRIANGLES

% TP: VERTICE POINTS OF SURFACE TRIANGLE (3X3)

% DS: DISTANCE OF POINTS FROM SURFACE TRIANGLE USING FUNCTION

% D: UNSIGNED DISTANCE TO RECTANGULAR PRISM SURFACE (NX1)

% Functions:

% POLYGON_CENTROID_3D - calculates the centroid of the polyhedron.

% TRIANGLE_POINT_DIST_3D - generates the distance from a set of

% points to a triangle in 3D.

% INHULL - tests if a set of points is inside a convex hull.

%

T=[1 2 6;1 6 5;2 3 7;2 7 6;3 4 8;3 8 7;1 4 8;1 8 5;1 2 3;1 4 3;5 6 7;5 8 7];

centroid = polygon_centroid_3d(T,pv);

%

% The distance from each surface triangle is computed and then minimized

% to determine the distance.

nT=size(T,1);

%

for j=1:nT

TP = [pv(T(j,1),:);pv(T(j,2),:);pv(T(j,3),:)];

ds(:,j) = triangle_point_dist_3d(TP,p,centroid);

end

d=min(ds,[],2);

% The function inhull is used to determine the signed distance. If the

% point lies within the polyhedron, the distance is negative. If

% the point lies outside the polyhedron, the distance is positive.

d_signed=(-1).^(inhull(p,pv)).*d;

end

The function drectangle 3D produces the signed distance from the rectangular prism to the
points p (see Fig. 5.6). As Distmesh requires, a negative sign will be assigned to points
inside and a positive sign will be assigned to points outside. The input arguments are points
p for which the signed distance is computed and 8 vertices of rectangular prism (see Fig.
5.6). After the initial calling sequence, the surface of the polyhedron is decomposed into
surface triangles using the vertices of the rectangular prism. There’s a total of 12 surface
triangles as labeled by the 12 × 3 matrix T. Distances between the points and each of the
surface triangles is computed, then those distances are minimized. The minimized value is
the distance to the rectangular prism boundary. The sign of the distance is determined if
the point lies inside or outside the rectangular prism. There are two main functions within
the code to accomplish these tasks. The first is the function triangle point dist 3D, which
computes the distance from the points to a surface triangle in 3D. The second is inhull, which
computes whether a point lies inside a polyhedron [58]. Inhull’s output is a vector that contains
1’s and 0’s, a 1 if the point lies inside and 0 if the point lies outside. When it is used in the
formula d_signed=(-1).^(inhull(p,pv)).*d, the signed distance is computed. The function
triangle point dist 3D is shown below in order to fully understand drectangle 3D :

function dist = triangle_point_dist_3d (t, p, centroid)

%Triangle_point_dist_3d generates the distance from a set of points

%to a triangle in 3D.

%

% TRIANGLE_POINT_DIST_3D(T,P)

% DIST: DISTANCE FROM TRIANGLE (Nx1)

% T: TRIANGLE VERTICES (3X3)

66

Figure 5.6: A rectangular prism with the vertices labeled 1 through 8. It is made up of 4
tetrahedrons (1,2,3,6), (1,3,4,8), (5,6,8,1), and (6,7,8,3) and 12 surface triangles (1,2,6), (1,6,5),
(2,3,7), (2,7,6), (3,4,8), (3,8,7), (1,4,8), (1,8,5), (1,2,3),(1,4,3), (5,6,7), and (5,8,7).

% P: POINTS (NX3)

% CENTROID: CENTROID OF POLYHEDRON

%

%--

% This function is used to find the distance of a set of 3D points to a

% triangle defined by its vertices.

%

% The algorithm does the following:

% 1. Determine the distances to each triangle edge and vertex.

% These distances are minimized.

% 2. Determine the distances to the plane the triangle lies on.

% 3. Project the points to the plane on the triangles plane.

% 4. Determine if the projected points are inside or outside the

% triangle.

% 5. For those points inside, the distance is to the plane the

% triangle lies on.

%

% Variables:

% DIST2: DISTANCE FROM POINTS TO SEGMENTS OR VERTICIES IN TRIANGLE

% DIST3: DISTANCE FROM POINTS TO PLANE IN TRIANGLE

% P_0: POINTS PROJECTED ON PLANE OF TRIANGLE (NX3)

% FLAG: NX1 ARRAY USED TO DISTINGUISH IF POINT LIES OUTSIDE OR INSIDE

% OF TRIANGLE. IF OUTSIDE, FLAG IS 0. IF INSIDE, FLAG IS 1 (NX1)

% IND: INDICES CORRESPONDING TO FLAG EQUAL TO 1.

% Functions:

% SEGMENT_POINT_DIST_3D - distance from a set of points

% to a line segment in 3D.

% PLANE_VERT_POINT_DIST_3D - computes the distance from a point to

% plane using the 3 vertices of a triangle.

% INHULL - tests if a set of points is inside a convex hull.

%

% Compute the distances from the points to each of the sides or vertex using

% the function seqment_point_dist_3d. Minimize these distances.

67

%

dist2 = segment_point_dist_3d (t(1,:), t(2,:), p);

dist = dist2;

dist2 = segment_point_dist_3d(t(2,:), t(3,:), p);

dist = min (dist, dist2);

dist2 = segment_point_dist_3d (t(3,:), t(1,:), p);

dist = min (dist, dist2);

% Compute the distance from the points to the plane using the function

% plane_vert_point_dist_3d. This function (plane_vert_point_dist_3d)

% calls the two functions plane_vert2std_3d and plane_std_point_dist3d

% which converts to the standard form of the plane and computes the

% distance while producing a set of projected points respectively.

% Use of the inhull function determines if the projected points lie

% inside or outside the triangle. To do this, we need to feed inhull a

% fourth point not on the plane. This allows inhull to determine those

% points within the triangle (added 4th point creates a tetrahedron).

% The 4th point can be chosen arbitrarily, so we use its centroid of the

% quantum dot shape.

[dist3,p_0] = plane_vert_point_dist_3d (t(1,:),t(2,:),t(3,:),p);

dist4 = min (dist , dist3);

flag=inhull(p_0,[t; centroid],[],1.0e-05);

ind=find(flag);

% Replace distances

dist(ind) = dist4(ind);

return

end

The text within the code above gives a description of the algorithm and subroutine functions.
It must be noted that throughout the entire code, including subroutine code, loops are avoided
to maximize computational speed. This is especially important in MATLAB because it is an
interpretive language.

2. The distance function for the five sided pyramid:

function d_signed=dFiveSidedPyramid(p,pv)

%dFiveSidedPyramid generates the signed distance from a set up points

%to a five sided pyramid. This function is used as a distance function

%in DistMesh.

%

% DFIVESIDEDPYRAMID(P,PV)

% D_SIGNED: SIGNED DISTANCE TO FIVE SIDED PYRAMID SURFACE (Nx1)

% P: POINTS (NX3)

% PV: VERTEX COORDINATES OF 5-SIDED PYRAMID

%

%--

% In order to determine the signed distance, we first decompose

% the surfaces of the polyhedron into surface triangles. This is

% accomplished by composing the surface triangles in an NX3 matrix, with N

% number of surface triangles each containing its 3 vertices.

%

% Variables:

% T: MATRIX REPRESENTING THE SURFACE TRIANGLES (6X3)

% NT: NUMBER OF SURFACE TRIANGLES

% TP: VERTICE POINTS OF SURFACE TRIANGLE (3X3)

% DS: DISTANCE OF POINTS FROM SURFACE TRIANGLE USING FUNCTION

68

% D: UNSIGNED DISTANCE TO FIVE SIDED PYRAMID SURFACE (NX1)

% Functions:

% POLYGON_CENTROID_3D - calculates the centroid of the polyhedron.

% TRIANGLE_POINT_DIST_3D - generates the distance from a set of

% points to a triangle in 3D.

% INHULL - tests if a set of points are inside a convex hull.

%

T=[1 2 5; 2 3 5; 3 4 5;4 5 1;1 2 4; 2 3 4];

centroid = polygon_centroid_3d(T,pv);

%

% The distance from each surface triangle is computed and then minimized

% to determine the distance.

nT=size(T,1);

%

for j=1:nT

TP = [pv(T(j,1),:);pv(T(j,2),:);pv(T(j,3),:)];

ds(:,j) = triangle_point_dist_3d(TP,p,centroid);

end

d=min(ds,[],2);

% The function inhull is used to determine the signed distance. If the

% point lies within the polyhedron, the distance is negative. If

% the point lies outside the polyhedron, the distance is positive.

d_signed=(-1).^(inhull(p,pv)).*d;

end

As expected, this function is similar to the rectangular prism with the only difference in variable
T. The surface triangles are characteristic for each polyhedron, each matrix T identifies a
polyhedron.

3. The template for any polyhedron distance function is to modify T to account for the surface
triangles of a particular polyhedron. As an example consider a tetrahedron as seen in Fig. 5.7.
It is composed of the 4 surface triangles (1,2,3), (1,3,4), (2,3,4), and (1,2,4) as represented by
its vertices. The matrix T= [1 2 3; 1 3 4; 2 3 4; 1 2 4] would be inserted in the code, while
the rest of the code is unmodified.

5.2.2 Examples

To further understand how to use QWire mesh and QDot mesh, we show some worked examples.

1. A circular constrained mesh with refinement around the interface. This type of mesh could
represent the cross-section of a circular quantum wire embedded in a barrier material. The
MATLAB code generating Fig. 5.8b is listed below:

>> QW_circle=inline(’dcircle(p,0,0,20)’,’p’);

>> B_circle=inline(’ddiff(dpoly(p,[-40,-40;40,-40;40,40;-40,40;-40,-40]),

dcircle(p,0,0,20))’,’p’);

>> [p,t,vert]=QWire_Mesh(QW_circle,B_circle,@fh_finite_2D,5,

[-20,-20;20,20],[-40,-40;40,40]);

The quantum material distance function QW circle is given as an inline function (type ‘help
inline’ for more information). This first argument is the function itself, in this case dcircle
which is part of the distmesh package and defines a circle with a radius of 20 centered at (0, 0).
The second argument, p, names the variable to the function. The barrier material distance
function B circle is given as an inline function. The function uses ddiff in combination with
dpoly and dcircle to remove the circle from a square so that the quantum material is ‘cut
out’ of the barrier material. We use dpoly to represent the square by passing its vertices in
a 5×2 matrix (notice that the first vertex is included in the last row). These two distance
functions are the first two arguments in QWire Mesh. The next argument is a relative edge
length function, fh finite 2D that uses QW circle in its definition:

69

Figure 5.7: A tetrahedron with the vertices labeled 1 through 4. Surface triangles are (1,2,3),
(1,3,4), (2,3,4), and (1,2,4).

(a) (b)

Figure 5.8: (a) Circular mesh (b) A circular constrained mesh with refinement around the
interface.

70

function h = fh_finite_2D(p)

%Fh_finite_2D variable edge length that uses a distance function

% This function is used with QWire_Mesh when it is desired to have more

% elements near the quantum and barrier material interface. It uses the

% distance function of the quantum wire.

%

% [H]=FH_FINITE_2D(P)

% H: EDGE LENGTH

% P: NODE POSITION (Nx2)

%--

% Variables:

% d1: The distance function of the quantum wire.

% h1: The calibration used in defining the edge lengths, linear

% function.

% h: Minimum distance, either h1 or scalar.

d1=dcircle(p,0,0,20);

h1=5+0.2*(abs(d1));

h=min(h1,10);

end

The element sizes increase with the distance from the interface in d1 with the approximate
maximum edge length being some scalar, in this example 10, of our choosing in h. We highly
recommend using this type of relative edge length function when modeling quantum wire cross-
sections or dots due to its simplicity and ability to produce more elements near the interface
relative to the rest of the mesh. The next argument is an initial edge length, 5, and the last two
arguments are the bounding boxes of the quantum material and barrier material respectively.

2. A triangular constrained mesh with refinement around the interface. This type of mesh could
represent the cross-section of a triangular quantum wire embedded in a barrier material. The
MATLAB code generating Fig. 5.9b is listed below:

(a) (b)

Figure 5.9: (a) Triangular mesh (b) A triangular constrained mesh with refinement around
the interface.

>> QW_triangle=inline(’dpoly(p,[-20,-20;20,-20;0,20;-20,-20])’,’p’);

>> B_triangle=inline(’ddiff(dpoly(p,[-40,-40;40,-40;40,40;-40,40;-40,-40]),

dpoly(p,[-20,-20;20,-20;0,20;-20,-20]))’,’p’);

>> [p,t,vert]=QWire_Mesh(QW_triangle,B_triangle,@fh_finite_2D,4,

[-20,-20;20,20],[-40,-40;40,40]);

71

The quantum material distance function QW triangle is given as an inline function. This
function uses dpoly to define a triangle with vertices (-20,-20), (20,20), and (0,20). The barrier
material distance function B triangle is given as an inline function. Again, the function uses
ddiff in combination with dpoly to remove the triangle from a square with vertices (-40,-
40), (40,-40), (40,40), and (-40,40) so that the quantum material geometry is ‘cut out’ of the
barrier material. These two distance functions are the first two arguments in QWire Mesh.
The next argument is the relative edge length function fh finite 2D that uses QW triangle in
its definition along with h1=4+0.2*(abs(d1)) and h=min(h1,10). The element sizes increase
with the distance from the interface with the approximate maximum edge length of 10 and
minimum edge length of 4. The next argument is the initial edge length of 4 and the last two
arguments are the bounding boxes of the quantum material and barrier material respectively.

3. A more complicated constrained mesh with refinement around the interface. The MATLAB code
generating Fig. 5.10b is listed below:

(a) (b)

Figure 5.10: (a) More complicated mesh (b) Constrained mesh containing a more complicated
mesh.

>> QW = inline(’dunion(dcircle(p,-20,0,35),dcircle(p,20,0,35))’,’p’);

>> B = inline(’ddiff(dpoly(p,[-75,-75;75,-75;75,75;-75,75;-75,-75]),

dunion(dcircle(p,-20,0,35),dcircle(p,20,0,35)))’,’p’);

>> [p,t,vert]=QWire_Mesh(QW,B,@fh_finite_2D,6,[-50,-50;50,50],

[-75,-75;75,75]);

The quantum material distance function QW is given as an inline function. This function
uses dunion in combination with dcircle to combine two circles with radii of 35 and centers
located at (-20,0) and (20,0). The barrier material distance function B is given as an inline
function. This function uses ddiff in combination with dunion and dcircle to remove the
complicated geometry from a square with vertices (-75,-75), (75,-75), (75,75), and (-75,75) so
that the quantum material is ‘cut out’ of the barrier material. These two distance functions
are the first two arguments in QWire Mesh. The next argument is the relative edge length
function fh finite 2D that uses QW in its definition along with h1=6+0.2*(abs(d1)) and
h=min(h1,17). The element sizes increase with the distance from the interface with the
approximate maximum edge length of 17 and minimum edge length of 6. The next argument
is the initial edge length of 6 and the last two arguments are the bounding boxes of the quantum
material and barrier material respectively.

72

4. A rectangular prism constrained mesh representing a quantum dot embedded in barrier material
with refinement around the interface. The MATLAB code generating Fig. 5.11b is listed
below:

>> QD_prism=inline(’drectangle_3D(p,[-25,-25,-25;25,-25,-25;25,25,-25;

-25,25,-25;-25,-25,25;25,-25,25;25,25,25;-25,25,25])’,’p’);

>> B_prism=inline(’ddiff(drectangle_3D(p,[-40,-40,-40;40,-40,-40;40,40,-40;

-40,40,-40;-40,-40,40;40,-40,40;40,40,40;-40,40,40]),drectangle_3D(p,

[-25,-25,-25;25,-25,-25;25,25,-25;-25,25,-25;-25,-25,25;25,-25,25;

25,25,25;-25,25,25]))’,’p’);

>> [p t vert] = QDot_Mesh(QD_prism,B_prism,@fh_finite_3D,6,

[-25,-25,-25;25,25,25],[-40,-40,-40;40,40,40]);

(a) (b)

Figure 5.11: (a) Cross section of a rectangular prism quantum dot mesh (b) Constrained mesh
on x− z plane containing quantum dot embedded in barrier material.

The quantum material distance function QD prism is given as an inline function. This function
uses drectangle 3D to represent a rectangular prism by passing its vertices in an 8×3 matrix.
The barrier material distance function B prism is given as an inline function. This function
uses ddiff to remove the quantum material geometry from the barrier material. These two
distance functions are the first two arguments in QDot Mesh. The next argument is the relative
edge length function fh finite 3D, which has all the same definitions and code structure as
fh finite 2D, and uses QW in its definition along with h1=6+1*(abs(d1)) and h=min(h1,12).
The element sizes increase with the distance from the interface with the approximate maximum
edge length of 12 and minimum edge length of 6. The next argument is the initial edge length
of 6 and the last two arguments are the bounding boxes of the quantum material and barrier
material respectively. In this example, the constrained mesh contains a total of 800 points and
3764 tetrahedrons.

5. A five sided pyramid constrained mesh representing a quantum dot embedded in barrier material
with refinement around the interface. The MATLAB code generating Fig. 5.12b is listed
below:

>> QD_5sided=inline(’dFiveSidedPyramid(p,[-25,-25,-25;25,-25,-25;25,25,-25;

-25,25,-25;0,0,25])’,’p’);

>> B_5sided=inline(’ddiff(drectangle_3D(p,[-40,-40,-40;40,-40,-40;40,40,-40;

-40,40,-40;-40,-40,40;40,-40,40;40,40,40;-40,40,40]),dFiveSidedPyramid(p,

[-25,-25,-25;25,-25,-25;25,25,-25;-25,25,-25;0,0,25]))’,’p’);

>> [p t vert] = QDot_Mesh(QD_prism,B_prism,@fh_finite_3D,6,

[-25,-25,-25;25,25,25],[-40,-40,-40;40,40,40]);

73

(a) (b)

Figure 5.12: (a) Cross section of a five sided pyramid quantum dot mesh (b) constrained mesh
on x− z plane containing quantum dot embedded in barrier material.

The quantum material distance function QD 5sided is given as an inline function. This func-
tion uses dFiveSidedPyramid to represent a five sided pyramid by passing its vertices in a
5×3 matrix. The barrier material distance function B 5sided is given as an inline function.
This function uses ddiff to remove the quantum material geometry from the barrier material.
These two distance functions are the first two arguments in QDot Mesh. The next argument
is the relative edge length function fh finite 3Dthat uses QW in its definition along with
h1=6+1*(abs(d1)) and h=min(h1,12). The element sizes increase with the distance from
the interface with the approximate maximum edge length of 12 and minimum edge length
of 6. The next argument is the initial edge length of 6 and the last two arguments are the
bounding boxes of the quantum material and barrier material respectively. In this example,
the constrained mesh contains a total of 556 points and 2620 tetrahedrons.

5.3 FEM Program - Processing Code

As we saw in Chap. 4, FEM requires evaluating integrals and populating matrices that formulate
the generalized eigenvalue problem. This is the goal of all processing FEM code. Our processing
code is no different, except for the way integrals are treated. Most FEM codes numerically evaluate
these integrals due to the presence of the Jacobian using Gaussian quadrature as the preferred
technique. This approximation uses a weighted sum of function values at specified points within
the integral domain [59]. However, this introduces integration error and increases the number of
operations needed to perform the integrals. Therefore instead of approximating the integrals, we
have carried out the integrals analytically on a benchmark element and ‘hardcoded’ the results. In
2D, the benchmark element is the standard triangle with vertices (0, 0), (1, 0), and (0, 1). In 3D, the
benchmark element is the standard tetrahedron with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1).
Each element from the mesh is linearly mapped to the benchmarked element to ensure the Jacobian
entries and its determinant are constant. The benchmark integral evaluations are used with the aid
of the Jacobian to determine the integrals. In essence, the step requiring integral evaluation has been
removed and the processing code’s only objective is reduced to populating the respective matrices.
The ideas following in the next few paragraphs explain the general structure of the processing code
and highlight the more important aspects. We will then proceed to a detailed description of the
code, line by line, as before.

There are a number of variables that must be set before the processing code begins. The first
variable, ndof, is used to assign the desired degree(s) of freedom per node and makes the processing
code flexible in terms of nodal continuity. The choices available are either 1, 3, or 4 and are

74

described in the next paragraph. The rest of the variables pertain to the quantum and barrier
material: effective masses expressed in the electron rest mass unit, i.e. meff = 0.3774 ∗ me, and
offset potentials expressed in the electron-volt (eV) unit.

Following from the ideas presented in Chap. 4, interpolation basis functions are either linear
or cubic. Linear basis functions are used to ensure continuity of the wavefunction at each node,
while cubic basis functions are used to ensure continuity of the wavefunction and its first derivative
at each node. The choice to use linear or cubic basis functions depends on the degree of freedom
per node. Linear functions are used when one degree of freedom per node is selected, while cubic
functions are used when either three for 2D or four for 3D degrees of freedom are selected. They
were constructed for the right triangle or tetrahedron using the prescription outlined in Chap.
4. Table 5.1 summarizes the two sets of basis functions for the right triangle used in 2D FEM

Table 5.1: The basis functions that are used in 2D processing code for the right triangle with
vertices located at (0,0), (1,0), and (0,1). The basis functions are characterized by the degree of
freedom (dof) per node indicating the type of continuity applied. The local coordinate system
is (ξ,η).

dof (0,0) (1,0) (0,1)

1 φ1 = 1− φ2 − φ3 φ2 = ξ φ3 = η

3 φ1 = 1− φ4 − φ7 φ4 = 3ξ2 − 2ξ3 φ7 = 3η2 − 2η3

φ2 = ξ − φ4 − φ5 − φ8 φ5 = −ξ2 + ξ3 φ8 = 1
3

(
ξη + 2ξη2 − ξ2η

)
φ3 = η − φ6 − φ7 − φ9 φ6 = 1

3

(
ξη + 2ξ2η − ξη2

)
φ9 = −η2 + η3

evaluations. Table 5.2 summarizes the two sets of basis functions for the right tetrahedron used in
3D FEM evaluations. It should be noted that the basis functions for four degrees of freedom have
been reduced in complexity by exploiting the extra functions, φ17−19 = − 1

3xixj + 1
3x

2
ixj + 1

3xix
2
j

(1 < i < j < 3), that were generated in the process. We have arrived at the algebraic expressions
in Tab. 5.2 after subtracting φ17-φ19 from original basis functions: φ2, φ3, φ4, φ7, φ8, φ10, φ12, φ14,
and φ15.

Table 5.2: The basis functions that are used in 3D processing code for the right tetrahedron
with vertices located at (0,0,0), (1,0,0), (0,1,0), and (0,0,1). The basis functions are character-
ized by the degree of freedom (dof) per node indicating the type of continuity applied. The
local coordinate system is (ξ,η,ζ).

dof (0,0,0) (1,0,0) (0,1,0) (0,0,1)

1 φ1 = 1− φ2 − φ3 − φ4 φ2 = ξ φ3 = η φ4 = ζ

4 φ1 = 1− φ5 − φ9 − φ13 φ5 = 3ξ2 − 2ξ3 φ9 = 3η2 − 2η3 φ13 = 3ζ2 − 2ζ3

φ2 = ξ − φ5 − φ6 − φ10 − φ14 φ6 = −ξ2 + ξ3 φ10 = ξη2 φ14 = ξζ2

φ3 = η − φ7 − φ9 − φ11 − φ15 φ7 = ξ2η φ11 = −η2 + η3 φ15 = ηζ2

φ4 = ζ − φ8 − φ12 − φ13 − φ16 φ8 = ξ2ζ φ12 = η2ζ φ16 = −ζ2 + ζ3

Once the variables are set, the processing code begins evaluating each element in the mesh. This
entails constructing elemental matrices, i.e. kinetic, potential, and overlap. Each of the matrices
is populated using the benchmarked integral results and various properties of the Jacobian matrix.
In the case when cubic functions are used and the effective masses between the two materials
are different, the interface boundary condition is such that the wavefunction and its inverse mass
derivative must be continuous [36]. This condition is captured by multiplying the rows and columns
corresponding to the unknown derivative amplitudes on the interface nodes by the appropriate

75

effective mass ratio after the elemental matrices are constructed.
After each elemental matrix is constructed, it must be properly overlaid in the larger respective

global matrix. A map linking the two is needed. The map or index system must take into consider-
ation how unknown amplitudes at each node should be organized. If the following notation is used
to describe unknown amplitudes at node i,

ψi,0 = ψ ψi,1 =
∂ψ

∂x
ψi,2 =

∂ψ

∂y
ψi,3 =

∂ψ

∂z
(5.3)

our processing code wishes to organize these unknowns in the global matrices for one or more than
one degree of freedom as follows:

ψ =



ψ1,0

ψ2,0

ψ3,0

ψ4,0

ψ5,0

ψ6,0

ψ7,0

ψ8,0

...


or



ψ1,0

ψ1,1

ψ1,2

ψ1,3

ψ2,0

ψ2,1

ψ2,2

ψ2,3

...


(5.4)

With the desired global matrix organization outlined in Eg. 5.4, the indexing assigns the system
degree of freedom to each node using global node numbers and the degree of freedom per node. The
index function, index 2D, used in the processing code produces the organization of Eq. 5.4 while
avoiding inefficient nested ‘for loops’:

function [index] = index_2D(nd,ndof)

%Index_2D Assigns the system degree of freedom to the element node

% Index is system dof vector which can be used to place the elements

% associated with element matrices in the global matrices.

%

% [INDEX]=INDEX_2D(ND,NNEL,NDOF)

% INDEX: SYSTEM DOF VECTOR

% ND: VECTOR CONTAINING GLOBAL NODE NUMBERS(1 X 3)

% NDOF: DEGREE OF FREEDOM PER NODE

%--

%

start=(nd-1)*ndof+1;

if (ndof == 1)

index = start;

else

index = [start ; start+1 ; start+2];

index = index(:)’;

end

After global matrices are constructed, the only task left to do is to apply the problem’s boundary
conditions. This normally involves post-treating columns and rows of those nodes located on the
bounding box. A problem that involves an infinite potential outside a domain of interest requires
the wavefunction to vanish at the domain boundary. An equivalent effect in FEM is to set the
rows and columns corresponding to nodal wavefunction amplitudes located on the boundary box to
zero. This is done for the kinetic, potential, and overlap matrices with the caveat that the overlap
matrix diagonals where this occurs are set to 1. When the generalized eigenvalue problem is solved,
there will be n eigenvalues with the value of 0 representing n nodal wavefunction amplitudes falling
on the bounding box. These eigenvalues are ignored as they do not represent bound states. In
an unbounded domain, as in the case of a finite potential well, the wavefunction should vanish at
infinities (square integrable). In FEM, the global matrices do not need to be post-treated for this

76

type of condition. However after solving for potential bound states, their wavefunctions should be
checked to see if the nodal wavefunction amplitudes located on the bounding box ‘vanish’. If they do
not vanish, then it is possible the bounding box should be extended to accommodate the particular
wavefunction of interest.

The source code for the 2D processing code is contained below with a description of every
input/output argument, variable, and function preceded by the %.

function [glob_K,glob_V,glob_E,enodes] = FEM_3D_QD(p,t,vert,V_nodes)

%FEM_2D_QW This is finite element code that populates the global matrices

%needed to solve Schrodinger’s equation for a quantum dot (3D).

%

%

% FEM_3D_QD(P,T,VERT,V_NODES)

% GLOB_K: KINETIC ENERGY MATRIX (SPARSE MATRIX)

% GLOB_V: POTENTIAL ENERGY MATRIX (SPARSE MATRIX)

% GLOB_E: OVERLAP MATRIX (SPARSE MATRIX)

% ENODES: NODES ON THE BOUNDING BOX (NEEDED FOR POST PROCESSING)

% P: COORDINATES OF NODES (NNODES X 3)

% T: TETRAHEDRAL ELEMENTS (NEL X NNEL)

% VERT: VERTICES OF QUANTUM DOT (M X P,M VERTICES IN P DIMENSIONS)

% V_NODES: POTENTIAL AT EACH NODE OTHER THAN OFFSET IN eV (NNODES X 1)

%--

%

% Physical constants:

% m_e: mass of electron in grams

% h_bar: plancks constant in kilograms-Angstrom per second

% q: measure of electron-volt in gram-centimeter squared per second

% squared

% Variables:

% ndof: number of degrees of freedom (dof) per node (1 OR 4)

% m_eff: effective mass of semiconductor in grams(1 X 2)

% V_offset: conduction or valence band offset in eV (1 X 2)

% nnel: number of nodes per element

% nel: number of elements

% nnodes: number of nodes

% interface_nodes: nodes on interface separating the two materials

% elem_size: size of element matrices

% r,c,v: row & column indices of respective element matrix that point

% to value v.

% nd: local node indexing (1 X NNEL)

% xcoord/ycoord: local coordinate indexing (1 X NNEL)

% V: potential energy per node (1 X NNEL)

% m: effective mass of element

% J: Jacobian Matrix (2 X 2)

% Elem_K: elemental kinetic matrix (EDOF X EDOF)

% Elem_V: elemental potential matrix (EDOF X EDOF)

% Elem_E: elemental overlap matrix (EDOF X EDOF)

% index: system degree of freedom assigned to element node(1 X EDOF)

% Functions:

% surftri: Find surface triangles from mesh

% inhull: Tests if a set of points is inside a convex hull

% jacob_3D: The Jacobian for 2D mapping

% Elem_matrix_K_3D: Computes the elemental kinetic matrix

% Elem_matrix_V_3D: Computes the elemental potential matrix

% Elem_matrix_E_3D: Computes the elemental overlap matrix

% apply_interface_bc_3D: Applies the boundary conditions on the

% interface between the two materials if dof > 1.

% index_3D: Assigns the system dof to the element node

% assemble: Builds up row & column indices

77

% sparse: assembles global matrices by creating a sparse matrix

%

%ENTER USER INPUT HERE---

ndof = 4;

m_e = 9.109*10^-28;

%(1) represents well and (2) represents barrier

m_eff(1)=m_e*0.009;

m_eff(2)=m_e*0.131;

V_offset(1)=0;

V_offset(2)=2.15;

%END USER INPUT--

%

h_bar = 1.054*10^-19;

q = 1.602*10^-12;

nnel = 4;

nel=length(t(:,1));

nnode=length(p(:,1));

interface_nodes = find(ismember(p,vert,’rows’));

%

%For bound state energies, which this program is solving for, boundary

%conditions require the wavefunction to fall off at regions approaching

%infinity. In order to satisfy this, we bound the barrier region at

%"sufficient" distances.

%

enodes = unique(surftri(p,t));

%

elem_size = nnel*ndof*nnel*ndof;

r_K = zeros(nel,elem_size);r_V = zeros(nel,elem_size);r_E = zeros(nel,elem_size);

c_K = zeros(nel,elem_size);c_V = zeros(nel,elem_size);c_E = zeros(nel,elem_size);

v_K = zeros(nel,elem_size);v_V = zeros(nel,elem_size);v_E = zeros(nel,elem_size);

%

%Determine if points are inside, outside, or on QD. IN is a logical vector

%containing 1’s for points inside and on QD surface and 0 for points

%outside.

IN = inhull(p,vert,[],0.01);

%QD_elements is a vector (nel X 1) that contains a sum of each element’s

%vertices as represented by 1’s and 0’s. If this quantity equals nnodes,

%element lies inside QD.

QD_elements = sum(IN(t),2);

%

for iel=1:nel

nd = t(iel,:);

xcoord = p(nd,1);

ycoord = p(nd,2);

zcoord = p(nd,3);

if (QD_elements(iel) == nnel)

V(1:nnel) = V_offset(1) + V_nodes(nd);

m = m_eff(1);

else

V(1:nnel) = V_offset(2) + V_nodes(nd);

m = m_eff(2);

end

J = jacob_3D(xcoord,ycoord,zcoord);

%

%Construct the elemental matrices by using functions Elem_matrix_K,

%Elem_matrix_V, and Elem_matrix_E.

elem_K = ((h_bar)^2/(2*m*q))*Elem_matrix_K_3D(J,ndof);

elem_V = Elem_matrix_V_3D(J,V,ndof);

elem_E = Elem_matrix_E_3D(J,ndof);

78

%

%Add reciprical mass condition at interface if there is more than 1

%dof per node.

if (ndof > 1 && m == m_eff(1))

elem_K = apply_interface_bc_3D(elem_K,interface_nodes,nd,m_eff(2)/m);

elem_V = apply_interface_bc_3D(elem_V,interface_nodes,nd,m_eff(2)/m);

elem_E = apply_interface_bc_3D(elem_E,interface_nodes,nd,m_eff(2)/m);

end

%

%Builds up row & column indices using assemble function

%

index = index_3D(nd,ndof);

[r_K(iel,:) c_K(iel,:) v_K(iel,:)] = assemble(elem_K,index);

[r_V(iel,:) c_V(iel,:) v_V(iel,:)] = assemble(elem_V,index);

[r_E(iel,:) c_E(iel,:) v_E(iel,:)] = assemble(elem_E,index);

end

%

%Construct the global matrices using sparse and triples of

%rows/columns/values

%

glob_K = sparse(r_K,c_K,v_K,ndof*nnode,ndof*nnode);

glob_V = sparse(r_V,c_V,v_V,ndof*nnode,ndof*nnode);

glob_E = sparse(r_E,c_E,v_E,ndof*nnode,ndof*nnode);

%

end

The first line of the code specifies the calling sequence syntax for the function FEM 2D QW:

function [glob_K,glob_V,glob_E,enodes] = FEM_2D_QW(p,t,vert,V_nodes)

This function produces the following output:

• The global kinetic matrix glob K. This is a sparse matrix containing only nonzero values of
the kinetic matrix elements.

• The global potential matrix glob V. This is a sparse matrix containing only nonzero values
of the potential matrix elements.

• The global overlap matrix glob E. This is a sparse matrix containing only nonzero values of
the overlap matrix elements.

• Index vector enodes containing nodes on the bounding box, where the wavefunction should
fall to zero.

The input arguments are the following:

• The node positions p. This N × 2 matrix contains the x and y positions for each of the N
nodes.

• The triangle vertices t. This NT × 3 matrix contains the 3 vertices, each referring to the
respective node number, for each of the NT triangles in the mesh.

• The nodes on the interface vert. This vector contains the nodes that fall on the interface
separating the two materials.

• The external potential values on each node V nodes. This N × 1 vector contains values of
an additional potential besides the offset potential values occurring in the Hamiltonian at each
node. An example of an additional potential associated with each node is a strain potential as
calculated using FEM, outside of this code. If no other potential is present besides the offset
potential, supply the ‘zeros’ vector using zeros(length(p),1). The units are in eV.

79

In the beginning of the code, the variables ndof, m eff, and V offset are set by the user in the
specified units. It is recommended that variable V offset(1), which refers to the value of the
potential in the well (quantum material), be kept at 0 and the value of the offset potential barrier
be set in variable V offset(2) for convenience. These are the only variables that need to be defined
before the processing code is called.

Following the user input, the code begins by defining the relevant constants in the proper units
and assigns values to static variables:

• The number of nodes per element nnel, a scalar value.

• The number of elements in mesh nel, a scalar value.

• The number of nodes in mesh nnodes, a scalar value.

• The nodes on the interface between two materials interface nodes, a vector.

• The number of elements contained in the element matrix elem size, a scalar value.

The next few lines of the code pre-allocate space for indices (r,c) that point to each element matrix
value (v) used to eventually build each of the global matrices using the function sparse. Next, the
logical vector IN uses the function inhull to determine what nodes lie inside, outside, and on the
surface of the quantum well. This information helps determine if an element is inside or outside
the quantum material. At this point, the code begins the main ‘for loop’ and scans through each
triangular element. The element’s node numbers and coordinates are stored in a local node index
nd and local coordinate index xcoord and ycoord. Following the local indexing, the element is
determined to lie either inside or outside the quantum material. If the element falls within the
quantum material, the appropriate effective mass and offset potential are assigned, if the element
falls outside of the quantum material, the barrier effective mass and offset potential are assigned.

The 2×2 Jacobian is determined by calling the function jacob 2D and uses linear basis functions
as the coordinate transformation. Jacob 2D is defined below:

function [J] = jacob_2D(x,y)

%Jacob_2D The Jacobian for the 2D mapping

% The Jacobian is constant due to the linear transformation of local

% coordinates to global coordinates. Linear basis functions are used as

% the coordinate transformation.

%

% [J]=JACOB_2D(X,Y)

% J: JACOBIAN MATRIX (2x2)

% X: GLOBAL COORDINATES IN THE X DIRECTION(1x3)

% Y: GLOBAL COORDINATES IN THE Y DIRECTION(1x3)

%--

J(1,1) = x(2)-x(1);

J(1,2) = y(2)-y(1);

J(2,1) = x(3)-x(1);

J(2,2) = y(3)-y(1);

end

The next three lines of the code each use the functions Elem matrix K, Elem matrix V, and
Elem matrix E to construct the elemental kinetic, potential, and overlap matrices respectively. The
input arguments for the kinetic matrix are variables J and ndof, while the multiplying prefactor
((h_bar)^2/(2*m*q)) refers to constants associated with kinetic energy. Depending on the degree
of freedom, the elemental kinetic energy matrix is either a 3 × 3 or 9 × 9 matrix and constructed

using the quadratic form as represented by the equation h̄2

2m |J |ψiTr
(
Pij ·

(
J · Jt

)−1)
ψj (see Eq.

4.66), where the trace is over 2× 2 matrices. Each matrix Pij is constructed using four 3 × 3 or 9
× 9 matrices Mµ,ν , with µ = (ξ, η) and ν = (ξ, η). The matrix elements are completed as integrals
consisting of a product of basis function derivatives with respect to local coordinates ξ, η.

Mµ,ν(i, j) =

∫ 1

0

∫ 1−η

0

∇µφi(ξ, η) · ∇νφj(ξ, η) dξ dη 1 ≤ k, l ≤ 3 or 9 (5.5)

80

If there is more than one degree of freedom per node, an additional step is needed to remove the
unknown derivative amplitude’s dependence on the local coordinates. The matrix translate does
just this: 

1 0 0 0 0 0
0 J 0 0 0 0
0 0 1 0 0 0
0 0 0 J 0 0
0 0 0 0 1 0
0 0 0 0 0 J

 (5.6)

The input arguments for the potential matrix are variables J, V, and ndof. Similar to the kinetic
matrix, the potential matrix is either a 3 × 3 or 9 × 9 matrix and constructed from the following
equation:

|J |
∫ 1

0

∫ 1−η

0

φi(ξ, η)V (x, y)φj(ξ, η) dξ dη 1 ≤ i, j ≤ 3 or 9 (5.7)

The integrals are carried out over a piecewise linear approximation to the potential V (x, y) using
linear basis functions from Tab. 5.1 and the values of the potential at each of the 3 nodes given in
vector V:

V (x, y)→ V(1)φ1(ξ, η) + V(2)φ2(ξ, η) + V(3)φ3(ξ, η) (5.8)

Again if there is more than one degree of freedom per node, the matrix translate is needed to
remove the unknown derivative amplitude’s dependence on the local coordinates.

The input arguments for the overlap matrix are variables J and ndof. Similar to the kinetic and
potential matrix, the overlap matrix is either a 3 × 3 or 9 × 9 matrix and constructed from the
following equation:

|J |
∫ 1

0

∫ 1−η

0

φi(ξ, η) φj(ξ, η) dξ dη 1 ≤ i, j ≤ 3 or 9 (5.9)

Again if there is more than one degree of freedom per node, the matrix translate is needed to
remove the unknown derivative amplitude’s dependence on the local coordinates.

After the elemental matrices are constructed, the function apply interface bc 2D is called if ndof
> 1 and the element is part of the quantum material. This function determines if any of the nodes
fall on the interface and for those that do, post treats the matrix by enforcing the interface boundary
condition. This consists of multiplying each respective row and column by the appropriate effective
mass ratio.

The elemental matrices now have to be properly placed in each respective global matrix. The
function index 2D is called to assign the system degree of freedom to each element node and used
as an input argument to the function assemble. Instead of building up the global matrices from
the aggregate one piece at a time, assemble stores the row, column, and value information of each
respective element matrix in the nel × elem size matrices r, c, and v. We do this to take advantage
of the function sparse, which only retains nonzero matrix elements. After the code finishes scanning
through all the elements, we create the global matrices by calling sparse. Sparse uses r, c, and v
to generate a sparse matrix S such that S(r(k),c(k)) = v(k). Any elements of v that are zero are
ignored and any elements of v that have duplicate values of r and c are added together.

The source code for the 3D processing code is contained below with a description of every
input/output argument, variable, and function preceded by the %. As expected, the source code is
similar to the 2D processing with each line of code performing those same functions as expressed
above. The steps are synchronized to those steps in the 2D processing code so that a detailed
explanation of each line is not necessary.

function [glob_K,glob_V,glob_E,enodes] = FEM_3D_QD(p,t,vert,V_nodes)

81

%FEM_2D_QW This is finite element code that populates the global matrices

%needed to solve Schrodinger’s equation for a quantum dot (3D).

%

%

% FEM_3D_QD(P,T,VERT,V_NODES)

% GLOB_K: KINETIC ENERGY MATRIX (SPARSE MATRIX)

% GLOB_V: POTENTIAL ENERGY MATRIX (SPARSE MATRIX)

% GLOB_E: OVERLAP MATRIX (SPARSE MATRIX)

% ENODES: NODES ON THE BOUNDING BOX (NEEDED FOR POST PROCESSING)

% P: COORDINATES OF NODES (NNODES X 3)

% T: TETRAHEDRAL ELEMENTS (NEL X NNEL)

% VERT: VERTICES OF QUANTUM DOT (M X P,M VERTICES IN P DIMENSIONS)

% V_NODES: POTENTIAL AT EACH NODE OTHER THAN OFFSET IN eV (NNODES X 1)

%--

%

% Physical constants:

% m_e: mass of electron in grams

% h_bar: plancks constant in kilograms-Angstrom per second

% q: measure of electron-volt in gram-centimeter squared per second

% squared

% Variables:

% ndof: number of degrees of freedom (dof) per node (1 OR 4)

% m_eff: effective mass of semiconductor in grams(1 X 2)

% V_offset: conduction or valence band offset in eV (1 X 2)

% nnel: number of nodes per element

% nel: number of elements

% nnodes: number of nodes

% interface_nodes: nodes on interface separating the two materials

% elem_size: size of element matrices

% r,c,v: row & column indices of respective element matrix that point

% to value v.

% nd: local node indexing (1 X NNEL)

% xcoord/ycoord: local coordinate indexing (1 X NNEL)

% V: potential energy per node (1 X NNEL)

% m: effective mass of element

% J: Jacobian Matrix (2 X 2)

% Elem_K: elemental kinetic matrix (EDOF X EDOF)

% Elem_V: elemental potential matrix (EDOF X EDOF)

% Elem_E: elemental overlap matrix (EDOF X EDOF)

% index: system degree of freedom assigned to element node(1 X EDOF)

% Functions:

% surftri: Find surface triangles from mesh

% inhull: Tests if a set of points is inside a convex hull

% jacob_3D: The Jacobian for 2D mapping

% Elem_matrix_K_3D: Computes the elemental kinetic matrix

% Elem_matrix_V_3D: Computes the elemental potential matrix

% Elem_matrix_E_3D: Computes the elemental overlap matrix

% apply_interface_bc_3D: Applies the boundary conditions on the

% interface between the two materials if dof > 1.

% index_3D: Assigns the system dof to the element node

% assemble: Builds up row & column indices

% sparse: assembles global matrices by creating a sparse matrix

%

%ENTER USER INPUT HERE---

ndof = 4;

m_e = 9.109*10^-28;

%(1) represents well and (2) represents barrier

m_eff(1)=m_e*0.009;

m_eff(2)=m_e*0.131;

82

V_offset(1)=0;

V_offset(2)=2.15;

%END USER INPUT--

%

h_bar = 1.054*10^-19;

q = 1.602*10^-12;

nnel = 4;

nel=length(t(:,1));

nnode=length(p(:,1));

interface_nodes = find(ismember(p,vert,’rows’));

%

%For bound state energies, which this program is solving for, boundary

%conditions require the wavefunction to fall off at regions approaching

%infinity. In order to satisfy this, we bound the barrier region at

%"sufficient" distances.

%

enodes = unique(surftri(p,t));

%

elem_size = nnel*ndof*nnel*ndof;

r_K = zeros(nel,elem_size);r_V = zeros(nel,elem_size);r_E = zeros(nel,elem_size);

c_K = zeros(nel,elem_size);c_V = zeros(nel,elem_size);c_E = zeros(nel,elem_size);

v_K = zeros(nel,elem_size);v_V = zeros(nel,elem_size);v_E = zeros(nel,elem_size);

%

%Determine if points are inside, outside, or on QD. IN is a logical vector

%containing 1’s for points inside and on QD surface and 0 for points

%outside.

IN = inhull(p,vert,[],0.01);

%QD_elements is a vector (nel X 1) that contains a sum of each element’s

%vertices as represented by 1’s and 0’s. If this quantity equals nnodes,

%element lies inside QD.

QD_elements = sum(IN(t),2);

%

for iel=1:nel

nd = t(iel,:);

xcoord = p(nd,1);

ycoord = p(nd,2);

zcoord = p(nd,3);

if (QD_elements(iel) == nnel)

V(1:nnel) = V_offset(1) + V_nodes(nd);

m = m_eff(1);

else

V(1:nnel) = V_offset(2) + V_nodes(nd);

m = m_eff(2);

end

J = jacob_3D(xcoord,ycoord,zcoord);

%

%Construct the elemental matrices by using functions Elem_matrix_K,

%Elem_matrix_V, and Elem_matrix_E.

elem_K = ((h_bar)^2/(2*m*q))*Elem_matrix_K_3D(J,ndof);

elem_V = Elem_matrix_V_3D(J,V,ndof);

elem_E = Elem_matrix_E_3D(J,ndof);

%

%Add reciprical mass condition at interface if there is more than 1

%dof per node.

if (ndof > 1 && m == m_eff(1))

elem_K = apply_interface_bc_3D(elem_K,interface_nodes,nd,m_eff(2)/m);

elem_V = apply_interface_bc_3D(elem_V,interface_nodes,nd,m_eff(2)/m);

elem_E = apply_interface_bc_3D(elem_E,interface_nodes,nd,m_eff(2)/m);

end

83

%

%Builds up row & column indices using assemble function

%

index = index_3D(nd,ndof);

[r_K(iel,:) c_K(iel,:) v_K(iel,:)] = assemble(elem_K,index);

[r_V(iel,:) c_V(iel,:) v_V(iel,:)] = assemble(elem_V,index);

[r_E(iel,:) c_E(iel,:) v_E(iel,:)] = assemble(elem_E,index);

end

%

%Construct the global matrices using sparse and triples of

%rows/columns/values

%

glob_K = sparse(r_K,c_K,v_K,ndof*nnode,ndof*nnode);

glob_V = sparse(r_V,c_V,v_V,ndof*nnode,ndof*nnode);

glob_E = sparse(r_E,c_E,v_E,ndof*nnode,ndof*nnode);

%

end

5.4 FEM Program - Post Processing Code

Schödinger’s equation has been turned into three matrices by the processing code that represent the
following equation:

(H)ijψj = Eijψj (5.10)

This equation is in generalized eigenvalue form and the problem is reduced to finding the eigenvalues
and eigenvectors. Modern eigensolvers make quick work of this problem by employing optimized
algorithms. MATLAB’s built in function sptarn can solve the generalized eigenvalue problem Av =
λBv using sparse matrices to produce sorted generalized eigenvalues λ and a full matrix v whose
columns are the corresponding eigenvectors. As such, this function is the pillar in the post processing
code that generates the solution to Eq. 5.10. We will now begin with a detailed description of the
post processing code.

The source code for the 2D post processing code is contained below with a description of every
input/output argument, variable, and function preceded by the %.

function [E psi] = Energy_psi(glob_K,glob_V,glob_E,ndof,V)

%Energy_psi Computes the energy eigenvalues and wavefuntion

% Using the global matricies obtained from processing code, this function

% will compute the energy and normalized wavefunction. The energy levels

% are sorted from lowest to highest.

%

% [E PSI]=ENERGY_PSI (GLOB_K,GLOB_V,GLOB_E,NDOF,V)

% E: ENERGY EIGENVALUES

% PSI: NORMALIZED WAVEFUNCTION

% GLOB_K: GLOBAL KINETIC ENERGY MATRIX

% GLOB_V: GLOBAL POTENTIAL ENERGY MATRIX

% GLOB_E: GLOBAL OVERLAP MATRIX

% NDOF: DEGREES OF FREEDOM PER NODE

% V: VALUE OF SMALLEST POTENTIAL VALUE IN MESH

%--

% Functions:

% SPTARN: Eigenvalues and eigenvectors of sparse matrix in interval

% [0.1*V,V].

[psi E result] = sptarn(glob_K+glob_V,glob_E,0.1*V,V);

psi = psi(1:ndof:end,:);

for i=1:length(psi(1,:))

normal = norm(psi(:,i));

84

psi(:,i) = psi(:,i)./normal;

end

end

The first line of the code specifies the calling sequence of the syntax for the function Energy psi:

function [E psi] = Energy_psi(glob_K,glob_V,glob_E,ndof,V)

This function produces the following output:

• The sorted eigenvalues E. This vector contains the eigenvalues within the specified interval
(0.1 ∗ V, V), where V is the value of the smallest potential value in the mesh.

• The sorted eigenvectors psi. This matrix contains the wavefunction values at each node in the
columns.

The input arguments are the following:

• Sparse global kinetic matrix glob K. This sparse matrix contains the kinetic matrix elements.

• Sparse global potential matrix glob V. This sparse matrix contains the potential matrix ele-
ments.

• Sparse global overlap matrix glob E. This sparse matrix contains the overlap matrix elements.

• The degrees of freedom per node ndof.

• The value of the smallest potential value in the mesh V.

In the beginning of the code, the function sptarn is called with input arguments glob K, glob V,
glob E, 0.1 ∗V , and V , which solves for the eigenvalues and eigenvectors of Eq. 5.10 in the interval
0.1 ∗ V ≤E≤ V . The next line in the code ‘fixes’ the eigenvectors by including only wavefunction
amplitudes at each node (wavefunction derivative amplitudes resulting from ndof > 1 are discarded).
Finally, the wavefunction’s corresponding to the eigenvalues are normalized.

Only those eigenvalues with values less than the smallest potential energy value at a particular
node may result in bound states. Their wavefunction should be checked to see if it satisfies the
square integrable boundary condition. A useful test is to divide the nodes into two groups: those on
the bounding box into α and those not into β. If the ratio of

∑
α |ψα|2/

∑
β |ψβ |2 is small, then the

solutions might be of some interest and carry some physical meaning. It is important to recognize
a number of eigenvalues will be meaningless and are only an artifact of the diagonalization. The
following piece of code can produce the previously described test for eigenvalue n:

>> A = psi(enodes,n)’*psi(enodes,n);

>> int_nodes = 1:length(p);

>> int_nodes(enodes)=[];

>> B = psi(int_nodes,n)’*psi(int_nodes,n);

>> A/B

It is sometimes desirable to visualize the wavefunction to better understand its attributes. In
2D, it is easy to build a 3D plot from the coordinates of the nodes, (xi, yi), and the wavefunction
values, ψi, at those points through an interpolation. The following function simp psi plot performs
a 3D plot of the wavefunction using the triples of values (xi, yi, ψi) obtained from Energy psi :

function simp_psi_plot(gcoord,psi,n)

%simp_psi_plot Plots the wavefuntion corresponding to the energy

%eigvenvalue number obtained from Energy_psi.

%

% SIMP_PSI_PLOT (GCOORD,PSI,N)

% GCOORD: COORDINATES OF MESH

% PSI: WAVEFUNCTION

% N: ENERGY LEVEL NUMBER (OBTAINED FROM ENERGY_PSI)

%--

85

% Variables:

% F: interpolated function defined by coordinates of mesh corresponding

% to the values of the wavefunction.

% i: increment in x direction

% j: increment in y direction

% x: x coordinates used in the surface plot

% y: y coordinates used in the surface plot

% Z: interpolated wavefunction values at x and y coordinates

% Functions:

% TriScatteredInterp: Interpolate scattered data

% Meshgrid: Generate X and Y arrays for 3D plots

% Surf: 3D shaded surface plot

F = TriScatteredInterp(gcoord(:,1),gcoord(:,2),psi(:,n));

i = (max(gcoord(:,1))-min(gcoord(:,1)))/50;

j = (max(gcoord(:,2))-min(gcoord(:,2)))/50;

x = min(gcoord(:,1)):i:max(gcoord(:,1));

y = min(gcoord(:,2)):j:max(gcoord(:,2));

[X Y] = meshgrid(x,y);

Z = F(X,Y);

surf(X,Y,Z);

end

The function begins by calling the MATLAB function TriScatteredInterp, which produces an
interpolated function using the triples (xi, yi, ψi). The next few lines define the points on the physical
grid where the wavefunction is to be evaluated from the interpolated function F. The function surfc
displays the interpolated wavefunction and draws a contour plot beneath the surface.

The source code for the 3D post processing code is the same as the 2D processing. However, we
have not included a visualization function for the wavefunctions due to the complexity arising when
trying to project four dimensions on a computer screen.

5.5 FEM Program - Benchmarked Solutions

It is important for any computer program that has the purpose of solving physical problems to be
benchmarked against known solutions to test its accuracy and determine any inherent limitations.
Problems for the comparison should either come from known analytical or published solutions. In
this section, we have benchmarked our FEM program against a few known solutions in 2D and 3D.

5.5.1 Circular symmetric finite potential well in 2D

We begin the benchmarking with a circular symmetric finite potential well. A particle of mass m is
confined to the potential:

V (r) =

{
0, 0 ≤ r < a
V0, r > a

}
(5.11)

where V0 is a constant potential. Schödinger’s equation in polar coordinates is:

−h̄2

2m

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

)
ψ(r, θ) + V (r)ψ(r, θ) = Eψ(r, θ) (5.12)

Energy levels in a spherical circular well are found by factoring the wavefunction into a radial and
angular part. The angular dependence has the form ψ(θ) ' ei2πmθ, where m must be an integer.
The radial equation is just the Bessel differential equation in the interior of the well and modified
Bessel differential equation outside the well [59]. Solutions are subject to the boundary conditions:

R(r) is finite as r → 0 and R(r)→ 0 as r →∞ (5.13)

86

In the interior of the well the solutions are Bessel functions R(r) ' Jm(kr) of the first kind, with
E = h̄2k2/2m > 0. The second solutions (Ym) are rejected because they diverge and not square
integrable at the origin. For r > a and E < V0, the solutions are modified Bessel functions R(r) '
Km(κr) of the second kind, with E − V0 = h̄2(κ)2/2m < 0. We use the solution that decreases
exponentially to zero as r →∞. The solutions are determined by enforcing continuity at r = a:

Rinside(r)|r=a = Routside(r)|r=a and
Rinside(r)

dr
|r=a =

Routside(r)

dr
|r=a (5.14)

The bound state energy eigenvalues are labeled En,m, where n is the number of radial nodes and
m is the orbital angular momentum. The first five bound state energies found using the outlined
approach are compared with an FEM calculation for the circular potential well with a radius a = 10
Å and are included in Tab. 5.3. The generated mesh used in the calculations consisted of 480
nodes and 913 elements. The main observation from Tab. 5.3 is that cubic basis functions are very

Table 5.3: The first five bound state energy eigenvalues of the finite circular potential well
with a = 10Å and V0 = 5 eV using the FEM program with linear and cubic basis functions.
The approximation was carried out using 913 elements.

En,m Energy eigenvalues (eV) Energy eigenvalues (eV) Exact eigenvalues (eV)
linear basis cubic basis

(0,0) 0.190 0.186 0.186
(1,1) 0.489 0.473 0.472
(2,2) 0.899 0.848 0.846
(1,0) 1.06 0.979 0.976
(3,2) 1.421 1.307 1.304

accurate and both sets of FEM calculations yield a more accurate solution for the lower energy levels.
The wavefunction for the ground state and first excited state obtained from the FEM calculation
are displayed in Fig. 5.13a and 5.13a below.

(a) (b)

Figure 5.13: (a) Wavefunction for the ground state of circular potential well; (b) Wavefunction
for the first excited state of circular potential well.

5.5.2 Quantum wire square cross-section

In this example, we consider a quantum wire of square or rectangular cross section with a confining
potential arising from the band offset surrounding the material. The offset potential V (x, y) is

87

non-separable and characterized by:

V (r) =

{
0, −a/2 ≤ x ≤ a/2 and − b/2 ≤ y ≤ b/2
V0, elsewhere

}
(5.15)

where the dimensions of the quantum wire are a × b. The effective mass approximation is used in
Schödinger’s equation:

−h̄2

2m∗

(
∂2

∂x2
+

∂2

∂y2

)
ψ(x, y) + V (x, y)ψ(x, y) = Eψ(x, y) (5.16)

where m∗ is the either the effective mass of the quantum material mW or barrier material mB . Ram-
Mohan solved this problem for the rectangular and square quantum wires of GaAs/Al0.37Ga0.63As
using FEM for energy levels in the conduction band offset [46]. The bound state energies are
compared with our FEM calculation for the parameters included in Tab. 5.4. Similar to the circular

Table 5.4: Conduction band energy levels of a GaAs/Al0.37Ga0.63As quantum wire with square
and rectangular cross section. The parameters mW = 0.0665 · me, mB = 0.0858 · me, and
V0 = 0.276 eV are used with linear and cubic basis functions to compare against benchmark
solution.

Cross-sectional Energy eigenvalues (eV) Energy eigenvalues (eV) Energy eigenvalues (eV)
area a× b (Å2) linear basis cubic basis Benchmark

50 × 50 0.1570 0.1557 0.1553

100 × 50 0.1129 0.1113 0.1111
0.2017 0.1988 0.1976

100 × 100 0.0658 0.0634 0.0635
0.1627 0.1550 0.1552
0.1628 0.1551 0.1552
0.2518 0.2393 0.2396
0.2815 0.2745 0.2742

potential well, cubic basis functions are more accurate than linear basis functions and converge to
benchmarked solutions within 0.0001 eV. We must note an interesting observation regarding the
100 × 100 square well and the least bound energy level 0.2742 eV. Its wavefunction extends deep
into the barrier region due to small V −E. Therefore to capture this bound state, the bounding box’s
dimensions were extended to accompany this wavefunction’s penetration. Typically, we start with
a bounding box that has the dimensions 2 times the largest quantum material’s spacial dimension.
However, to accurately evaluate less tightly bound states, the bounding box must be extended. In
this case, the bounding box was extended to 400 × 400 Å2.

5.5.3 Spherically symmetric finite potential well in 3D

Now we benchmark the FEM program in 3D by considering a spherically symmetric finite potential
and a spherical quantum dot in the effective mass approximation. A particle of m is confined to
the potential given in Eq. 5.11. Schödinger’s equation is expressed in spherical coordinates. Energy
levels are found by factoring the wavefunction into a radial and angular part (Rnl(r)Y

l
m(θ, φ)) and

solving the radial equation subject to the boundary conditions in Eq. 5.13. In the interior of the well
the solutions are spherical Bessel functions R(r) ' jn(kr) of the first kind, with E = h̄2k2/2m > 0.
The second solutions (yn) are rejected because they diverge and are not square integrable at the
origin. For r > a and E < V0, the solutions are modified spherical Bessel functions R(r) ' kn(κr) of

88

the second kind, with V0−E = h̄2(κ)2/2m < 0. We use the solution that decreases exponentially to
zero as r →∞. The solutions are determined by enforcing continuity at r = a, Eq. 5.14. Similarly to
the circular potential well, bound state energy eigenvalues are labeled En,m, where n is the number
of radial nodes and m is the orbital angular momentum. The first five bound state energies found
using the outlined approach are compared with an FEM calculation for the spherical potential well
with a radius a = 10 Å and are included in Tab. 5.5. The generated mesh used in the calculations
consisted of 2095 nodes and 12309 elements.

Table 5.5: The first five bound state energy eigenvalues of the finite spherical potential well
with a = 10Å and V0 = 5 eV using the FEM program with linear and cubic basis functions.
The approximation was carried out using 12309 elements.

En,m Energy eigenvalues (eV) Energy eigenvalues (eV) Exact eigenvalues (eV)
linear basis cubic basis

(0,0) 0.349 0.317 0.317
(1,1) 0.772 0.651 0.649
(2,2) 1.392 1.071 1.065
(1,0) 1.734 1.258 1.262
(3,3) 2.172 1.578 1.563

Next we benchmark the FEM program against a spherically symmetric quantum dot with a
confining potential arising from the conduction band offset surrounding the material. This problem
is very similar to the previous spherically symmetric potential well with the conduction band offset
causing a finite spherical potential well. However, we use the effective mass approximation in
Schödinger’s equation with the effective mass varying as follows:

m(r)∗ =

{
mD, 0 ≤ r < a
mB , r > a

}
(5.17)

Levels appearing in the conduction band offset are found by factoring the wavefunction into a radial
and angular part and solving the radial equation exactly the same way as the spherical potential
well except solutions are determined by enforcing continuity at r = a:

Rinside(r)|r=a = Routside(r)|r=a and
1

mD

Rinside(r)

dr
|r=a =

1

mB

Routside(r)

dr
|r=a (5.18)

Jenks solved this problem for the quantum dot/barrier pair of InP0.35Sb0.65/AlAs0.17Sb0.83 using
the approach outlined above for energy levels in the conduction band offset [60]. The bound state
energies are compared with our FEM calculation for the parameters included in Tab. 5.6. The
generated mesh used in the calculations consisted of 4150 nodes and 24293 elements.

Table 5.6: Conduction band energy levels of a InP0.35Sb0.65/AlAs0.17Sb0.83 spherical quantum
dot. The parameters mD = 0.009 ·me, mB = 0.131 ·me, a = 35Å , and V0 = 2.15 eV are used
with linear and cubic basis functions to compare against benchmark solution.

En,m Energy eigenvalues (eV) Energy eigenvalues (eV) Exact eigenvalues (eV)
linear basis cubic basis

(0,0) 0.610 0.588 0.575
(1,1) 1.901 1.878 1.883

89

5.6 Remarks

In this chapter, we have discussed in detail all the necessary components of a computer program
designed to perform FEM analysis. More specifically, FEM analysis was focused on solving for
bound states and related wavefunctions of heterostuctures with a confining potential in two and
three dimensions. The FEM program was broken down into three main stages of source code
that included: the preprocessing, processing, and post processing stages. The preprocessing stage,
5.2, defines the physical domain of the problem and involves tessellating the region into elements
and nodes resulting into a mesh. The processing stage, 5.3, transforms the variational form of
Schödinger’s equation into matrix operations by evaluating integrals and populating matrices that
formulate the generalized eigenvalue problem. The post processing stage, 5.4, solves and visualizes
solutions of the generalized eigenvalue problem.

The FEM program source code used to solve for bound states and wavefunctions was thoroughly
examined. The main preprocessing source code QWire Mesh and QDot Mesh, used in conjunction
with distance functions defining the geometry of the quantum and barrier material, defines a con-
strained mesh that represents the heterostructure. The main processing source code FEM 2D QW
and FEM 3D QD performs the FEM analysis with an option to use linear or cubic basis functions
and populates the matrices to form the generalized eigenvalue problem. The main post processing
source code Energy psi solves and sorts the solutions to the generalized eigenvalue problem.

Emphasis on flexibility and efficiency was a primary topic that resulted FEM source code de-
sign considerations. We discussed the ideas of using linear basis functions to enforce wavefunction
continuity at each node and cubic basis functions to enforce wavefunction and derivative continuity
at each node. Linear functions result in less accurate solutions than cubic basis functions given
the same mesh. However, linear functions require less time to compute than cubic functions do.
The flexibility to use either linear or cubic basis functions is a valuable feature that has been built
into the source code. It was further discussed that FEM could be more computationally efficient if
the integrals were analytically solved and the results were hard coded into the source code. This
efficiency measure was exploited and has been built into the source code.

90

Chapter 6: Strain Induced Potential in Quantum Dot Structures

In the previous two chapters, we developed the finite element method in the context of numerically
solving Schrödinger’s equation for the purposes of finding QD-IBSC materials. This is necessary
as we relax certain restrictive assumptions that are ideal rather than realistic, i.e. geometry of the
QD. The finite element program, as described in Chap. 5, was developed with the idea of flexibility
not only in terms of accuracy but also in terms of accommodating complicated QD geometries and
additional potentials arising in the Hamiltonian other than the offset resulting from the mismatch
in materials.

In Chap. 3, we described how self-assembled QDs are realized via S&K growth. The driving
force for the growth is a lattice mismatch between barrier and QD material, which induces strain.
Remarkably, this method produces uniform coherent QDs that are a necessary requirement for the
QD-IBSC. The strain distribution, not surprisingly but largely ignored in the previous chapters,
has profound effects on the electronic structure of the QD and must be incorporated into realistic
calculations. Strain induces a strain potential, Vs, and finds its way in the Hamiltonian as an
additional potential. Deformation potential theory, originally described by Bardeen and Shockley
[61] and later generalized by Herring and Vogt [62], is used to calculate this strain potential that
shifts energy bands resulting from strain in the crystal lattice.

In this chapter, we will investigate how the strain and resulting strain potential are calculated in
the framework of the finite element method by invoking the principal of stationary action in the form
of minimizing the total strain energy. We begin in Sec. 6.1 by introducing the stress-strain equations,
total strain energy, and finite element method used to solve for strain in and around the quantum
dot. In Sec. 6.2 we extend the strain discussion to deformation potential theory with the intention
of translating the strain into the strain potential. In Sec. 6.3, we briefly present an example of a
finite element program written in MATLAB that calculates the stain and resulting strain potential.
The output from this program is used as input with the main finite element program of Chap. 5 to
account for the strain potential. We conclude in Sec. 6.4.

6.1 Strain-Stress-Displacement Relations for Quantum Dots

The growth of self-assembled QDs in the S&K mode is made possible by an initial strain caused
by lattice mismatch between two materials. Take QDs of InAs on barrier material of GaAs, both
of which are of the zinc blende structure and characterized by a single lattice constant aLC . The
lattice constants differ by about 7.2%, which causes a large stress to develop within the system. The
stress is party relieved by the formulation of InAs pyramidal dots. However, a large stress remains
and so it is essential to study the influence on the properties of the system.

Several methods can be used to study strain in a QD system but typically fall into two types of
approaches: continuum elasticity (CE) and atomistic elasticity (AE). In CE, the system is described
as an indefinitely divisible material that neglects all atomic-level information [63, 64]. The system is
considered linear and Hooke’s law governs. On the other hand, as the name suggests, AE models the
atomic displacement field of the crystal with material specific inter-atomic potentials to determine
the crystal configuration. The two approaches asymptotically converge with increasing feature size.
Both approaches are well suited and justified within their limits. Just as quantum mechanics would
not be applied to describing the motion of a cannonball shot from a cannon, AE would not be
applied to describing the strain field within an I-beam and vise versa. However, the two methods
should be critically evaluated for the application at hand. Boxberg et al. has done just this for
self-assembled QDs and concluded that CE is sufficient for describing strain within the QD system
[65]. Computationally efficient and appropriate for the finite element method, we use CE in our
strain calculations throughout the rest of this thesis.

91

In CE, we view both the QD and barrier material as linearly elastic meaning that each material
will return to its original form after being deformed by a force. The relationship between the strain1,
ε, and stress2,σ, is described by Hooke’s law. Hooke’s law in its simplest form is given by

σx = Eεx (6.1)

εx =
du

dx
(6.2)

where σx is in the x direction, E = modulus of elasticity of the material, and u is the displacement
in the x direction. As way of background, we will provide a brief extension of Hooke’s law in three
dimensions for isotropic material (the amount of material on this subject is extensive and an attempt
at categorizing a select few as ‘standard’ would slight those not included. However references that
we found useful on this subject include [66, 67, 68]). As a prerequisite, we must classify the stress
and strain as ‘normal’ or ‘shear’. Normal stress and strain act in the direction perpendicular to the
surface while shear stress and strain act in the direction along surface. First, consider only normal
stress and strain. Normal stress in the x direction produces positive strain in the x direction and we
employ Eq. 6.2. However, normal stress in both the y and z (σy and σz) directions produce negative
strains in the x direction via modified version of Eq. 6.2 using the material’s Poisson’s ratio3, ν ,
such that

ε⊥x = −ν σy
E
− ν σz

E
(6.3)

where ε⊥x is the strain contribution from normal stresses σy and σz. Imposing superposition, we
arrive at normal strain in the x direction, εx

εx = ε‖x + ε⊥x (6.4)

εx =
σx
E
− ν σy

E
− ν σz

E
(6.5)

Strains in the x and y directions can be determined in a similar manner as in Eq. 6.5 such that

εy = −ν σx
E

+
σy
E
− ν σz

E
(6.6)

εz = −ν σx
E
− ν σy

E
+
σz
E

(6.7)

It is convenient to express the normal strains in terms of normal stresses and vice versa in matrix
form.  εx

εy
εz

 =
1

E

 1 −ν −ν
−ν 1 −ν
−ν −ν 1

 ·
 σx
σy
σz

 (6.8)

 σx
σy
σz

 = E

 1 −ν −ν
−ν 1 −ν
−ν −ν 1

−1

·

 εx
εy
εz

⇒
E

(2ν − 1)(ν + 1)

 ν − 1 −ν −ν
−ν ν − 1 −ν
−ν −ν ν − 1

 ·
 εx
εy
εz

 (6.9)

Equation 6.9 is in a form that we will be able to exploit.

1Strain is a description of the deformation in terms of relative displacement.
2Stress is a measure of the internal forces acting within a deformable body. Quantitatively, it is a measure of the

average force per unit area of a surface within the body on which internal forces act.
3Poisson’s ratio is the ratio, when a sample object is stretched, of the contraction or transverse strain (perpendicular

to the applied load), to the extension or axial strain (in the direction of the applied load).

92

Hooke’s law for normal stress and strain also applies to shear stress, τ , and strain, γ

τ = Gγ (6.10)

where G is the shear modulus analogous to the modulus of elasticity. In three dimensions, there are
a total of 3 independent shear strains and stresses such that

τxy = Gγxy τyz = Gγyz τzx = Gγzx (6.11)

and we can compactly express the normal and shear stresses in a 6 × 1 vector σ in terms of a
stress/strain 6× 6 matrix C and 6× 1 strain vector ε

σ = C · ε (6.12)
σx
σy
σz
τxy
τyz
τzx

 =
E

(2ν − 1)(ν + 1)

×



ν − 1 −ν −ν 0 0 0
−ν ν − 1 −ν 0 0 0
−ν −ν ν − 1 0 0 0

0 0 0 G(2ν−1)(ν+1)
E 0 0

0 0 0 0 G(2ν−1)(ν+1)
E 0

0 0 0 0 0 G(2ν−1)(ν+1)
E


·


εx
εy
εz
γxy
γyz
γzx

 (6.13)

We notice that the stress/strain matrix C in Eq. 6.13 is symmetric and has three independent
elements: C11, C12, and C44. These three independent elastic constants are either experimentally
measured or theoretically calculated and presented in the literature, especially for the technologically
important compound semiconductors.

Our derivation of Hooke’s law in three dimensions, albeit brief and certainly not exhaustive, was
done with the idea of applying FEM to calculate the induced strain (and eventually strain potential)
caused from the initial strain provided by the lattice mismatch between the QD and barrier materials.
To this end, it is incomplete and we must include initial strain effects. To understand how to modify
Hooke’s law to incorporate initial strains, we look to another physical phenomenon that equivalently
acts as an initial strain and is well understood.

A thermal stress results when a body is constrained from deforming as it is subjected to a
temperature change and, due to the constraints, causes an initial strain. The system will respond to
the initial strain and relax in order to lower its elastic energy. Hooke’s law is modified to incorporate
this initial strain as follows [67]

σ = C · (ε− εT) (6.14)

where ε is the relaxation strain vector and εT is the thermal strain vector. The thermal strain is
calculated from a material’s coefficient of thermal expansion, α, multiplied by temperature change
∆T

εT = α∆T (6.15)

where α is typically in units of (in./in.)/◦F or (mm/mm)/◦C. The relaxation strain is then calculated
by invoking the principal of stationary action in the form of minimizing the strain energy.

Analogous to the initial strain caused by lattice mismatch between two materials, we adopt the
modification to Hooke’s law in Eq. 6.14 from thermal stress and will assign a fictitious thermal strain
to the QD system. Then, by minimizing the strain energy of the system, U , we find the relaxation
strain, which in turn is used to find the strain potential.

We now turn our focus and apply FEM to calculate the strain of the QD system. For the
ensuing discussion, we will begin with FEM generalities as we did in Chap. 4 followed by the

93

specifics, i.e. populating the fictitious thermal strain vector. We will only consider three dimensions
and assume tetrahedral elements with four nodes, although the discussion is applicable to one and
two dimensions.

Applying FEM in this context begins at defining the strain energy of the system [67]

U =

∫
Ω

(∫ ε
0

σdε

)
dΩ (6.16)

By substituting σ with C · (ε− εT) from Eq. 6.14 and performing the integration with respect to
ε, we have in matrix form

U =
1

2

∫
Ω

εt ·Ct · ε dΩ−
∫

Ω

εt ·Ct · εT dΩ (6.17)

U =
1

2

∫
Ω

εt ·C · ε dΩ−
∫

Ω

εt ·C · εT dΩ (6.18)

where εt is the transpose of ε and have made use of Ct =C.
The next step is to define ε in terms of unknown nodal displacements, which we will eventually

solve for and use to determine the strain. The unknown nodal displacements are given in vector d
and relate to ε through the matrix B

ε = B · d (6.19)

Both B and d will be more fully defined but for the purposes of minimizing Eq. 6.18, we make use
of Eq. 6.19 to obtain the strain energy in terms of d.

U =
1

2

∫
Ω

dt ·Bt ·C ·B · d dΩ−
∫

Ω

dt ·Bt ·C · εT dΩ (6.20)

In a similar approach to deriving the integral form of Schödinger’s equation (see Eq. 4.1), a variation
is placed on the function U such that any variation with respect to the nodal variables in d is
stationary. The result is the following

δU

δd
=

∫
Ω

Bt ·C ·B · d dΩ−
∫

Ω

Bt ·C · εT dΩ = 0 (6.21)∫
Ω

Bt ·C ·B · d dΩ =

∫
Ω

Bt ·C · εT dΩ (6.22)

The left hand side of the equation, not including d, is a matrix called the stiffness matrix, while
the right side of the equation is a vector called the force vector. The vector d contains unknown
coefficients that represent the displacement in each spatial direction at a particular node. Therefore,
in three dimensions there are three degrees of freedom per node for a total of 12 degrees of freedom
for a tetrahedron element. If the number of elements in a mesh is NE , then the stiffness matrix in
Eq. 6.22 turns into

NE∑
α=1

(∫
Ωα

Bt ·C ·B dΩα

)
︸ ︷︷ ︸

Mα
ij

dαj (6.23)

where Mα
ij is the elemental stiffness matrix and dαj contains the unknown displacement coefficients

within the element. The force vector in Eq. 6.22 turns into

NE∑
α=1

(∫
Ωα

Bt ·C · εT dΩα

)
︸ ︷︷ ︸

Fα
i

(6.24)

where Fαi is the elemental force vector. Integrals are carried out for each element and placed into

94

the global algebraic equation
Mijdj = Fi (6.25)

Once the boundary conditions are properly treated in Eq. 6.25, we call a matrix inversion to
determine the unknown coefficients of vector d. The strain in each element is determined from the
calculated d and equation Eq. 6.19 (see Sec. 6.3 for specifics).

Analogous to Chap. 4, we represent each elemental displacement function by a linear combination
of a finite set of basis functions such that

u(x, y, z) =

n∑
i=1

uiφi(x, y, z), v(x, y, z) =

n∑
i=1

viφi(x, y, z), w(x, y, z) =

n∑
i=1

wiφi(x, y, z) (6.26)

where u, v, and w are the elemental displacement functions in the x, y, and z directions respectively,
ui, vi, and wi are the unknown coefficients of vector d, φi(x, y, z) are basis functions, and the
summation’s upper limit is the number of basis functions per element. For our application, we
choose basis functions that have a linear polynomial form (see Eq. 4.56). Again, we define a
benchmark element with the intention of linearly mapping all other elements in the mesh to the
benchmark element. We assume the benchmark element is the standard tetrahedron and is defined
in local coordinates (ξ, η, ζ) with vertices located at (0, 0, 0), (1, 0, 0), (0, 1, 0), and (0, 0, 1). Again,
the basis functions are defined in Eq. 4.58 and repeated below for convenience.

φ1(ξ, η, ζ) = 1− ξ − η − ζ
φ2(ξ, η, ζ) = ξ

φ3(ξ, η, ζ) = η (6.27)

φ4(ξ, η, ζ) = ζ

The coordinate transformation between the (ξ, η, ζ)→ (x, y, z) can be expressed as a linear combi-
nation of the basis functions (see Eq. 4.59). To define the elemental stiffness matrix and elemental
force vector, we consider the first element in a mesh and assume it contains nodes n = 1, 2, 3, 4 for
the tetrahedron. In matrix form, the expressions for u, v, and w in first element are

 u(x, y, z)
v(x, y, z)
w(x, y, z)

→
 φ1 0 0 φ2 0 0 φ3 0 0 φ4 0 0

0 φ1 0 0 φ2 0 0 φ3 0 0 φ4 0
0 0 φ1 0 0 φ2 0 0 φ3 0 0 φ4

 ·



u1

v1

w1

·
·
·
u4

v4

w4


(6.28)

6.1.1 Elemental Stiffness Matrix

We begin by examining the stiffness matrix in three dimensions. It is constructed from Eq. 6.23

M =

∫ ∫ ∫
Bt ·C ·B dx dy dz (6.29)

95

where C is the stress/strain matrix as defined in Eq. 6.13 above but the matrix B is still unknown.
It is well known that strain in three dimensions is related to the displacement as follows [67, 69]


εx
εy
εz
γxy
γyz
γzx

 =



∂u(x,y,z)
∂x

∂v(x,y,z)
∂y

∂w(x,y,z)
∂z

∂u(x,y,z)
∂y + ∂v(x,y,z)

∂x
∂v(x,y,z)

∂z + ∂w(x,y,z)
∂y

∂w(x,y,z)
∂x + ∂u(x,y,z)

∂z


(6.30)

We can utilize the elements of the 3 × 3 inverse Jacobian, J−1, for the necessary coordinate transfor-
mation. The column vector containing the partial derivatives of the elemental displacement functions
with respect to the global coordinates as in Eq. 6.30 is represented in the following form

∂u(x,y,z)
∂x

∂v(x,y,z)
∂y

∂w(x,y,z)
∂z

∂u(x,y,z)
∂y + ∂v(x,y,z)

∂x
∂v(x,y,z)

∂z + ∂w(x,y,z)
∂y

∂w(x,y,z)
∂x + ∂u(x,y,z)

∂z


=



J−1
11 0 0 J−1

21 0 0 J−1
31 0 0

0 J−1
12 0 0 J−1

22 0 0 J−1
32 0

0 0 J−1
13 0 0 J−1

23 0 0 J−1
33

J−1
12 J−1

11 0 J−1
22 J−1

21 0 J−1
32 J−1

31 0
0 J−1

13 J−1
12 0 J−1

23 J−1
22 0 J−1

33 J−1
32

J−1
13 0 J−1

11 J−1
23 0 J−1

21 J−1
33 0 J−1

31

 ·



∂u(x,y,z)
∂ξ

∂v(x,y,z)
∂ξ

∂w(x,y,z)
∂ξ

∂u(x,y,z)
∂η

∂v(x,y,z)
∂η

∂w(x,y,z)
∂η

∂u(x,y,z)
∂ζ

∂v(x,y,z)
∂ζ

∂w(x,y,z)
∂ζ


(6.31)

where (J−1)ij refers to the individual elements of J−1. The 6× 9 matrix on the right hand side of
Eq. 6.31 we call . The column vector on the right hand side containing the partial derivatives of
the elemental displacement functions is represented by

φ1,ξ 0 0 φ2,ξ 0 0 φ3,ξ 0 0 φ4,ξ 0 0
0 φ1,ξ 0 0 φ2,ξ 0 0 φ3,ξ 0 0 φ4,ξ 0
0 0 φ1,ξ 0 0 φ2,ξ 0 0 φ3,ξ 0 0 φ4,ξ

φ1,η 0 0 φ2,η 0 0 φ3,η 0 0 φ4,η 0 0
0 φ1,η 0 0 φ2,η 0 0 φ3,η 0 0 φ4,η 0
0 0 φ1,η 0 0 φ2,η 0 0 φ3,η 0 0 φ4,η

φ1,ζ 0 0 φ2,ζ 0 0 φ3,ζ 0 0 φ4,ζ 0 0
0 φ1,ζ 0 0 φ2,ζ 0 0 φ3,ζ 0 0 φ4,ζ 0
0 0 φ1,ζ 0 0 φ2,ζ 0 0 φ3,ζ 0 0 φ4,ζ


·



u1

v1

w1

·
·
·
u4

v4

w4


(6.32)

where the comma after the subscript indicates differentiation with respect to the variable that
follows. We have made use of the benchmark elemental displacement function from Eq. 6.28 and
decomposed it into a 9 × 12 matrix B′. The abbreviated column vector in Eq. 6.32 is just the
unknown coefficients of vector d for which we are solving for. Using Eq. 6.31 and Eq. 6.32, we
obtain the 6× 12 matrix B

B =  ·B′ (6.33)

96

Transforming the integral of Eq. 6.29 into local coordinates, which requires the Jacobian deter-
minant |J |, will represent the elemental stiffness matrix:∫ 1

0

∫ 1−η

0

∫ 1−η−ζ

0

B′t · t ·C ·  ·B′ |J | dξ dη dζ (6.34)

with the limits of integration over the standard tetrahedron. One of the advantages of defining the
benchmark element is to carry out the integrals once so that the extra computational operations
required to perform numerical integration techniques are not employed. In Eq. 6.34, we observe
that the entries of each matrix are constant as well as the Jacobian determinant and can be brought
outside the integral. For the problem at hand, the integrals are carried out and the elemental stiffness
matrix is transformed into the following

M = |J | × 1

6
·B′t · t ·C ·  ·B′ (6.35)

The elemental stiffness matrix is a 12× 12 matrix. Now it only remains to assemble each elemental
matrix entry in the global 3N × 3N stiffness matrix for an N node mesh.

To the best of our knowledge, the approach that we have taken in determining B above is
original. Most techniques tend to calculate the coefficients of the basis functions for every element
in the mesh and directly determine B rather than use the basis functions of Eq. 6.28. To verify our
approach, we consider a tetrahedral element with its four nodes located (1, 1, 2), (0, 0, 0), (0, 2, 0),
and (2, 1, 0). The matrix B has been determined (see Example 12.1 in reference [67]) as

B =


0 0 0 − 1

4 0 0 − 1
4 0 0 1

2 0 0
0 0 0 0 − 1

2 0 0 1
2 0 0 0 0

0 0 1
2 0 0 − 1

8 0 0 − 1
8 0 0 − 1

4
0 0 0 − 1

2 − 1
4 0 1

2 − 1
4 0 0 1

2 0
0 1

2 0 0 − 1
8 − 1

2 0 − 1
8

1
2 0 − 1

4 0
1
2 0 0 − 1

8 0 − 1
4 − 1

8 0 − 1
4 − 1

4 0 1
2

 (6.36)

Using Eq. 6.32, B′ is determined from the basis functions

B′ =



−1 0 0 1 0 0 0 0 0 0 0 0
0 −1 0 0 1 0 0 0 0 0 0 0
0 0 −1 0 0 1 0 0 0 0 0 0
−1 0 0 0 0 0 1 0 0 0 0 0

0 −1 0 0 0 0 0 1 0 0 0 0
0 0 −1 0 0 0 0 0 1 0 0 0
−1 0 0 0 0 0 0 0 0 1 0 0

0 −1 0 0 0 0 0 0 0 0 1 0
0 0 −1 0 0 0 0 0 0 0 0 1


(6.37)

while  is determined by evaluating the Jacobian, taking its inverse, and then placing the inverse
Jacobian’s elements in Eq. 6.31. The Jacobian matrix is evaluated from the nodal coordinates given
in the example and its inverse is taken as

J =

 −1 −1 1
−1 1 0
−2 −2 −2

 J−1 = 8 ·

 −2 −4 −1
−2 4 −1

4 0 −2

 (6.38)

Substituting the results from the inverse Jacobian into Eq. 6.31, we obtain . Finally from Eq. 6.33,
B is evaluated. The resulting 6× 12 matrix, being arduous to evaluate longhand is best left to the
computer, is the same as Eq. 6.36.

97

6.1.2 Elemental Force Vector

We begin by examining the force vector in three dimensions. It is constructed from Eq. 6.24

F =

∫ ∫ ∫
Bt ·C · εT dx dy dz (6.39)

where C is the 12 × 12 stress/strain matrix as defined in Eq. 6.13 above, B is the 6 × 12 matrix
defined in the previous section, and εT is a fictitious 6 × 1 thermal strain vector representing an
initial strain. The initial strain is taken as the difference between the lattice constants of QD and
the barrier with respect to the barrier such that the initial strain ε0 is [70]

ε0 =
aQDLC − aBLC

aBLC
(6.40)

where aQDLC and aBLC are the lattice constants of the QD and barrier material respectively. The initial
strain is measured with respect to the barrier material and is modeled such that it only occurs within
the dot [71, 72, 73]. Thus, elements within the barrier material do not experience an initial strain.
In addition, during self-assembled QD growth, the in-plane direction experiences this initial strain
only as a dilation, meaning shear components are zero [74]. It is generally assumed that the in-plane
direction initial strain is accompanied by a purely dilation out-of-plane initial strain proportional to
ε0 [65, 75]. The initial out-of-plain strain is found using Eq. 6.13, where we solve for

0 = C12(ε0 + ε0) + C11εzz

εzz = −2C12

C11
ε0 (6.41)

In light of this information and in the context of Eq. 6.15, the fictitious thermal strain vector is just

εT =

{
∆T · [0 0 0 0 0 0]

t
, Barrier

∆T ·
[
ε0 ε0 − 2C12

C11
ε0 0 0 0

]t
, QD

}
∆T = 1 (6.42)

where ε0 is just Eq. 6.40 and the fictitious rise in temperature is ∆T = 1.
Transforming the integral of Eq. 6.39 into local coordinates, which requires the Jacobian deter-

minant |J |, will represent the elemental force vector:∫ 1

0

∫ 1−η

0

∫ 1−η−ζ

0

B′t · t ·C · εT |J | dξ dη dζ (6.43)

with the limits of integration over the standard tetrahedron. We have made use of Eq. 6.33, as we
did in the elemental stiffness matrix construction. All the entries making up Eq. 6.43 are constant as
well as the Jacobian determinant and can be brought outside the integral. The integrals are carried
out and the elemental stiffness matrix is transformed into the following

M = |J | × 1

6
·B′t · t ·C · εT (6.44)

The elemental stiffness matrix is a 12 × 1 vector. Now it only remains to assemble each elemental
matrix entry in the global 3N × 1 force vector for an N node mesh.

6.1.3 Boundary Conditions

Following the prescription above, it is possible to construct the global algebraic equation Eq. 6.25
necessary to determine the unknown nodal displacements and eventually the strain in each element.
However before a matrix inversion is called, the matrixM and vector F must be treated for boundary

98

conditions. Understanding the problem is paramount to understand how we treat the rows and
columns of the stiffness matrix and rows of the force vector that represents the nodal displacement
values occurring on the bounding box of the mesh. As an example (see benchmarked example in Sec.
6.3), let’s consider a QD that is buried in an infinite amount of barrier material. The assumption of
an infinite amount of barrier material corresponds to the situation that exists when the QD is deeply
buried in the barrier material and the boundaries do not impact the strain state. The displacement
at points approaching infinity must decay to zero. For strain calculations using FEM, this type of
boundary condition is enforced by requiring the nodal displacements on the mesh’s bounding box
be zero. This is necessary because, in most cases, the stiffness matrix is singular meaning that
applying boundary conditions, artificial or not, is a requirement to coax the matrix inversion needed
to calculate displacement and strain. The rows and columns in the stiffness matrix corresponding
to those displacement values in all three spacial directions on the mesh boundary are removed.
Similarly, those same rows in the force vector are removed. At this point the stiffness matrix can
be inverted and subsequently multiplied by the force vector. In this example, the stiffness matrix
and force vector are reduced in size by three times the number of nodes on the bounding box. It
is important to analyze the solution in order to verify that the artificial boundaries did not impact
the results. We suggest a comparison of two differently sized meshes. If differences occur, it is likely
that the artificial boundaries had an influence on the solution. The analysis must be repeated until
the two results converge.

6.2 Strain Potential

Strained heterostructures induce a non-negligible potential, Vs, that can be determined by defor-
mation potential theory. Bardeen and Shockley originally formulated the theory in the context of
non-degenerate energy bands and it was later generalized by Herring and Vogt [61, 62]. Bir and
Pikus specifically applied the theory to strained materials [76]. In this section, we introduce the
origins of the strain potential and highlight the important aspects.

Let us define the coordinates before and after the deformation as r and r′ and the strain vector
ε. Therefore, we have the relation

r′ − r = ε · r (6.45)

where we have used a slightly different notation for the strain, which is defined in its matrix form
[77].

ε =

 εx γxy/2 γxz/2
γxy/2 εy γyz/2
γxz/2 γyz/2 εz

 =

 εxx εxy εxz
εxy εyy εyz
εxz εyz εzz

 (6.46)

with an inversion, we get

r = (1− ε) · r′ (6.47)

ri ≈ r′i −
∑
j

εijr
′
j (6.48)

The deformation potential originates from transforming Schrödinger’s equation from the new
coordinates to the old coordinates. The differential operator ∇′ expressed in the old coordinates
using Eq. 6.48 and the chain rule is

∂

∂r′i
=
∑
j

∂rj
∂r′i
· ∂
∂rj

=
∂

∂ri
−
∑
j

εji
∂

∂rj
(6.49)

∇′ = (1− ε) · ∇ (6.50)

Therefore, ∇′ · ∇′ is just

∇′ · ∇′ = ∇ · ∇ − 2
∑
i,j

∇i · εij · ∇j (6.51)

99

where the higher terms of ε have been neglected. Expanding the potential V (r′) in terms of the old
coordinates is

V (r′) = V [(1 + ε) · r] = V0(r) +
∑
i,j

Vijεij , Vij =
∂V

∂εij
|εij→0 (6.52)

As shown above in Eqs. 6.51 and 6.52, Schrödinger’s equation includes additional terms correspond-
ing to the strain and can be grouped into a strain potential

Vs =
h̄2

m∗

∑
ij

∇i · εij · ∇j +
∑
ij

Vijεij =
∑
ij

Dijεij (6.53)

Dij =
h̄2

m∗
∇i · ∇j + Vij

where D is called the deformation potential tensor and has the units of energy. As with the elasticity
constants, the deformation potential tensor elements are empirically derived and found in the litera-
ture containing band parameters. In the conduction band, the change in the conduction-band-edge
energy due to strain can be described by one deformation constant and the hydrostatic strain such
that the strain potential is

V cs = −ac(εxx + εyy + εzz) (6.54)

where the superscript refers to the respective band, in this case the conduction band. In the valence
band, a more complex picture emerges. A single deformation constant is insufficient to describe
the shift in the valence-band-edge energy. This is due to the degenerate nature of the valence
band: interaction between the heavy, light, and spin-orbit split off bands. There are two additional
potentials b and d needed to describe the shear terms that split the degeneracy. This is described
as the Bir-Pikus strain interaction [76]. The heavy and light band strain potential is given as

V v1
s = −av(εxx + εyy + εzz)− 3b[(L2

x −
1

3
L2)εxx + cp]

−
√

3d[(LxLy + LyLx)εxy + cp] (6.55)

where L is the angular momentum operator and cp is cyclic permutation with respect to the indices
x, y, z. The spin-orbit split off potential is given as

V v2
s = −av(L · σ) · (εxx + εyy + εzz)− 3b[(Lxσx −

1

3
L · σ)εxx + cp]

−
√

3d[(Lxσy + Lyσx)εxy + cp] (6.56)

where σ is the Pauli matrix vector.
The strained potentials above are dependent on the strain components as calculated using the

procedure in Sec. 6.1 and deformation potential tensor. Due to the breadth of available literature
on the experimentally found deformation potential constants, the bulk of work is in calculating the
strain. Once the strain components of the strain matrix are found, it becomes trivial to solve for
the elemental strain potential.

While the strain potentials arising from deformation potential theory that results in Eqs. 6.54-
6.56 are correct, context within the larger discussion of k·p perturbation theory that takes place in
Chap. 7 is necessary. By doing so, we will explicitly not only put deformation potential theory in
perspective but effective mass theory as well.

6.3 Example of a FEM Strain Program

In this section, we follow the prescription from Sec. 6.1 and offer a MATLAB program that is used
to calculate the strain in and around a QD with the intention of translating the strain into elemental
strain potentials in such a format that is compatible with the FEM processing code from Sec. 5.3.

100

We then benchmark the program output to known analytic solutions as we did previously for FEM
programs. Appropriately, program logic is similar to the program logic of the FEM processing code.

As with the previous FEM code, instead of approximating all the integrals using quadrature,
we have carried out the integrals analytically on a benchmark element and ‘hardcoded’ the results.
The benchmark element is the standard tetrahedron with vertices (0, 0, 0), (1, 0, 0), (0, 1, 0), and
(0, 0, 1). Each element from the mesh is linearly mapped to the benchmarked element to ensure the
Jacobian entries and its determinant are constant. The step requiring integral evaluation has been
removed and the code’s objectives are reduced to: populating the stiffness matrix and force vector,
performing a matrix inversion to determine nodal displacements, determining elemental strain from
nodal displacements, and finally determining strain potential. The ideas following in the next few
paragraphs explain the general structure of the program and highlight the more important aspects.

There are a number of variables that must be set before the program begins. The first variable,
a, is used to assign the lattice constant of the QD and barrier materials in Angstrom units. The rest
of the variables pertain to the quantum and barrier material’s elasticity constants and deformation
potential constants: elasticity constants expressed in units of stress expressed giga-pascals (GPa),
and deformation potential constants expressed in the electron-volt (eV) unit.

Unlike the previous FEM processing code, we have not included the option for the user to choose
the type of basis functions. Instead, the linear basis functions from Eq. 6.28 are used to ensure nodal
continuity and are constructed from the standard tetrahedron. After the variables are set, the code
begins evaluating each element in the mesh. This entails constructing the elemental stiffness matrix
and force vector. Each is populated using the benchmarked integral results, various properties of the
Jacobian matrix, stress/strain matrix containing the elasticity constants, and, in the force vector’s
case, the initial strain vector.

After each elemental matrix is constructed, it must be properly overlaid in the larger respective
global matrix or vector. A map linking the two is needed. The map or index system must take
into consideration how unknown displacements at each node should be organized. If the following
notation is used to describe unknown displacements at node i,

di,1 = u1 di,2 = v1 di,3 = w1 (6.57)

our code wishes to organize these unknowns in the global stiffness matrix and global force vector as
follows:

ψ =



d1,1

d1,2

d1,3

d2,1

d2,2

d2,3

d3,1

d3,2

...


(6.58)

With the desired global organization outlined in Eg. 6.58, the indexing assigns the system degree of
freedom to each node using global node numbers and three degrees of freedom per node. The index
function, index 3D, similar to the function of the same name in the processing code produces the
organization of Eq. 6.58 while avoiding inefficient nested ‘for loops’.

After global matrices are constructed, the next step is to apply the problem’s boundary conditions
as discussed in Sec. 6.1.3. This involves post-treating columns and rows of those nodes located on the
bounding box. The rows and columns in the stiffness matrix corresponding to nodal displacement
values that are to be set to zero on the mesh boundary are removed. Similarly, those same rows
in the force vector are removed. The function dofbc performs this task. At this point, the stiffness
matrix can be inverted and subsequently multiplied by the force vector to obtain the displacement
values at each node. Finally, after the displacement values are found, the code runs through all the

101

elements to determine the strain (and strain potential) using Eq. 6.19. We should note that in order
to obtain the total strain in each element, the initial mismatch strain vector is subtracted from the
induced relaxation strain.

The source code for the program calculating the strain is contained below with a description of
every input/output argument, variable, and function preceded by the %. We will not offer a detailed
line by line explanation as done in the previous chapter since the logic and subroutines are similar
to the FEM processing code and simple descriptions are included in the code below.

function [d e] = FEM_3D_Strain(p,t,vert)

%FEM_3D_Strain This is finite element code that is designed to find the

%the strain for a self-assembled QD.

%

%

% FEM_3D_Strain(P,T,VERT,V_NODES)

% D: DISPLACEMENT VALUES AT EACH NODE (NNODES*3 X 1)

% E: STRAIN VALUE FOR EACH ELEMENT (NEL X 1)

% P: COORDINATES OF NODES (NNODES X 3)

% T: TETRAHEDRAL ELEMENTS (NEL X NNEL)

% VERT: VERTICES OF QUANTUM DOT (M X P,M VERTICES IN P DIMENSIONS)

%--

%

% Physical constants:

% a: lattice constant of QD and barrier material, units of A (1 X 2)

% C: elastic constants of QD and barrier material, units of GPa (3 X 2)

% e_i: initial strain

% Variables:

% ndof: number of degrees of freedom (dof) per node

% nnel: number of nodes per element

% nel: number of elements

% nnodes: number of nodes

% enodes: nodes on the bounding box

% B: derivative matrix (9 X 12)

% interface_nodes: nodes on interface separating the two materials

% elem_size: size of stiffness matrix and force vector

% r,c,v: row & column indices of respective element matrix or vector

% that point to value v.

% nd: local node indexing (1 X NNEL)

% xcoord/ycoord: local coordinate indexing (1 X NNEL)

% C: elastic properties of element

% E_o: Initial strain vector (6 X 1)

% Jac: Jacobian Matrix (3 X 3)

% J: inverse Jacobian (3 X 3)

% D: Elastic constant matrix (6 X 6)

% J_mod: Modified Jacobian matrix from Eq. 6.31 (6 X 9)

% elem_S: Elemental stiffness matrix (12 X 12)

% elem_F: Elemental force matrix (12 X 1)

% index: System degree of freedom assigned to element node(1 X 12)

% glob_S: Global stiffness matrix

% glob_F: Global force matrix

% bc_index: degree of freedom assigned to boundary condition nodes

% glob_S_int: Global stiffness matrix that has been treated for

% boundary conditions

% glob_F_int: Global force matrix that has been treated for boundary

% conditions

% d_int: nodal displacements not including bc_index displacements

%

% Functions:

% surftri: Find surface triangles from mesh

% inhull: Tests if a set of points is inside a convex hull

102

% jacob_3D: The Jacobian for 3D mapping

% Elem_matrix_S_3D: Computes the elemental stiffness matrix

% Elem_matrix_F_3D: Computes the elemental force vector

% index_3D: Assigns the system dof to the element node

% assemble: Builds up row & column indices

% sparse: assembles global matrices by creating a sparse matrix

% dofbc: returns those nodes on the bounding box that have a boundary

% condition

% apply_bc: Applies the boundary conditions to a global matrix or

% vector, i.e. removes rows and columns corresponding to

% bc_index

%

%ENTER USER INPUT HERE---

%(1) represents dot and (2) represents barrier

a(1)=5.472;

a(2)=5.430;

C_11(1)=1.603;

C_12(1)=0.6188;

C_44(1)=0.4921;

C_11(2)=1.675;

C_12(2)=0.650;

C_44(2)=0.5125;

%END USER INPUT--

%

e_i=(a(1)-a(2))/a(2);

ndof = 3;

nnel = 4;

nel=length(t(:,1));

nnode=length(p(:,1));

d = zeros(nnode*ndof,1);

B = [-1 0 0 1 0 0 0 0 0 0 0 0; 0 -1 0 0 1 0 0 0 0 0 0 0;...

0 0 -1 0 0 1 0 0 0 0 0 0; -1 0 0 0 0 0 1 0 0 0 0 0;...

0 -1 0 0 0 0 0 1 0 0 0 0; 0 0 -1 0 0 0 0 0 1 0 0 0;...

-1 0 0 0 0 0 0 0 0 1 0 0; 0 -1 0 0 0 0 0 0 0 0 1 0;...

0 0 -1 0 0 0 0 0 0 0 0 1];

interface_nodes = find(ismember(p,vert,’rows’));

%

enodes = unique(surftri(p,t));

%

e = zeros(nel,6);

S_elem_size = nnel*ndof*nnel*ndof;

F_elem_size = nnel*ndof;

r_S = zeros(nel,S_elem_size);r_F = zeros(nel,F_elem_size);

c_S = zeros(nel,S_elem_size);

v_S = zeros(nel,S_elem_size);v_F = zeros(nel,F_elem_size);

%

%Determine if points are inside, outside, or on QD. IN is a logical vector

%containing 1’s for points inside and on QD surface and 0 for points

%outside.

IN = inhull(p,vert,[],0.01);

%QD_elements is a scalar that sums each element’s

%vertices as represented by 1’s and 0’s. If this quantity equals nnodes,

%element lies inside QD.

QD_elements = sum(IN(t),2);

%

for iel=1:nel

nd = t(iel,:);

xcoord = p(nd,1);

ycoord = p(nd,2);

103

zcoord = p(nd,3);

if (QD_elements(iel) == nnel)

C(1) = C_11(1);

C(2) = C_12(1);

C(3) = C_44(1);

E_o = [e_i;e_i;e_i;0;0;0];

else

C(1) = C_11(2);

C(2) = C_12(2);

C(3) = C_44(2);

E_o = [0;0;0;0;0;0];

end

D = [C(1) C(2) C(2) 0 0 0 ; C(2) C(1) C(2) 0 0 0 ;...

C(2) C(2) C(1) 0 0 0 ; 0 0 0 C(3) 0 0 ; 0 0 0 0 C(3) 0 ;...

0 0 0 0 0 C(3)];

Jac = jacob_3D(xcoord,ycoord,zcoord);

J = inv(Jac);

J_mod = [J(1,1) 0 0 J(2,1) 0 0 J(3,1) 0 0;...

0 J(1,2) 0 0 J(2,2) 0 0 J(3,2) 0 ;...

0 0 J(1,3) 0 0 J(2,3) 0 0 J(3,3) ;...

J(1,2) J(1,1) 0 J(2,2) J(2,1) 0 J(3,2) J(3,1) 0 ;...

0 J(1,3) J(1,2) 0 J(2,3) J(2,2) 0 J(3,3) J(3,2) ;...

J(1,3) 0 J(1,1) J(2,3) 0 J(2,1) J(3,3) 0 J(3,1)];

%

%Construct the elemental matrix elem_S by using function Elem_matrix_S

elem_S = Elem_matrix_S_3D(J_mod,D,B,Jac);

%Construct the elemental vector elem_F by using function Elem_matrix_F

elem_F = Elem_vector_F_3D(J_mod,D,B,E_o,Jac);

%

%Builds up row & column indices using assemble function

%

index = index_3D(nd,ndof);

[r_S(iel,:) c_S(iel,:) v_S(iel,:)] = assemble(elem_S,index);

r_F(iel,:) = index;

v_F(iel,:) = elem_F;

end

%

%Construct the global matrix and vector using sparse and triples of

%rows/columns/values

%

glob_S = sparse(r_S,c_S,v_S,ndof*nnode,ndof*nnode);

glob_F = sparse(r_F,1,v_F,ndof*nnode,1);

%

bc_index = dofbc(enodes,ndof,p,1);

glob_S_int = apply_bc(glob_S,bc_index,1);

glob_F_int = apply_bc(glob_F,bc_index,2);

%

d_int = glob_S_int \ glob_F_int;

ind = 1:nnode*ndof;

ind(bc_index)=[];

d(ind)=d_int;

%Determine the strain in each element

for iel=1:nel

nd = t(iel,:);

d_dof = dofbc(nd,ndof,[],1);

xcoord = p(nd,1);

ycoord = p(nd,2);

zcoord = p(nd,3);

104

Jac = jacob_3D(xcoord,ycoord,zcoord);

J = inv(Jac);

J_mod = [J(1,1) 0 0 J(2,1) 0 0 J(3,1) 0 0;...

0 J(1,2) 0 0 J(2,2) 0 0 J(3,2) 0 ;...

0 0 J(1,3) 0 0 J(2,3) 0 0 J(3,3) ;...

J(1,2) J(1,1) 0 J(2,2) J(2,1) 0 J(3,2) J(3,1) 0 ;...

0 J(1,3) J(1,2) 0 J(2,3) J(2,2) 0 J(3,3) J(3,2) ;...

J(1,3) 0 J(1,1) J(2,3) 0 J(2,1) J(3,3) 0 J(3,1)];

if (QD_elements(iel) == nnel)

e(iel,:) = J_mod*B*d(d_dof)-[e_i;e_i;e_i;0;0;0];

else

e(iel,:) = J_mod*B*d(d_dof);

end

end

clear r_S r_F c_S v_S v_F;

end

Now, we benchmark the FEM program against a spherically symmetric QD that is infinitely
embedded in barrier material. Grundmann et al. and Yang et al. both solved this problem in
spherical coordinates [78, 79] by understanding the symmetry, i.e. the displacement is purely radial
with no shear, and application of the boundary condition for the radial displacement u(r) in the QD
and barrier materials:

u−(R)− u+(R) = ε0R (6.59)

where R is the radius of the QD and ε0 lattice mismatch of Eq. 6.40, leads to the following strain
equations:

εrr(r) = εθθ(r) = εφφ(r) =
3KQDε0

3KQD + 4GB
− ε0 , r < R (6.60)

εrr(r) =

[
3KQDε0

3KQD + 4GB

]
R3

r3
, r > R (6.61)

εθθ(r) = εφφ(r) = −
[

3KQDε0
3KQD + 4GB

]
R3

2r3
, r > R (6.62)

where K refers to the bulk modulus of the respective material, G refers to the shear modulus of
the respective material, and the subscript refers to QD or barrier material. This simple example
underscores some important features of strain calculations for QD’s: the trace of the strain matrix
(dilation) is uniform inside and outside the QD and the strain does not depend on the geometrical
size of the QD.

Yang et al. solved this problem for the quantum dot/barrier pair of Si0.8Ge0.2/Si and found that
inside the QD, strain is −3.4 × 10−3 and dilation is −0.0102 using Eq. 6.62 [79]. Outside the dot,
it is trivial to realize that dilation is zero from Eq. 6.62. Our FEM program calculates the strain
in Cartesian coordinates and certain operations on the strain matrix give the same result without
regard to which orthonormal coordinate system is used to represent the components of strain. One
of those invariants is the trace of the strain matrix. Therefore, we compare the trace of the FEM
calculated strain matrix to that of the analytically calculated strain matrix. Elastic and lattice
constants are taken from Yang and used as inputs to our FEM strain program. The generated
mesh used in the calculations consisted of 6137 nodes and 35818 elements, spherical QD of radius 10
units (units are arbitrary), and bounding box with each edge 25 units. Since the displacement must
decay to zero at infinity, we artificially placed these boundary conditions on the nodes falling on the
surfaces of the bounding box. The QD consisted of 7442 elements and because linear basis functions
are used, the strain is constant in each element of the mesh. We found that the average dilation in
each element making up the QD was −0.0105 with a standard deviation of 0.00032. Outside the
QD in the barrier material, our results were similar.

105

6.4 Remarks

Due to the QD growth mechanism, strain forms in and around the QD and accurate models describing
the electronic structure of the system must include this additional physics. Strain finds its way into
the Hamiltonian via deformation theory as a strain potential. In this chapter, we introduced how
strain is modeled in the QD using continuum elasticity theory. We deliberately described the theory
in matrix notation with the intention of integrating it to the FEM. We then proceeded with the FEM
generalities of our approach to continuum elasticity theory, followed by more rigorous derivations of
FEM in terms of the stiffness matrix and force vector.

Following the FEM description of strain in a QD system, we offered up how this additional
physics could be translated into the Hamiltonian. In very general terms, we described deformation
potential theory but delayed the larger necessary discussion of k·p perturbation theory incorporating
deformation potential theory and notion of the effective mass for Chap. 7. Finally, we described
the FEM program used to solve strain in the QD system and benchmarked the program against the
analytic solution of the spherical QD.

106

Chapter 7: Quantum Dot Intermediate Band Solar Cell Materials

The notion that increasing the efficiency of the conventional solar cell beyond its thermodynamic
maximum by rethinking the design based on a simplistic idea could become a reality with the advent
of modern technology. The theoretical intermediate band solar cell was offered as a possible solution
overcoming the relatively poor efficiency of traditional designs. We found the conventional conversion
device absorbs incident light at a maximum efficiency of 31% and could be increased to 41% under
fully concentrated light. However, under certain operating conditions, the intermediate band solar
cell would increase the maximum conversion efficiency dramatically to 46.8% for incident light and
63.2% under fully concentrated light for one intermediate band. It was also shown that adding
another intermediate band incrementally increases the theoretical conversion efficiency to 52.1% for
incident light and 72.4% under fully concentrated light. A physical realization of the intermediate
band solar cell is the QD-IBSC. In Chap. 3 we detailed the QD-IBSC and found some preliminary
combinations of the III-V ternary alloys that could increase the maximum conversion efficiency to
70% based on certain restrictive assumptions.

In this chapter, we look to relax those restrictive assumptions and search for realistic combinations
of the technologically important III-V compound semiconductors and their alloys for the QD-IBSC
that will increase the thermodynamic efficiency greater than 46% for incident light and greater than
62% for concentrated light. We begin in Sec. 7.1 by evaluating the assumptions that made it
possible to find the prospective QD-IBSC materials in Chap. 3.3 and offer alternatives that closer
mirror reality. In Sec. 7.2, we describe the model that permits us to determine possible material
combinations for the QD-IBSC that boost maximum conversion efficiency beyond the conventional
device. Results based on our model are discussed in Sec. 7.3. We make concluding remarks in Sec.
7.4.

7.1 Assumptions

Evaluating the assumptions used to find materials for the QD-IBSC becomes of critical importance
to the credibility of making the claim that certain material combinations are better QD-IBSC candi-
dates than others. In order to leverage theoretically models to investigate the electronic structure of
S&K grown QD’s, assumptions based on experimental observation will help justify model results. In
instances where experimental observations are either difficult to quantify or have not been performed,
assumptions should be based on a known similar observation, numerical simulations, or some other
‘best estimate’. In Chap. 3.3, we assumed the QD was spherically symmetric with a diameter that
could be varied. The shape was chosen because of the relative ease in determining the energy levels
and respective wavefunctions rather than experimental evidence suggesting a spherical nature to the
QD. Reported shapes of QDs are of wide variety, including pyramidal, truncated pyramidal, lens,
hemispherical, multifaceted domes, etc. [80, 78, 81, 82, 83, 84]. However, spherical S&K QD’s have
not been observed. Therefore, the assumption that QD’s are spherical should be updated to include
more realistic geometry. Although, there is merit to performing calculations on the spherical QD, as
it helps us understand some of the more general features and could quite possibly be manufactured
at some point in the future due to technological advances.

Due to the complex nature, operating conditions, and various methods of S&K growth, it is
difficult to predict the size and shape of the QD’s for given material combinations. We performed
a literature search to find typical geometry of QD’s that will be used in our calculations. Table
7.1 displays a selected few QD systems that have been experimentally observed summarizing typical
geometrical shapes and dimensions. It should be noted that growth parameters, such as temperature,
have been omitted from Tab. 7.1. They do play a critical role in the size and distribution of the
QD’s, so there is a certain amount of control during growth.

107

Table 7.1: Selected experimentally observed data coherent self-assembled S&K growth sys-
tems.

Material Base Height Geometry Reference
QD/Barrier (nm2) or (nm) (nm)

InAs/GaAs 12×12 5-6 pyramid-square base [85]
(Ga,Al)Sb/GaAs 24-32 2.3-4.1 lens [86]

InSb/GaAs 55-65 5.3-6.3 lens [86]
InGaAs/GaAs 15-25×15-25 5-6 pyramid-square base [87]

InAs/InP 45×45 7 truncated pyramid-square base [88]
InP/GaInP 60×40 15 truncated pyramid-rectangular base [89]

Based on reported experimental observations that detail the geometry of the QD, we propose to
limit the scope of our analysis to two QD geometries: a pyramid with square base and a truncated
pyramid with square base. The scope of geometry is limited to the numerous calculations that
must be performed and is justified by the large number of experimental observations that have been
reported depicting the proposed geometry. The geometry is highlighted in Fig. 7.1. The pyramid
with square base is defined by two dimensions, while the truncated pyramid is defined by three
dimensions (see fig. 7.1).

Figure 7.1: The two types of geometry used in our analysis: pyramid and truncated pyramid.
The pyramid is defined by the two dimensions b and h on the figure, while the truncated pyramid
is defined by three dimensions b, h, and a.

As previously discussed, strain enters the Hamiltonian as an additional potential in self-assembled
S&K QD’s. This potential, as we will demonstrate, has a profound effect on the band structure
and must be included for serious calculations. In Chap. 3.3, we assumed strain was negligible
and omitted the strain-induced potential in the Hamiltonian. Similar to the spherically symmetric
geometry assumption, strain was assumed negligible because of the relative ease in performing back-
of-the-envelop simplistic calculations. In this chapter, we do not assume that strain is negligible and
further develop the strain-induced potential in the context of k·p perturbation theory.

For an electron in a periodic potential such as crystal, the wavefunction can be described by
Bloch functions [10]:

ψ
nk(r) = φ

nk(r)eik·r (7.1)

108

where n is the discrete band index, k is the wavevector, and φk(r) is a periodic function with the
periodicity of the crystal. Substituting Eq. 7.1 into Schrödinger’s equation, we obtain a equation
similar to Schrödinger’s equation but with two extra terms:

∂2ψ
nk(r)

∂r2
= −k2eik·rφ

nk(r) + 2ikeik·r
∂φ

nk(r)

∂r
+ eik·r

∂2φ
nk(r)

∂r2
(7.2)[

−h̄2

2m
·
(
−k2 + 2ik +∇2

)
+ V (r)

]
φnk(r) = Eφnk(r) (7.3)[

−h̄2∇2

2m
+ V (r)

]
︸ ︷︷ ︸

H0

φ
nk(r) +

[
h̄2k2

2m
+
h̄

m
k · p

]
︸ ︷︷ ︸

H1

φ
nk(r) = Eφ

nk(r) (7.4)

where H0 is considered the unperturbed Hamiltonian, H1 is considered the perturbed Hamiltonian
and we made use of p = −ih̄∇. For direct-band zinc-blende materials, which describe the materials
in our research, states near the conduction band minimum (k = 0), φk(r) = φc0(r) possess s-like
orbital symmetry. States near the valence band maximum possess p-like orbital symmetry and are
linear combinations of px, py, and pz [90]. At k = 0 and disregarding the spin-orbit coupling for the
moment, states are three-fold degenerate in the valence band. We assume that the energy eigenvalues
and wavefunctions for k = 0 are known as En(0) and φv0(r). We look for four energy eigenvalues,
that of the conduction band and the three valence bands: heavy hole, light hole, and split off band.
The corresponding known energy eigenvalues are given as Ec = Eg and Ehh = Elh = Eso = 0, where
Eg refers to the direct band gap. Using perturbation theory, we obtain the nth energy eigenvalue

En(k) ≈ En(0) +
h̄2k2

2m0
+
h̄2

m2
0

∑
m 6=n

|〈n|k · p|m〉|2

En(0)− Em(0)
(7.5)

1

m∗n
=

1

m0

1 +
2

m0k2

∑
m6=n

|〈n|k · p|m〉2

En(0)− Em(0)

 (7.6)

En(k) = En(0) +
h̄2k2

2m∗n
(7.7)

where we have used Dirac notation to represent the conduction and valence band basis and the
first order matrix elements vanish due to symmetry arguments in the zinc-blende crystals [91].
We quickly observe that the valence bands are coupled to the conduction band through the matrix
element 〈n|k·p|m〉, affecting the curvature of the respective band, with the strength of the interaction
directly related to Eg. It is seen from Eq. 7.7 that we have recovered the effective mass but in terms
of the coupling matrix element.

The valence band basis set that is used in evaluating the coupling matrix is in the JMj basis by
combining the p-like orbitals, l = 1, with spin s = 1/2 leads to j = 3/2 and j = 1/2 states. It can
be shown that basis set is simple linear combinations [92]

|3
2
,

3

2
〉 =

1√
2
|(x+ iy) ↑〉, (7.8)

|3
2
,−3

2
〉 =

1√
2
|(x− iy) ↓〉, (7.9)

|3
2
,

1

2
〉 =

1√
6
|(x+ iy) ↓〉 −

√
2√
3
|z ↑〉, (7.10)

|3
2
,−1

2
〉 = − 1√

6
|(x− iy) ↑〉 −

√
2√
3
|z ↓〉, (7.11)

|1
2
,

1

2
〉 =

1√
3
|(x+ iy) ↓〉+

1√
3
|z ↑〉, (7.12)

109

|1
2
,−1

2
〉 = − 1√

3
|(x− iy) ↑〉+

1√
3
|z ↓〉, (7.13)

|1
2
,

1

2
〉c = i|s ↑〉, (7.14)

|1
2
,
−1

2
〉c = i|s ↓〉 (7.15)

where we have also included the conduction band states as well. Let us first consider the conduction
band, which is a fairly isolated band in most III-V semiconductors [91] and is nondegenerate. In the
one band approximation, we apply the basis set to Eq. 7.7 and get an effective mass for electrons
in the conduction band

1

m∗c
=

1

m0

[
1 +

2

m0k2

(
k2P

2Eg
+
k2P

6Eg
+
k2P

3Eg

)]
(7.16)

where P = 〈s|p|i〉 = 〈s|pi|i〉 (originally defined by Kane [93]), with i = x, y, z. This is entirely
consistent with our initial derivation of the effective mass as seen in Eq. 3.2-3.5 but gives us
additional insight into its nature: the effective mass of electrons in the conduction band increases
as the band gap increases. If the spin-orbit interaction is included in the Hamiltonian, the form
of Eq. 7.16 changes slightly but since the effective mass is determined experimentally this makes
little practical difference. The main assumption in the effective mass equation is that interband
separations are large compared with the energies involved in the solution of the effective mass
equation. Thus, the effective mass entering in Schrödinger’s equation seen in the previous chapters
is entirely consistent under the one band or parabolic approximation. However, this is not the case
with the degenerate valence band.

As the spin-orbit interaction is included in the Hamiltonian (treated as a perturbation), the
degenerate valence band states at k = 0 split into degenerate heavy-hole and light-hole states, and
split-off state separated by the energy 4. The eigenvalues at k = 0 are now given by Ec = Eg,
Ehh = Elh = 0, and Eso = −4. The split-off energy of a particular semiconductor is typically
determined experimentally and published in band parameter literature. In our analysis, we make
the assumption that the split off band is isolated, as with the conduction band, and does not interact
with the other bands [78].

The heavy-hole and light-hole states are degenerate and require degenerate perturbation theory.
Using the basis states in the degenerate subspace Eq. 7.8-7.11, we can obtain a 4× 4 Hamiltonian
that can be diagonalized to determine the dispersion relations. Luttinger and Kohn worked out the
Hamiltonian to be [90]

H = H0 +H1 =


−P +Q −S R 0
−S∗ −P −Q 0 R
R∗ 0 −P −Q S
0 R∗ S∗ −P +Q


| 32 ,

3
2 〉

| 32 ,
1
2 〉

| 32 ,−
1
2 〉

| 32 ,−
3
2 〉

(7.17)

P =
h̄2

2m0
γ1

(
k2
x + k2

y + k2
z

)
(7.18)

Q =
h̄2

2m0
γ2

(
k2
x + k2

y − 2k2
z

)
(7.19)

R =
h̄2

2m0

√
3
[
−γ2

(
k2
x − k2

y

)
+ 2iγ3kxky

]
(7.20)

S =
h̄2

2m0
2
√

3γ3 (kx − iky) kz (7.21)

where γ1, γ2, and γ3 are called the modified Luttinger parameters. These parameters contain P ,
that couples the conduction band to valence bands, and are convenient to work with theoretically

110

although they don’t have any physical meaning. Similar to the effective mass, Luttinger parameter
values are found in literature containing band parameters.

In the Hamiltonian equation above, we can replace the k-values by kj = i · ∇j that will result in
four coupled differential equations. This is a much different scenario than the single effective mass
differential equation, i.e. Schrödinger’s equation with spatially varying effective mass, describing
the conduction band electrons. For our analysis, we are only concerned with the valence band
maximum in both the barrier and QD materials, instead of locating bound states caused by the
valence band offset. As noted in Chap. 3, valence band offsets will support bound states, in fact
many bound states, and as a criterion for potential QD-IBSC materials, only material combinations
with negligible valence band offsets were considered. However, when strain is introduced, the likely
hood of this condition is greatly diminished because the valence band offset caused by a difference in
energy gaps would need to negate the strain potential caused by the lattice mismatch. In addition,
the valence band offset is uniform but due to the non-uniform strain for QD geometry considered,
the strain potential will be non-uniform furthering the difficulty to satisfy this criterion. For the
purposes of this analysis, we make the assumption that bound states formed in any valence band
offset will merge together as they spread out into bands, effectively shrinking the band gap of the
barrier material. The modified band gap of the barrier material will be determined by the following
formula

Eg = EBg − (Vo + Vs) (7.22)

where EBg is the barrier’s unmodified direct band gap at k = 0, Vo is the valence band offset caused
by difference in energy gaps at k = 0, and Vs is the strain potential occurring at the valence band
at k = 0.

Returning to the 4 × 4 Hamiltonian, we can solve for the dispersion relations by diagonalizing
Eq. 7.17

|Hij − δijE| = 0 (7.23)

and find that the degeneracy of the heavy hole and light hole is lifted for k 6= 0

Ehh = −P +
√
Q2 +R∗ ·R+ S∗ · S (7.24)

Elh = −P −
√
Q2 +R∗ ·R+ S∗ · S (7.25)

with Ehh and Elh each being doubly degenerate. We will now build on the Hamiltonian in Eq. 7.17
to incorporate the strain induced potential. In the last chapter, we found how strain introduces an
additional potential in Schrödinger’s equation via deformation potential theory. The strain potential
from Eq. 6.53 is treated as a perturbation using the k·p Hamiltonian basis, leaving only the terms
linear in strain. Pikus and Bir first derived this strain potential in this context and, as expected,
has a very similar form as Eq. 7.17 [94, 95, 96]

Vs =


−p+ q −s r 0
−s∗ −p− q 0 r
r∗ 0 −p− q s
0 r∗ s∗ −p+ q


| 32 ,

3
2 〉

| 32 ,
1
2 〉

| 32 ,−
1
2 〉

| 32 ,−
3
2 〉

(7.26)

p = av (εxx + εyy + εzz) (7.27)

q = − b
2

(εxx + εyy − 2εzz) (7.28)

r =

√
3b

2
(εxx − εyy)− idεxy (7.29)

s = −d (εxz − iεyz) (7.30)

where the three parameters av, b, and d are the deformation constants as introduced in Chap. 6.2.
Understanding that these constants arise from perturbation theory, it can be inferred that they
describe the coupling of the valence bands to the strain [96]. Theoretically, it is possible to calculate

111

them but, as with the effective mass, it is more convenient to fit the deformation potentials to
experimental results. We can immediately see the relationship between Eq. 7.17 and Eq. 7.26

kikj −→ εij (7.31)

− h̄2

2m0
γ1 −→ av (7.32)

− h̄
2

m0
γ2 −→ b (7.33)

−
√

3h̄2

m0
γ3 −→ d (7.34)

Now this strain potential Hamiltonian is inserted into the Luttinger and Kohn Hamiltonian such
that Eq. 7.17 is modified to

HPB =


−P − p+Q+ q −S − s R+ r 0
−S∗ − s∗ −P − p−Q− q 0 R+ r
R∗ + r∗ 0 −P − p−Q− q S + s

0 R∗ + r∗ S∗ + s∗ −P − p+Q+ q

 (7.35)

and we can solve for the dispersion relations by diagonalizing HBP , which results in

Ehh = − h̄2

2m0
γ1

(
k2
x + k2

y + k2
z

)
− av (εxx + εyy + εzz) +

√
A+B + C (7.36)

Elh = − h̄2

2m0
γ1

(
k2
x + k2

y + k2
z

)
− av (εxx + εyy + εzz)−

√
A+B + C (7.37)

where

A =

(
h̄2

m0
γ2

)2

·
(
k2
x + k2

y + k2
z

)2
+ 3

(
h̄2

m0

)2 [
(γ3)2 − (γ2)2

]
·
(
k2
xk

2
y + k2

xk
2
z + k2

yk
2
z

)
(7.38)

B =
b2

2

[
(εxx − εyy)2 + (εxx − εzz)2 + (εyy − εzz)2

]
+ d2(ε2xy + ε2xz + ε2yz) (7.39)

C = −b h̄
2

m0
γ2

[
3
(
k2
xεxx + k2

yεyy + k2
zεzz

)
−
(
k2
x + k2

y + k2
z

)
(εxx + εyy + εzz)

]
−d2
√

3
h̄2

m0
γ3 (kxkyεxy + kxkzεxz + kykzεyz) (7.40)

Again, each eigenvalue is doubly degenerate but we find that the strain lifts the degeneracy between
of the light hole and heavy hole at k = 0

Ehh(k = 0) = −av (εxx + εyy + εzz) +B1/2 (7.41)

Elh(k = 0) = −av (εxx + εyy + εzz)−B1/2 (7.42)

Values for the deformation potential constants are such that av < 0, b < 0, and d < 0 and for
compressive strain, as in the QD, the valence band moves down in energy (and conduction band
moves up in energy). Under these conditions, the heavy hole energy at k = 0 sits energetically higher
than the light hole at k = 0 and will be used as the strain potential Vs in Eq. 7.22 to calculate the
barrier’s band gap with strain included.

We must note that bound states located within a potential well formed by the valence bands
of a QD heterostructure could be solved using FEM. We follow a similar procedure from Chap. 4.
We must first construct the appropriate action integrals that will generate the coupled “Schrödinger
equations” of Eq. 7.35. Next, we choose an appropriate basis functions for each the four elemental
wavefunctions (light hole, heavy hole, and their spin degeneracies) using the previously developed

112

prescription. Then, the elemental wavefunctions are substituted into the action integrals. The
integrals are carried out to construct the elemental matrix and then properly overlaid into the global
matrix. We then exercise the principle of station action by placing a variation on the unknown nodal
wavefunction values. Finally, we treat the boundary conditions within the global matrix and it is
input into any standard generalized eigenvalue solver. Eigenvalues represent potential bound states
and corresponding eigenvectors represent nodal wavefunction values.

7.2 Model

The theoretical model that will be used to investigate promising QD-IBSC materials begins by
defining the geometry. We have discussed the two types of geometry that will be used in the
calculations: a pyramid with square base and a truncated pyramid with square base. The three
dimensional mesh program introduced in Chap. 5 will be used to tessellate the stated geometry
into tetrahedral elements. Next, we calculate the strain for chosen QD and barrier materials using
the finite element method and program outlined in Chap. 6. As a reference and guide for material
selections, Fig. 7.2 depicts the direct bandgaps for the III-V binary compound semiconductors
(points) and some of their ternary alloys (curves) as a function of the lattice constant. An observation

Figure 7.2: Direct band gaps (k = 0) for the III-V binary compound semiconductors (points)
and some of their ternary allows (curves) as a function of their lattice constants. In general,
QD material will have a larger lattice constant than barrier counterparts. Courtesy of [1].

made from the figure is the lattice constants of small bandgap semiconductors are generally greater
than large bandgap semiconductors. This is the reason why most QD’s experience compressive
strain, which in-turn leads to the widening of the QD band gap. The resulting strain and deformation
constants are then used to calculate the respective strain potential within the QD/barrier material
system. The heavy hole strain potential, Eq. 7.41, will be used to calculate the shift in the valence
band due to strain and the conduction band strain potential, Eq. 6.54, will be used to calculate
the shift in the conduction band due to strain. The Hamiltonian consisting of a spatially varying
effective mass and the conduction band offset potential plus the conduction band strain potential

113

is used in the FEM context described in Chap. 4 to calculate the bound states appearing in the
conduction band, which will be performed on the same mesh used for the strain calculations. As
mentioned, the valence band offset is assumed to merge with the barrier’s valence band, essentially
shrinking the barrier’s band gap. This assumption will be valid for ‘small’ valence band offsets or
≈ 50 meV. This value is chosen based on numerical experiments performed on the spherical QD.
Figure 7.3 depicts the conduction and valence band offsets for the direct band gap III-V binary
semiconductors. The conduction (valence) band offset between two semiconductors is taken as the
difference between the conduction (valence) energetic position.

Figure 7.3: Conduction (filled) and valence (open) band offsets for the III-V binary compound
semiconductors as a function of their lattice constants. The direct band gap for a given semi-
conductor corresponds to the difference between the conduction and valence band positions.
Courtesy of [1].

We have decoupled the valence band from the conduction band for the purpose of performing a
large number of numerical calculations, thereby reducing the computational cost. This is appropriate
due to weak interaction between the two bands [78]. In addition, it has been suggested that more
complicated Hamiltonians, i.e. coupling the valence to the conduction band (8×8 Hamiltonian) or
including additional physics (piezoelectric effect, where solutions are affected by less than 1 meV [78,
97]), give results that are no better than the input band parameters used [98]. Instead of looking for
materials to produce the maximum efficiency, as in Chap. 3, we will be choosing slightly less efficient
systems that are more robust under parameter perturbation to account for uncertainties. As in our
previous work from Chap. 3, band parameters are taken from the Vurgaftman et al. comprehensive
review for the III-V semiconductors. A particular material system will then be compared to the
theoretical models outlined in Chap. 2. Only those material systems that match the IBSC efficiency
greater than 46% for unconcentrated light and greater than 62% for fully concentrated light will be
identified as potential candidates.

For the QD-IBSC containing one intermediate band under unconcentrated light, the effective
band gap must be in the range of 2.06 eV ≤ Eg ≤ 2.71 eV for an efficiency ≥ 46% (see Sec. 2.1).
Under fully concentrated light, the effective band gap must in the range of 1.63 eV ≤ Eg ≤ 2.31
eV for an efficiency ≥ 62%. Taken together, we have the requirement 1.63 eV ≤ Eg ≤ 2.71 eV

114

for the effective band gap. This begins to narrow down the potential barrier materials from Fig.
7.2 to the binary compounds: AlSb and InN and ternary alloys: AlGaAs, AlInAs, GaInP, AlInP,
InAsSb, AlAsSb, GaAsP, GaPSb, AlPSb, GaInN, AlInN, GaAsN, GaPN, and InPN. In addition to
this requirement placed on the effective band gap, we place a requirement on the transition energy
E2 to account for design uncertainties

E2(E1) ≈ b(E1) + a(E1)

2
(7.43)

where a(E1) and b(E1) are the polynomial functions taken from Eqs. 2.13 and 2.14 (not to be
confused with the deformation potential constants). Potential QD materials must possess a gap
that is smaller than the barrier gap, thereby limiting the potential QD’s to the binary compounds:
GaSb, InSb, and InAs and all their ternary alloys.

As a practical matter, the efficiency of a particular system does not depend on the order of the
energy transition levels, E1 and E2. Efficiency depends only on the transition energies themselves.
As an example, we saw in Chap. 2 that a theoretical efficiency of 63.2% is achieved under fully
concentrated light when E1 = 0.70 eV and E2 = 1.23 eV. However, the efficiency of 63.2% is also
achieved if E1 = 1.23 eV and E2 = 0.70 eV rendering the order of the transition energies unim-
portant. With this understanding, we place a criterion on the conduction band offset of potential
material systems. The conduction band offset must be at a minimum 0.57 eV, which corresponds
to the smallest energy transition in our search (see Eq. 2.14).

For the QD-IBSC containing two intermediate bands under unconcentrated light, we search for
conversion efficiencies ≥ 50%. For fully concentrated light, we search for for conversion efficiencies
≥ 70%. We do know that the effective band gap must be ≥ 2.0 eV in order to produce desired
efficiencies, which will eliminate 6 of the 12 binary compound semiconductors from being considered
barrier material. Potential barrier materials include: AlN, GaN, GaP, AlP, AlAs, and AlSb with
their ternary alloys considered candidates as well. Unfortunately, similar requirements placed on
the energy transitions that aid in the material selection process for the QD-IBSC containing one
intermediate band are not available for the QD-IBSC containing two intermediate bands. Each
effective band gap has its own efficiency profile in terms of the two energies E1 and E2. The analytic
expressions describing a desired interval for one effective band gap will not be the same for another
effective band gap, making this type of calculation less useful. A remedy is to perform a sensitivity
analysis on each effective band gap of those material selections that are found to meet the efficiency
requirement. Potential QD materials will be the the same as in the one intermediate band search
and a similar criterion placed on the conduction band offset will apply.

We apply our theoretical model to InAs QDs embedded in GaAs, which is very widely studied
from a experimental and theoretical standpoint, for benchmarking purposes. Band parameters for
InAS and GaAs are taken from Vurgaftman et. al and for convenience displayed in Tab. 7.2.
We immediately notice that the valence band offset is non-negligible, 0.21 eV, thus immediately
eliminating the material system from being a potential QD-IBSC. In any case, the conduction band
offset is 0.892 eV and the large lattice mismatch of 7.16% is more than sufficient to stimulate S&K
growth. We choose the square-based pyramid geometry that has the dimensions 16× 3 nm (base ×
height) for InAS to benchmark the calculations performed on this system by Kuo et al. [74]. The
analysis was completed on a cubic mesh defined by the dimension of 40 nm consisting of over 3, 000
nodes and 20, 000 elements. We calculated the average elemental conduction band strain potential
inside the QD as 0.306 eV using Eq. 6.54, which increases the conduction band of InAs by the same
amount, reducing the conduction band offset by about 0.586 eV (average elemental conduction band
strain potential outside the QD is small). Using Eq. 7.41 to calculate the heavy hole strain potential,
we find that the average elemental valence band strain potential inside the QD is 0.16 eV for the
InAs band gap increase of 0.146 eV. Kou et al. calculated the conduction band strain potential to
be 0.313 eV and an InAs band gap increase of 0.142 eV, confirming our strain calculations. We
found one bound state located at 1.352 eV with respect to the unstrained valence band of GaAs
and a double degenerate bound state located at 1.492 eV. Kou et al. has similar results: one bound
state located at 1.354 eV and a double degenerate bound state located at 1.495 eV. In addition to

115

Table 7.2: Selected band parameters for InAs and GaAs.

Parameter InAs GaAs

aLC (nm) 0.565325 0.60583
Eg (eV) 1.519 0.417
m∗e 0.067 0.026

VBO (eV) −0.80 −0.59
ac (eV) −7.17 −5.08
av (eV) −1.16 −1.00
b (eV) −2.0 −1.8
d (eV) −4.8 −3.6

C11 (GPa) 1221 832.9
C12 (GPa) 566 452.6
C44 (GPa) 600 395.9

the conduction band bound states, Kou et al. calculated the hole bound states and compared the
calculated fundamental transition energy (Ee0 → Eh0) to experimental photoluminescence spectra
in good agreement.

7.3 Results

The calculations were made on six buried QDs, two for each type of geometry, each labeled structure
A, B, C, D, E, and F and summarized in Tab. 7.3. The dimensions of structures C and D are selected
based on a similar in volume to the QD materials found in Sec. 3.3. The dimensions of structures
A and B are chosen to have dimensions 3/4 that of structures C and D, while the dimensions of
structures E and F are chosen to have dimensions 4/3 that of structures C and D. This will give
us a good indication as to how potential materials for the QD-IBSC respond to changes in size and
will help bound our analysis.

Table 7.3: The geometric properties of the QD structures used in this analysis. The geometric
properties b, h, and a refer to the dimensions in Fig. 7.1, while r refers to a sphere of radius
r having the same volume as the respective structure. Additionally, we include the volume of
each structure. Structures C and D have a similar volume to those QDs found in Chap. 3, while
structures A,B,E, and F are based on the dimensions of structures C and D to help bound the
analysis.

Geometric Property A B C D E F

Shape pyramid truncated pyramid truncated pyramid truncated
pyramid pyramid pyramid

b (nm) 7.5 6 10 8 13.3 10.6
h (nm) 4.5 4.5 6 6 8 8
a (nm) - 3.75 - 5 - 6.66

Volume (nm3) 84.4 108.8 200 258 471.7 606.2
r (Å) 27.2 29.6 36.3 39.5 48.3 52.5

Bandgaps in semiconductors are temperature dependent quantities that are often empirically
fitted to the Varshni function [99]

Eg(T) = Eg(0)− αT 2

T + β
(7.44)

116

where α and β are adjustable Varshni parameters found in semiconductor band parameter tables.
For the QD-IBSC, it is assumed that the device will be operating at ambient temperature and the
bandgaps are adjusted accordingly. To get a sense of how the significant temperature affects the
bandgap, consider the binary semiconductor GaAs, which has a direct bandgap of 1.519 at 0oK.
The Varshni parameters are taken as α = 0.5405 meV/K and β = 204 K, and from Eq. 7.44 the
bandgap of GaAs is adjusted to 1.42 at 300oK. For all ternary alloys, the bandgap is assumed to fit
the simple quadratic form [100]

Eg(A1−xBx) = (1− x)Eg(A) + xEg(B)− x(1− x)C (7.45)

where x is the molar concentration (0 ≤ x ≤ 1) and C is called the bowing parameter. The bowing
parameter accounts for the deviation from linear interpolation between the two binary semiconduc-
tors. In general, the bowing parameter for the III-V semiconductors is positive meaning the bandgap
is smaller than would be if linear interpolation was used. So to derive the bandgap of a ternary alloy,
we first correct the binary semiconductor for temperature and then calculate its bandgap using Eq.
7.45.

We now give a description of how the model outlined from Sec. 7.2 was executed followed by a
discussion of the results. First, we call the FEM preprocessing program from Chap. 5 to generate
the mesh for the respective geometry of the material system. The output arguments are stored for
use as inputs to the FEM processing program. Next, we run a MATLAB script calling the various
FEM processing and post-processing programs to produce a formatted document containing the
prospective material systems for the given geometry. The script scans through all the QD and barrier
permutations (molar concentrations are increased by 0.02 for 0 ≤ x ≤ 1), filters the material systems
that satisfy the design rules, calculates the strain potential using the function FEM 3D Strain from
Chap. 6, calculates the energy eigenvalues and eigenvectors using the processing/post processing
programs from Chap. 5, and writes to an external file only those material properties that support
one or two energy levels. Material properties are then compared to the IBSC theoretical model
and only those that match the desired efficiencies are considered a potential QD-IBSC. We should
note that the band parameters of ternary alloys are interpolated using Eq. 7.45 for a given molar
concentration x. For those parameters that do not have C, where linear interpolation is sufficient,
we use the value C = 0 in the equation [1].

In Tabs. 7.4 - 7.9, we show specific potential QD-IBSC material systems found for each QD
structure that satisfy the stated design criteria. In each table, we display the barrier/QD material,
the independent energy transition levels Ei, the lattice mismatch 4LC , the efficiency threshold the
system meets η, and the concentration factor X. Due to the symmetry of the QD for both geometries,
the first and second excited energy levels are double degenerate, so all the material systems found
support either one or three energy levels. As a practical matter, this helps us speak qualitatively
to what material systems might be potential QD-IBSCs (see Fig. 7.10 below and accompanying
discussion).

In Tab. 7.4, we notice that all the potential QD-IBSC material systems for structure A would be
designed to operate for fully concentrated light. We found that although many of material systems
supported either one or three energy levels, energy transitions E1 or E2 were too large for barrier
materials suitable for the X = 1 QD-IBSC design. We also observed, in general, that material
systems supporting three energy transitions with band gaps ideal for X = achieved efficiencies
between 60− 65%, thereby precluding them from consideration due to our high efficiency criterion.
In terms of the total number of material systems supporting one or three energy levels, structure A
had the most when compared to its two pyramid counterparts.

The potential QD-IBSC materials for structure B are displayed in Tab. 7.5. We immediately
observe the number of potential QD-IBSC materials meeting the efficiency criterion is two and
designed for unconcentrated light. This is in contrast to structure A, which is of similar volume. A
comparison with structure A indicates that the energy states are more tightly bound and in many
cases, in material systems that support a single energy level for the geometry of structure A, the
same material systems in structure B support three levels. As might be expected, the total amount
of material systems supporting one or three energy levels is similar to structure A and has the most

117

Table 7.4: Potential QD-IBSC material systems that produce the desired efficiency, η, for
structure A under unconcentrated, X = 1, and/or fully concentrated light, X = 1/Fsun. The
energy transitions E1, E2, and E3 refer to those in Fig. 2.1. The lattice mismatch between the
QD and barrier material is designated as 4LC .

Barrier/QD E1 (eV) E2 (eV) E3 (eV) 4LC(%) η(%) X

Al0.68In0.32As/InAs0.82N0.18 1.22 0.71 - 1.31 ≥ 62 1/Fsun
Al0.66In0.34As/InAs0.82N0.18 1.21 0.69 - 1.17 ≥ 62 1/Fsun
Al0.64In0.36As/InAs0.84N0.16 1.16 0.66 - 1.40 ≥ 62 1/Fsun
Al0.64In0.36As/InAs0.82N0.18 1.20 0.66 - 1.03 ≥ 62 1/Fsun
Al0.62In0.38As/InAs0.84N0.16 1.15 0.63 - 1.26 ≥ 62 1/Fsun
Al0.76In0.24As/InP0.92N0.08 1.26 0.75 0.22 0.73 ≥ 70 1/Fsun
Ga0.40In0.60P/InP0.90N0.10 1.12 0.61 - 1.38 ≥ 62 1/Fsun
GaAs0.50P0.50/InP0.90N0.10 1.26 0.71 - 4.12 ≥ 62 1/Fsun
GaAs0.48P0.52/InP0.90N0.10 1.26 0.74 - 4.20 ≥ 62 1/Fsun

compared to its two truncated pyramid counterparts.

Table 7.5: Potential QD-IBSC material systems that produce the desired efficiency, η, for
structure B under unconcentrated, X = 1, and/or fully concentrated light, X = 1/Fsun. The
energy transitions E1, E2, and E3 refer to those in Fig. 2.1. The lattice mismatch between the
QD and barrier material is designated as 4LC .

Barrier/QD E1 (eV) E2 (eV) E3 (eV) 4LC(%) η(%) X

Al0.50In0.50P/InAs0.56N0.44 1.00 1.55 - 1.49 ≥ 46 1
AlP0.70Sb0.30/InAs0.56N0.44 1.02 1.57 - 1.48 ≥ 46 1

The potential QD-IBSC materials for structure C are displayed in Tabl. 7.6. There are three
potential QD-IBSC materials that meet all the design criteria for unconcentrated light. We observe
that the potential QD-IBSC material systems are similar to that of structure B. This is interesting
because the two structures have different geometries, which suggests that the material systems are
robust in terms of it acting as QD-IBSC. The material system AlAsSb/InAsN that appears in Tab.
7.6 would appear in Tab. 7.5 if the efficiency criterion was 45%, further confirming the similarities
between the two structures.

Table 7.6: Potential QD-IBSC material systems that produce the desired efficiency, η, for
structure C under unconcentrated, X = 1, and/or fully concentrated light, X = 1/Fsun. The
energy transitions E1, E2, and E3 refer to those in Fig. 2.1. The lattice mismatch between the
QD and barrier material is designated as 4LC .

Barrier/QD E1 (eV) E2 (eV) E3 (eV) 4LC(%) η(%) X

Al0.50In0.50P/InAs0.56N0.44 1.54 1.00 - 1.49 ≥ 46 1
AlAs0.80Sb/InAs0.84N0.16 1.05 1.63 - 2.25 ≥ 46 1

AlP0.70Sb0.30/InAs0.56N0.44 1.01 1.57 - 1.48 ≥ 46 1

The potential QD-IBSC materials for structure D are displayed in Tab. 7.7. We notice that
there are two potential QD-IBSC materials that could be designed for both a concentration factor
of X = 1 and X = 1/Fsun, indicating the flexibility of the materials. This is the first occurrence of

118

potential QD-IBSCs that could operate at the optimal efficiency levels of both concentration factors.

Table 7.7: Potential QD-IBSC material systems that produce the desired efficiency, η, for
structure D under unconcentrated, X = 1, and/or fully concentrated light, X = 1/Fsun. The
energy transitions E1, E2, and E3 refer to those in Fig. 2.1. The lattice mismatch between the
QD and barrier material is designated as 4LC .

Barrier/QD E1 (eV) E2 (eV) E3 (eV) 4LC(%) η(%) X

AlP0.36Sb0.64/InAs0.82N0.18 0.78 1.34 - 0.52 ≥ 46 1
AlP0.36Sb0.64/InAs0.82N0.18 0.78 1.34 - 0.52 ≥ 62 1/Fsun
AlP0.34Sb0.66/InAs0.82N0.18 0.80 1.32 - 0.75 ≥ 62 1/Fsun
AlP0.32Sb0.68/InAs0.84N0.16 0.79 1.33 - 0.61 ≥ 46 1
AlP0.32Sb0.68/InAs0.84N0.16 0.79 1.33 - 0.61 ≥ 62 1/Fsun
GaP0.90N0.10/InAs0.52N0.48 0.93 1.49 - 3.46 ≥ 46 1

GaP0.88Sb0.12/InAs0.52N0.48 0.88 1.46 - 3.83 ≥ 46 1

The potential QD-IBSC materials for structure E are displayed in Tab. 7.8. Similar to structure
D, there are two potential QD-IBSC materials that could be designed for both a concentration
factor of X = 1 and X = 1/Fsun. The AlPSb/InAsN combination is most flexible in the sense
that its design is suitable for both concentration factors and both structures D and E. The material
combination GaPN/InAsN also appears in structure D indicating geometric flexibility. We should
note that the total number of material systems satisfying the design criteria was much less than its
two geometric counterparts structure A and C.

Table 7.8: Potential QD-IBSC material systems that produce the desired efficiency, η, for
structure E under unconcentrated, X = 1, and/or fully concentrated light, X = 1/Fsun. The
energy transitions E1, E2, and E3 refer to those in Fig. 2.1. The lattice mismatch between the
QD and barrier material is designated as 4LC .

Barrier/QD E1 (eV) E2 (eV) E3 (eV) 4LC(%) η(%) X

AlAs0.78Sb0.22/InAs0.84N0.16 0.90 1.38 0.42 2.08 ≥ 50 1
AlAs0.78Sb0.22/InAs0.84N0.16 0.90 1.38 0.42 2.08 ≥ 70 1/Fsun
AlP0.36Sb0.64/InAs0.82N0.18 0.79 1.33 - 0.52 ≥ 46 1
AlP0.36Sb0.64/InAs0.82N0.18 0.79 1.33 - 0.52 ≥ 62 1/Fsun
AlP0.34Sb0.66/InAs0.82N0.18 0.80 1.32 - 0.75 ≥ 62 1/Fsun
GaP0.94N0.06/InAs0.56N0.44 0.99 1.54 - 3.52 ≥ 46 1
GaP0.92N0.08/InAs0.56N0.44 0.94 1.50 - 3.89 ≥ 46 1
GaP0.92N0.08/InAs0.54N0.46 0.95 1.54 - 3.49 ≥ 46 1
GaP0.88N0.12/InAs0.54N0.46 0.86 1.44 - 4.23 ≥ 46 1

The potential QD-IBSC materials for structure F are displayed in Tab. 7.8. We notice that the
material combinations are a subset of the material combinations found in structure A. The difference
being the energy level in structure F is more tightly bound such that the energy transitions E1 and
E2 are now opposite of structure A. This larger structure has taken advantage of the flexibility of
the IBSC to accommodate energy transition permutations. Like structure E, structure F did not
have many material systems satisfying the design criteria. The reason is as the QD increases in size,
it will support more energy levels thereby limiting the potential QD-IBSCs. Although not stated
explicitly in the previous chapters but implied, we limit the QD-IBSC to one or two energy levels1

1The QD-IBSC could support more energy levels if one of the energy levels is degenerate, as we saw in our analysis.

119

because they are less likely to merge with one another or the conduction band. In addition, more
energy levels add complexity to the device and increases the likely-hood it will not operate under
the ideal IBSC conditions (i.e. non-radiative recommendation). The reasoning is similar to why we
look for negligible valence band offsets.

Table 7.9: Potential QD-IBSC material systems that produce the desired efficiency, η, for
structure F under unconcentrated, X = 1, and/or fully concentrated light, X = 1/Fsun. The
energy transitions E1, E2, and E3 refer to those in Fig. 2.1. The lattice mismatch between the
QD and barrier material is designated as 4LC .

Barrier/QD E1 (eV) E2 (eV) E3 (eV) 4LC(%) η(%) X

Al0.68In0.32As/InAs0.82N0.18 0.68 1.24 - 1.31 ≥ 62 1/Fsun
Al0.66In0.34As/InAs0.82N0.18 0.68 1.20 - 1.17 ≥ 62 1/Fsun
Al0.64In0.36As/InAs0.84N0.16 0.65 1.16 - 1.40 ≥ 62 1/Fsun

In the tables above, we considered all the III-V ternary alloys and did not dismiss any material
system that is considered highly developmental. The aspiration is to find a material breakthrough
that will spur additional research on the QD-IBSC design rather than only search those material
systems that could be manufactured today. The potential material systems found should focus the
research of the QD-IBSC to those combinations and spur technological advances in QD growth.
Nevertheless we briefly discuss some previous work with InAsN, which appears to be very important
in designing a QD-IBSC device, to illustrate that the ternary has been grown as a QD. Bais et
al. produced InAsN QDs embedded in GaAs and GaAsN engineered to emit at 1.3 µm at room
temperature [101]. Danitsev et al. produced InAsN QDs in GaAs and measure an average height
of 2.2 nm [102]. Schumann et al. produced InAsN QDs with nitrogen concentrations 0.00 − 0.043
[103]. They found that as the amount of nitrogen increases, the QDs increase in size as well.

Although we found potential QD-IBSC materials satisfying the design criteria and in some cases
exhibiting flexibility across the QD structures, material systems are QD size dependent. In addi-
tion, we put a strict efficiency design criterion that the material systems must meet in order to
be considered. As a practical matter, material systems will most likely not be grown to the exact
dimensions of the structures, and we might decide to select a material system that has a slightly less
design efficiency than our efficiency criterion. In response, we show an exhaustive list of potential
barrier/QD combinations in Tab. 7.10 that satisfied all but the efficiency design considerations and
only support one or three energy levels. They were found during our search on structure A, which has
the smallest volume of all the structures. If a material system supports more than three independent
energy transitions in structure A, it was discarded because as the structure increases in volume, it
will support more energy levels and thus not be considered for the QD-IBSC. We propose that only
the QD/barrier combinations displayed in Tab. 7.10 should be considered for the QD-IBSC.

7.4 Remarks

In this chapter, we incorporated the work from previous chapters to allow for sophisticated numerical
simulations aimed at selecting more realistic material systems for the QD-IBSC. The geometry of the
QD was chosen based on experimental evidence, while the size of the QD was strategically selected
to bound the analysis. We included a brief discussion of kp theory in the context of the Luttinger
- Kohn Hamiltonian and Pikus-Bir strain interaction for the valence bands. After the Hamiltonian
is diagonalized, we observe the shift in the valence band edge is described by three deformation
potential constants, unlike the shift in conduction band edge caused by a single deformation potential
constant. The two deformation constants, b and d, split the heavy/light hole degeneracy with the
heavy hole sitting energetically higher. Our model assumed that the shift in valence band caused
by strain is determined by the Eq. 7.41.

We then proceeded to describe the model that would be used to find potential material systems

120

Table 7.10: An exhaustive list of potential QD-IBSC material systems that meet the design
criteria for various molar concentrations.

Barrier material QD material Barrier material QD material

AlGaAs InAsN AlAsSb InAsN
AlGaAs InPN AlAsSb InAsSb
AlInAs InPN AlAsSb InPSb
AlInAs InAsN GaAsSb InAsN
AlInAs InPSb GaAsSb InPN
GaInP InPN AlAsP InAsN
AlInP InAsN GaPSb InPN
AlGaP InAsN AlPSb InAsN
AlInSb InASb AlPSb InAsSb
AlInSb InPSb AlPSb InPSb
AlGaSb InAsSb GaPN InAsN
AlAsSb InPN GaPN InPN

for the QD-IBSC. We outlined the design criteria, which potential materials had to meet in order to
be considered. The QD/barrier material system must have a lattice mismatch, valence band offset
must be small, the large energy gap Eg must at least be 1.70 eV, and the system would allow for
the maximum uncertainty. We then applied our theoretical model to InAs QDs embedded in GaAs
and found it in agreement with other theoretical studies and experimental results.

Using our proposed model, we performed a thorough search of materials that have energetic
optimized levels to achieve theoretical efficiencies for systems that support one and two intermediate
bands under unconcentrated and fully concentrated light. Our search included all possible QD and
barrier permutations on the six different structures. From the results, we propose that these material
systems are potential QD-IBSC materials. In essence, we have performed a study that narrows down
the likely candidate materials for this novel device. These materials deserve additional research
attention both experimentally and theoretically.

121

Chapter 8: Final Remarks and Outlook

In this thesis, we have proposed material systems that are considered candidates for the novel QD-
IBSC device aimed at increasing the efficiency beyond the thermodynamic limits of the convention
solar conversion device. Our study is a first attempt to narrow down the potential material systems
by performing numerical experiments based on realistic assumptions. Although previous attempts
at the QD-IBSC (see [104, 105, 106]) have successfully demonstrated the basic operating principals
of the IBSC, they have failed to capture the increased efficiency over conventional devices because
the materials failed to satisfy one or more of the design criteria in our model. To this end, our
research provides a critical step in a breakthrough of photovoltaic conversion efficiency.

While the chapters built upon each other in logical succession, we did dedicate an entire chapter
to the development of the finite element method in the context of heterostructures as a means to
model the QD-IBSC. Although there is a wealth of literature on the method and its development,
we found its applications in physics lacking. This is the reason why we felt it necessary for Chap.
4 and 5, the detailed description of the MATLAB program ultimately used in our model. It is
our belief that the method is underutilized in physics, as demonstrated by the lack of literature in
the field, and could be further developed to enhance our understanding of, for example, quantum
mechanics. This presents an opportunity to mature the method beyond our initial treatment. It
would be useful to develop a magnetic matrix when magnetic fields are present in the problem, to
develop the position and momentum operators, and develop how matrix operations are carried out.
In addition, applying FEM to interesting quantum mechanical problems that have been considered
intractable would obviously be beneficial.

We justified using a less sophisticated Hamiltonian by only including physics that was of real
significance due to the number of possible material permutations. However, now that we have
identified potential QD-IBSC materials, we could further refine that pool of materials by employing
a more sophisticated Hamiltonian, i.e. coupling the valence to the conduction band, including
piezoelectric effect and Coulomb interaction, as computational efficiency becomes less important. In
addition to a more sophisticated Hamiltonian, it would be appropriate to refine the geometry of a
specific material system if there is previous work that says otherwise.

The aspiration of our work is to create a material breakthrough that will spur additional research
on the QD-IBSC design attempting to mature the technology. The QD-IBSC is a novel but very
new device that will not only need the right material selection but must operate based on the IBSC
operating principles. Therefore, additional research on how our proposed material systems closely
match the IBSC operating principles is needed. However, the basic ideas for designing devices are
not much different than from those described in this thesis.

122

Bibliography

[1] I. Vurgaftman, J.R. Meyer, and L.R. Ram-Mohan. Band parameters for III-V compound
semiconductors and their alloys. Journal of Applied Physics, 89:5816–5875, 2001.

[2] Office of Integrated Analysis and Forecasting. International energy outlook 2010. Technical
report, U.S. Energy Information Administration, 2010.

[3] M. K. Hubbert. Nuclear energy and the fossil fuels. Drilling and Production Practice, 1956.

[4] Energy Efficiency and Renewable Energy. 2008 solar technologies market report. Technical
report, U.S. Department of Energy, 2010.

[5] Office of Integrated Analysis and Forecasting. Annual energy outlook 2011. Technical report,
U.S. Energy Information Administration, 2011.

[6] Albert Einstein. On a heuristic viewpoint concerning the production and transformation of
light. Annalen der Physik, 17:132–148, 1905.

[7] W. Shockley and H.J. Queisser. Detailed balance limit of efficiency of p-n junction solar cells.
Journal of Applied Physics, 32(3), 1961.

[8] R.A. Serway, C. J. Moses, and C. A. Moyer. Modern Physics. Thomson Learning, Singapore,
1997.

[9] Jenny Nelson. The Physics of Solar Cells. Imperial College Press, London, 2003.

[10] C. Kittel. Introduction to Solid State Physics. John Wiley and Sons, Hoboken, 2005.

[11] A. Luque and A. Marti. Entropy production in photovoltiac conversion. Physical review B,
55:6994–6999, 1997.

[12] P.T. Landsberg. Recombination in Semiconductors. Cambridge University Press, New York,
1991.

[13] M. Shur. Physics of Semiconductor Devices. Prentice Hall, Englewood Cliffs, 1990.

[14] M. S. Tyagi. Introduction to Semiconductor Materials and Devices. Wiley, Chichester, 1991.

[15] L.E. Ballentine. Quantum Mechanics: A Modern Development. World Scientific, Singapore,
1998.

[16] A. Luque and A. Marti. Increasing the efficiency of ideal solar cells by photon induced tran-
sitions at intermediate levels. Physical Review Letters, 78(26), 1997.

[17] R. K. Pathria. Statistical Mechanics Second Edition. Elsevier, Burlington, MA, 2005.

[18] G. L. Araujo and A. Marti. Absolute limiting efficiencies for photovoltiac energy conversion.
Solar Energy Materials and Solar Cells, 33:213–240, 1994.

[19] Martin A. Green. Third Generation Photovoltaics. Springer, New York, 2006.

[20] J. McDougall and E. C. Stoner. The computation of fermi-dirac functions. Phil. Trans. Roy.
Soc. Lond., A.237(67), 1938.

[21] J. S. Blakemore. Approximations for fermi-dirac integrals, especially the function F 1/2(η) used
to describe electron density in a semiconductor. Solid-State Electronics, 25(11), 1982.

123

[22] E. W . Ng, C. J. Devine, and R. F. Tooper. Chebyshev polynomial expansion of bose-einstein
functions of orders 1 to 10. Mathematics of Computation, 23(107), 1969.

[23] R. W. Hamming. Numerical Methods for Scientists and Engineers. Dover, New York, 1962.

[24] J. P. Colinge and C. A. Colinge. Physics of Semiconductor Devices. Springer, New York, 2006.

[25] P. Matagne and J.P. Leburton. Quantum dots: Artificial atoms and molecules. In S. Bandy-
opadhyay and H.S. Nalwa, editors, Quantum Dots and Nanowires. American Scientific, Steven-
son Ranch, 2003.

[26] N. G. Anderson. On quantum well solar cell efficiencies. Physica E, 14:126–131, 2002.

[27] A. Luque and A. Marti. Thermodynamic consistency of sub-bandgap absorbing solar cell
proposals. IEEE Transactions on Electron Devices, 49:2118–2124, 2001.

[28] A. Marti, L. Cuandra, and A Luque. Quantum dot intermediate band solar cell. 28th IEEE
PVSC, pages 940–943, 2000.

[29] A. Luque and A. Marti. A metallic intermediate band high efficiency solar cell. Progress In
Photovoltaics: Research and Applications, 9:73–86, 2001.

[30] R. Gilmore. Elementary Quantum Mechanics In One Dimension. John Hopkins, Baltimore,
2004.

[31] J. Tersoff, C. Teichert, and M. G. Lagally. Self-organization in growth of quantum dot super-
lattices. Physical Review Letters, 76:1675–1678, 1996.

[32] D. Leonard, M. Krishnamurthy, C. M. Reaves, S. P. Denbaars, and P. M. Petroff. Direct
formation of quantum-sized dots from uniform coherent islands of ingaas on gaas surfaces.
Applied Physics Letters, 63:3203–3205, 1993.

[33] R. Notzel, J. Temmyo, and T. Tamamura. Self-organized growth of strained ingaas quantum
disks. Nature, 369:131–133, 2011.

[34] K. Nishi, T. Anan, A. Gomyo, S. Kohmoto, and S. Sugou. Spontaneous lateral alignment of
in 0.25ga 0.75as self-assembled quantum dots on (311)b gaas grown by gas source molecular
beam epitaxy. Applied Physics Letters, 70:3579–3581, 1997.

[35] K. Sears, S. Mokkapati, H. H. Tan, and C. Jagadish. Self-Assembled Quantum Dots. Springer,
2008.

[36] G. Bastard. Superlattice band structure in the envelope-function approximation. Physical
Review B, 24:5693–5697, 1981.

[37] J. C. Slater and G. F. Koster. Simplified lcao method for the periodic potential problem.
Physical Review, 94:1498–1524, 1954.

[38] M. Levy, C. Honsberg, A. Marti, and A. Luque. Quantum dot intermediate band solar cell
material systems with negligible valence band offsets. 31st IEEE PVSC, 2005.

[39] A. Marti, L. Cuadra, and A. Luque. Partial filling of a quantum dot intermediate band for
solar cells. IEEE Transactions on Electron Devices, 48:2394 – 2399, 2001.

[40] P. Wurfel. Physics of Solar Cells: From Basic Principles to Advanced Concepts. Wiley,
Weinheim, 2009.

[41] E. Schödinger. Quantization as an eigenvalue problem (part i). Annalen der Physik, 79, 1926.

[42] M. J. Turner, R. W. Clough, H. C. Martin, and L. J. Topp. Stiffness and deflection analysis
of complex structures. Journal of Aeronautical Sciences, 23:805–843, 1956.

124

[43] O. C. Zienkiewicz and Y. K. Cheung. Finite elements in the solution of field. The Engineer,
220:507–510, 1965.

[44] W. Yourgrau and S. Mandelstam. Variational Principles in Dynamics and Quantum Theory.
Dover, New York, 1968.

[45] O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu. The finite element method: Its basis and
fundamentals. Elsevier, Burlington, MA, 2005.

[46] L. Ramdas Ram-Mohan. Finite Element and Boundary Element Applications in Quantum
Mechanics. Oxford University Press, New York, 2002.

[47] K. J. Bathe and E. L. Wilson. Numerical Methods in Finite Element Analysis. Prentice-Hall,
Englewood Cliffs, NJ, 1976.

[48] Y. W. Kwon and H. Bang. The finite element method using MATLAB. CRC Press, Boca
Raton, FL, 2000.

[49] G. Strang and G. Fix. An Analysis of the Finitie Element Method. Wellesley-Cambridge Press,
Wellesley, MA, 2 edition, 2008.

[50] P.-O. Persson and G. Strang. A simple mesh generator in matlab. SIAM Review, 46:329–345,
2004.

[51] Waterloo Maple Inc. Maple, 2009. version 13.0.

[52] The Mathworks inc. Matlab, 2009. version 7.9.0.529 (R2009b).

[53] Simulia. Abaqus. http://www.simulia.com/.

[54] PDE Solutions Inc. Flexpde 6. http://www.pdesolutions.com/.

[55] ANSYS Inc. Ansys. http://www.ansys.com/.

[56] Innovative Numerical Technologies. Diffpack. http://www.diffpack.com/.

[57] B. Delaunay. Sur la sphere vide. Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh
i Estestvennykh Nauk, 7:793–800, 1934.

[58] John D’Errico. Inhull, 2006.

[59] D. Zwillinger (ed.). Standard Mathematical Tables and Formulae. CRC Press, Boca Raton,
30th edition, 1996.

[60] S. Jenks and R. Gilmore. Quantum dot solar cell: Materials that produce two intermediate
bands. Journal of Renewable and Sustainable Energy, 2(1):013111, 2010.

[61] J. Bardeen and W. Shockley. Deformation potentials and mobilities in non-polar crystals.
Physical Review, 80:72–80, 1950.

[62] C. Herring and E. Vogt. Transport and deformation-potential theory for many-valley semi-
conductors with anisotropic scattering. Physical Review, 101:944–961, 1956.

[63] L. Malvern. Introduction to the Mechanics of a Continuous Medium. Prentice Hall, Englewood
Cliffs, NJ, 1969.

[64] W. Lai, D. Rubin, and E. Krempl. Introduction to Continuum Mechanics. Elsevier, Amster-
dam, 1996.

[65] F. Boxberg and J. Tulkki. Theory of the electronic structure and carrier dynamics of strain-
induced (ga, in)as quantum dots. Reports on Progress in Physics, 70:1425–1471, 2007.

125

[66] S. Timoshenko and J. Goodier. Theory of Elasticity, 3rd ed. McGraw-Hill, New York, 1970.

[67] D. Logan. A First Course in the Finite Element Method. PWS Publishers, Boston, 1986.

[68] E. Dill. Continuum Mechanics. CRC Press, 2006.

[69] W. Slaughter. The Linearized Theory of Elasticity. Birkhauser Boston, New York, NY, 2002.

[70] L. Freund. The mechanics of electronic materials. International Journal of Solids and Struc-
tures, 37:185–196, 2000.

[71] S. Chang. The Physics of Photonic Devices. Wiley, 2009.

[72] J. Eshelby. Distortion of a crystal by point imperfections. Journal of Applied Physics, 25:255,
1954.

[73] J. Eshelby. The continuum theory of lattice defects. Solid State Physics, 3:79, 1956.

[74] M. Kuo, T. Lin, K. Hong, B. Liao, H. Lee, and C. Yu. Two step strain analysis of self assembled
inas/gaas quantum dots. Semiconductor Science and Technology, 21:626–632, 2006.

[75] A. Andreev, J. Downes, D. Faux, and E. O’Reilly. Strain distributions in quantum dots of
arbitrary shape. Journal of Applied Physics, 86:297–305, 1999.

[76] G. Bir and G. Pikus. Symmetry and Strain Induced Effects in Semiconductors. Wiley, New
York, 1974.

[77] C. Hamaguchi. Basic Semiconductor Physics. Springer, Heidelberg, 2010.

[78] M. Grundmann, O. Stier, and D. Bimberg. Inas/gaas pyramidal quantum dots: Strain distr-
bution, optical phonons, and electronic structure. Physical Review B, 52:11969–11981, 1995.

[79] M. Yang, J. Sturm, and J. Prevost. Calculation of band alignments and quantum confinement
effects in zero- and one-dimensional pseudomorphic structures. Physical Review B, 56:1973–
1980, 1997.

[80] M.S. Miller, J.O. Malm, M. E. Pistol, S. Jeppesen, B. Kowalski, K. Georgsson, and L. Samuel-
son. Stacking inas islands and gaas layers: Strongly modulated one-dimensional electronic
systems. Journal of Applied Physics, 80:3360–3365, 1996.

[81] G. S. Solomon, J. A. Trezza, J. A. Marshall, and J. A. Harris. Vertically aligned and elec-
tronically coupled growth induced inas islands in gaas. Physical Review Letters, 76:952–955,
1996.

[82] Q. Xie, A. Madhukar, P. Chen, and N. P. Kobayashi. Vertically self-organized inas quantum
box islands on gaas (100). Physical Review Letters, 75:25422545, 1995.

[83] M. Moreno, A. Trampert, B. Jenichen, L. Daweritz, and K. H. Ploog. Correlation of structure
and magnetism in gaas with embedded mn(ga)as magnetic nanoclusters. Journal of Applied
Physics, 92:4672–4678, 2002.

[84] A. Lenz, R. Timm, H. Eisele, Ch. Hennig, S. K. Becker, R. L. Sellin, U. W. Pohl, D. Bimberg,
and M. Dahn. Reversed truncated cone composition distribution of in 0.8 ga 0.2 as quantum
dots overgrown by an in 0.1 ga 0.9 as layer in a gaas matrix. Applied Physics Letters, 81:5150–
5153, 2002.

[85] S. Ruvimov, P. Wemer, K. Scheerschmidt, U. Gbsele, J. Heydenreich, U. Richter, N. N.
Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, A. Y. Egorov, P. S. Kop’ev, and
Z. I. Alferov. Structural characterization of (in,ga)as quantum dots in a gaas matrix. Physical
Review B, 51:1476614769, 1995.

126

[86] B. R. Bennett, R. Magno, and B. V. Shanabrook. Molecular beam epitaxial growth of insb,
gasb, and alsb nanometerscale dots on gaas. Applied Physics Letters, 68:505–507, 1996.

[87] F. Heinrichsdorff, A. Krost, M. Grundmann, D. Bimberg, A. Kosogov, and P. Werner. Self-
organization processes of ingaas/gaas quantum dots grown by metalorganic chemical vapor
deposition. Applied Physics Letters, 68:3284–3286, 1996.

[88] A. Ponchet, A. L. Corre, H. L. Haridon, B. Lambert, and S. Salaun. Relationship between
self-organization and size of inas islands on inp(001) grown by gas-source molecular beam
epitaxy. Applied Physics Letters, 67:1850, 1995.

[89] V. Zwiller, M. E. Pistol, M. A. Odnoblyudovtt, and L. Samuelson. Temperature studies of
single inp quantum dots. 7th Int. Symp. ”Nanostructures: Physics and Technology”, pages
28–30, 1999.

[90] J. M. Luttinger and W. Kohn. Motion of electrons and holes in perturbed periodic fields.
Physical Review, 97:869–883, 1954.

[91] L. C. Lew Yan Voon and M. Willatzen. The k p Method, Electronic Properties of Semicon-
ductors. Springer, 2009.

[92] D. A. Broido and L. J. Sham. Effective masses of hales at gaas-algaas heterojunctions. Physical
Review B, 31:888–892, 1985.

[93] E. O. Kane. Energy band structure in p-type germanium and silicon. Journal of Physical
Chemical Solids, 1:82–99, 1956.

[94] G. .E. Pikus and G. L. Bir. Effect of deformation on the hole energy spectrum of germanium
and silicon. Soviet Physics Solid State, 1:1502, 1960.

[95] S. L. Chuang. Physics of Optoelectronic Devices. Wiley, New York, 1995.

[96] T. B. Bahder. Analytic dispersion relations near the gamma point in strained zincblende
crystals. Physical Review B, 45:1629–1637, 1992.

[97] M. Holm and M. Pistol. Calculations of the electronic structure of strained inas quantum dots
in inp. Journal of Applied Physics, 92:932–936, 2002.

[98] C. Pryor. Eight-band calculations of strained inas/gaas quantum dots compared with one-,
four-, and six-band approximations. Physical Review B, 57:7190–7195, 1998.

[99] Y. P. Varshni. Temperature dependence of the energy gap in semiconductors. Physica, 34:149,
1967.

[100] C. Bosio, J. L. Staehli, M. Guzzi, G. Burri, and R. A. Logan. Direct-energy-gap dependence
on al concentration in algaas. Physical Review B, 38:3263–3268, 1988.

[101] G. Bais, A. Cristofoli, F. Jabeen, M. Piccin, E. Carlino, S. Rubini, F. Martelli, and A. Franciosi.
Inasn/gaasn quantum-dot and inganas/gaas quantum-well emitters: A comparison. Applied
Physics Letters, 86:233107, 2005.

[102] V. M. Daniltsev, M. N. Drozdov, Yu N Drozdov, D. M. Gaponova, O. I. Khrykin, A. V.
Murel, V. I. Shashkin, and N. V. Vostokov. Ingaasn/gaas qd and qw structures grown by
movpe. Journal of Crystal Growth, 248:343–347, 2003.

[103] O. Schumann, L. Geelhaar, H. Riechert, H. Cerva, and G. Abstreiter. Morphology and optical
properties of inasn quantum dots. Journal of Applied Physics, 96:2832–2840, 2004.

[104] V. Popescu, G. Bester, M. C. Hanna, A. G. Norman, and A. Zunger. Theoretical and exper-
imental examination of the intermediate-band concept for strain-balanced (in,ga)as/ga(as,p)
quantum dot solar cells. Physical Review B, 78:205321, 2008.

127

[105] A. Luque, A. Marti, C. Stanley, N. Lopez, L. Cuandra, D. Zhou, J. L. Pearson, and A. McKee.
General equivalent circuit for intermediate band devices: Potentials, currents and electrolumi-
nescence. Journal of Applied Physics, 96:903–909, 2004.

[106] S. Suraprapapich, S. Thainoi, S. Kanjanachuchai, and S. Panyakeow. Quantum dot integration
in heterostructure solar cell. Journal of Solar Energy Materials and Solar Cells, 90:2968–2974,
2006.

128

Appendix A: Schödinger’s Equation in Variational Form

Here we develop Schödinger’s equation from the Hamilton-Jacobian formulation of classical mechan-
ics, just as Schödinger did himself. We start with the Hamilton-Jacobian equation

H

(
x,
∂S

∂x

)
= E (A.1)

and define the “wavefunction” as

ψ(x) = e
iS
h̄ (A.2)

S(x) = −ih̄ ln ψ(x) (A.3)

such that the Hamiltonian is

H

(
x,
∂S

∂x

)
=

1

2m

(
∂S

∂x

)2

+ V (A.4)

=
1

2m

(
−ih̄
ψ(x)

∂ψ(x)

∂x

)2

+ V (A.5)

Further, we can define the Lagrangian, L, as ∂S
∂x ẋ−H such that

L =
1

m

(
∂S

∂x

2)
− 1

2m

(
∂S

∂x

)2

− V (A.6)

=
1

2m

(
−ih̄
ψ(x)

∂ψ(x)

∂x

)2

− V (A.7)

=
−h̄2

2m

(
1

ψ(x)

)2(
∂ψ(x)

∂x

)2

− V (A.8)

The Lagrangian is used to construct the action,
∫
Ldx.

A =

∫
−h̄2

2m

(
1

ψ(x)

)2(
∂ψ(x)

∂x

)2

− V dx (A.9)

subject to the constraint ∫
ψ∗(x)ψ(x)dx = 1 (A.10)

We can consider ψ∗(x) and ψ(x) as two independent fields and place a variation with respect to
ψ∗(x) such that the integral is stationary.

δA = δ

∫
−h̄2

2m

(
1

ψ(x)

)2(
∂ψ(x)

∂x

)2

− V dx = 0

δA = δ

∫
h̄2

2m

(
∂ψ∗(x)

∂x

∂ψ(x)

∂x

)
+ ψ∗(x)V ψ(x)dx = 0 (A.11)

129

When we include the Lagrange multiplier, E, to Eq. A.11, the variational form of Schödinger’s
equation is

δ

∫
h̄2

2m

(
∂ψ∗(x)

∂x

∂ψ(x)

∂x

)
+ ψ∗(x)V ψ(x)− ψ∗(x)Eψ(x)dx = 0 (A.12)

where the Lagrange multiplier can be interpreted as energy.

130

Appendix B: FEM Source Code

This appendix contains the entire source code for the FEM program used to make the calculations
referred to in the text. The main function from each of the FEM stages is displayed first followed
by the subroutine functions.

B.1 2D Preprocessing Code

function [p,t,vert] = QWire_Mesh(QW_fd,B_fd,fh,h0,QW_bbox,B_bbox)

%Quantum wire mesh generator using Distmesh

% This generator is specifically taylored to solve for the

% the energy eigenvalues and wavefunctions of a quantum wire

% embedded in barrier material using FEM.

%

% [P,T,VERT]=QWIRE_MESH(QW_FD,B_FD,FH,H0,QW_BBOX,B_BBOX)

% P: Node positions (Nx2)

% T: Triangle indices (NTx3)

% VERT: Nodes on the quantum wire surface

% QW_FD: Quantum Well Distance function d(x,y)

% B_FD: Barrier Distance function d(x,y)

% FH: Scaled edge length function h(x,y)

% H0: Initial edge length

% QW_BBOX: Quantum Well material bounding box [xmin,ymin; xmax,ymax]

% B_BBOX: Barrier material bounding box [xmin,ymin; xmax,ymax]

%--

% Create a mesh for the quantum wire material using distmesh2D

[QW_coord,QW_nodes]=distmesh2d(QW_fd,fh, h0,QW_bbox,[]);

[QW_coord,QW_nodes]=fixmesh(QW_coord,QW_nodes);

QW_surface=unique(boundedges(QW_coord,QW_nodes));

fixed=[QW_coord(QW_surface(:),1),QW_coord(QW_surface(:),2)];

% Create a mesh for the barrier material using distmesh 2D

%

[B_coord,B_nodes]=distmesh2d(B_fd,fh,h0,B_bbox,fixed);

[B_coord,B_nodes]=fixmesh(B_coord,B_nodes);

B_surface=unique(boundedges(B_coord,B_nodes));

% Convert coordinates to desired significant digits

%

B_coord=round(B_coord*1000)/1000;

QW_coord=round(QW_coord*1000)/1000;

fixed=round(fixed*1000)/1000;

vert = fixed;

%

% 1. Get coordinates of all the nodes on edges of the barrier material

edges=[B_coord(B_surface(:),1),B_coord(B_surface(:),2)];

%

% 2. Start to systematically eliminate nodes associated with outer edges

for i=1:2

for j=1:2

[r c]=find(edges == B_bbox(i,j));

edges(r,:)=[];

end

end

%

% 3. Start to systematically eliminate nodes associated with nodes on

131

% the QW edges.

[index]=ismember(edges,fixed,’rows’);

edges(index,:)=[];

%

% 4. Eliminate "orphan" nodes

[index]=ismember(B_coord,edges,’rows’);

B_coord(index,:)=[];

%

% 5. Complete the final mesh

p=unique([B_coord;QW_coord],’rows’);

t=delaunayn(p);

%

% 6. View the final mesh

trimesh(t,p(:,1),p(:,2),zeros(size(p,1),1))

view(2),axis equal,axis off,drawnow

end

B.1.1 Example of a relative edge length function

function h = fh_finite_2D(p)

%Fh_finite_2D variable edge length that uses a distance function

% This function is used with QWire_Mesh when it is desired to have more

% elements near the quantum and barrier material interface. It uses the

% distance function of the quantum wire.

%

% [H]=FH_FINITE_2D(P)

% H: EDGE LENGTH

% P: NODE POSITION (Nx2)

%--

% Variables:

% d1: The distance function of the quantum wire.

% h1: The calibration used in defining the edge lengths, linear

% function.

% h: Minimum distance, either h1 or scalar.

d1=dcircle(p,0,0,20);

h1=5+0.2*(abs(d1));

h=min(h1,10);

end

B.2 3D Preprocessing Code

function [p,t,vert] = QDot_Mesh(QD_fd,B_fd,fh,h0,QD_bbox,B_bbox)

%Quantum dot mesh generator using Distmesh

% This generator is specifically tailored to solve for the

% the energy eigenvalues and wavefunctions of a quantum dot

% embedded in barrier material using FEM.

%

% [P,T,VERT]=QWIRE_MESH(QW_FD,FH,H0,BBOX,PFIX)

% P: Node positions (Nx2)

% T: Tetrahedral indices (NTx3)

% VERT: Verticies of Quantum Dot

% QD_FD: Quantum Dot Distance function d(x,y,z)

% B_FD: Barrier Distance function d(x,y,z)

% FH: Scaled edge length function h(x,y,z)

% H0: Initial edge length

% QD_BBOX: Quantum Dot material bounding box [xmin,ymin,zmin;

% xmax,ymax,zmax]

% B_BBOX: Barrier material bounding box [xmin,ymin,zmin;

132

% xmax,ymax,zmax]

%--

% Create a mesh for the quantum dot material using distmesh ND

[QD_coord,QD_nodes]=distmeshnd(QD_fd,fh, h0,QD_bbox,[]);

[QD_coord,QD_nodes]=fixmesh(QD_coord,QD_nodes);

QD_surface=unique(surftri(QD_coord,QD_nodes));

fixed=[QD_coord(QD_surface(:),1),QD_coord(QD_surface(:),2),QD_coord(QD_surface(:),3)];

% Create a mesh for the barrier material using distmesh ND

%

[B_coord,B_nodes]=distmeshnd(B_fd,fh,h0,B_bbox,fixed);

[B_coord,B_nodes]=fixmesh(B_coord,B_nodes);

B_surface=unique(surftri(B_coord,B_nodes));

% Convert coordinates to desired significant digits

%

B_coord=round(B_coord*1000)/1000;

QD_coord=round(QD_coord*1000)/1000;

fixed=round(fixed*1000)/1000;

vert = fixed;

% 1. Get coordinates of all the nodes on edges of the barrier material

edges=[B_coord(B_surface(:),1),B_coord(B_surface(:),2),B_coord(B_surface(:),3)];

% 2. Start to systematically eliminate nodes on barrier bounding cube

for i=1:2

for j=1:3

[r c]=find(edges == B_bbox(i,j));

edges(r,:)=[];

end

end

% 3. Start to systematically eliminate nodes associated with nodes on

% the QD surface.

%

[index]=ismember(edges,fixed,’rows’);

if (~isempty(index))

edges(index,:)=[];

end

% 4. Eliminate "orphan" nodes

%

[index]=ismember(B_coord,edges,’rows’);

B_coord(index,:)=[];

% 5. Complete the final mesh

%

p=unique([B_coord;QD_coord],’rows’);

t=delaunayn(p);

%

% 6. View mesh

simpplot(p,t,’p(:,2)>0’);

drawnow

end

B.2.1 Five Sided Pyramid Distance Function

function d_signed=dFiveSidedPyramid(p,pv)

%dFiveSidedPyramid generates the signed distance from a set up points

%to a five sided pyramid. This function is used as a distance function

%in DistMesh.

%

% DFIVESIDEDPYRAMID(P,PV)

% D_SIGNED: SIGNED DISTANCE TO FIVE SIDED PYRAMID SURFACE (Nx1)

% P: POINTS (NX3)

% PV: VERTEX COORDINATES OF 5-SIDED PYRAMID

133

%

%--

% In order to determine the signed distance, we first decompose

% the surfaces of the polyhedron into surface triangles. This is

% accomplished by composing the surface triangles in a NX3 matrix, with N

% number of surface triangles each containing its 3 vertices.

%

% Variables:

% T: MATRIX REPRESENTING THE SURFACE TRIANGLES (6X3)

% NT: NUMBER OF SURFACE TRIANGLES

% TP: VERTEX POINTS OF SURFACE TRIANGLE (3X3)

% DS: DISTANCE OF POINTS FROM SURFACE TRIANGLE USING FUNCTION

% D: UNSIGNED DISTANCE TO FIVE SIDED PYRAMID SURFACE (NX1)

% Functions:

% POLYGON_CENTROID_3D - calculates the centroid of the polyhedron.

% TRIANGLE_POINT_DIST_3D - generates the distance from a set of

% points to a triangle in 3D.

% INHULL - tests if a set of points are inside a convex hull.

%

T=[1 2 5; 2 3 5; 3 4 5;4 5 1;1 2 4; 2 3 4];

centroid = polygon_centroid_3d(T,pv);

%

% The distance from each surface triangle is computed and then minimized

% to determine the distance.

nT=size(T,1);

%

for j=1:nT

TP = [pv(T(j,1),:);pv(T(j,2),:);pv(T(j,3),:)];

ds(:,j) = triangle_point_dist_3d(TP,p,centroid);

end

d=min(ds,[],2);

% The function inhull is used to determine the signed distance. If the

% point lies within the polyhedron, the distance is negative. If

% the point lies outside the polyhedron, the distance is positive.

d_signed=(-1).^(inhull(p,pv)).*d;

end

B.2.2 Rectangular Prism Distance Function

function d_signed=drectangle_3D(p,pv)

%drectangle_3D generates the signed distance from a set up points

%to a rectangular prism. This function is used as a distance function

%in DistMesh.

%

% DRECTANGLE_3D(P,PV)

% D_SIGNED: SIGNED DISTANCE TO RECTANGULAR PRISM SURFACE (Nx1)

% P: POINTS (NX3)

% PV: VERTEX COORDINATES OF RECTANGLULAR PRISM (8X3)

%

%--

% In order to determine the signed distance, we first decompose

% the surfaces of the polyhedron into surface triangles. This is

% accomplished by composing surface triangles in a NX3 matrix, with N

% number of surface triangles each containing its 3 vertices.

%

% Variables:

% T: MATRIX REPRESENTING THE SURFACE TRIANGLES (12X3)

% NT: NUMBER OF SURFACE TRIANGLES

134

% TP: VERTEX POINTS OF SURFACE TRIANGLE (3X3)

% DS: DISTANCE OF POINTS FROM SURFACE TRIANGLE USING FUNCTION

% D: UNSIGNED DISTANCE TO RECTANGULAR PRISM SURFACE (NX1)

% Functions:

% POLYGON_CENTROID_3D - calculates the centroid of the polyhedron.

% TRIANGLE_POINT_DIST_3D - generates the distance from a set of

% points to a triangle in 3D.

% INHULL - tests if a set of points are inside a convex hull.

%

T=[1 2 6;1 6 5;2 3 7;2 7 6;3 4 8;3 8 7;1 4 8;1 8 5;1 2 3;1 4 3;5 6 7;5 8 7];

centroid = polygon_centroid_3d(T,pv);

%

% The distance from each surface triangle is computed and then minimized

% to determine the distance.

nT=size(T,1);

%

for j=1:nT

TP = [pv(T(j,1),:);pv(T(j,2),:);pv(T(j,3),:)];

ds(:,j) = triangle_point_dist_3d(TP,p,centroid);

end

d=min(ds,[],2);

% The function inhull is used to determine the signed distance. If the

% point lies within the polyhedron, the distance is negative. If

% the point lies outside the polyhedron, the distance is positive.

d_signed=(-1).^(inhull(p,pv)).*d;

end

B.2.3 Polygon Centroid 3D

function centroid = polygon_centroid_3d (t, v)

%Polygon_centroid_3d calculates the centroid of the polyhedron.

%

% POLYGON_CENTROID_3D (T, V)

% CENTROID: CENTROID OF POLYHEDRON

% T: MATRIX REPRESENTING SURFACE TRIANGLES OF POLYHEDRON

% V: VERTICIES OF POLYHEDRON

%--

area = 0.0;

centroid(1:3) = 0.0;

for i = 1:size(t,1)

tri = [v(t(i,1),:); v(t(i,2),:); v(t(i,3),:)];

c = cross(tri(2,:)-tri(1,:),tri(3,:)-tri(1,:));

area_triangle = 0.5 * sqrt (sum (c.^2));

area = area + area_triangle;

centroid = centroid + area_triangle ...

* (v(t(i,1),:) + v(t(i,2),:) + v(t(i,3),:)) / 3.0;

end

if (area == 0.0)

centroid = v(t(1,1),:);

else

centroid = centroid / area;

end

return

end

135

B.2.4 Triangle point dist 3d

function dist = triangle_point_dist_3d (t, p, centroid)

%Triangle_point_dist_3d generates the distance from a set of points

%to a triangle in 3D.

%

% TRIANGLE_POINT_DIST_3D(T,P)

% DIST: DISTANCE FROM TRIANGLE (Nx1)

% T: TRIANGLE VERTICIES (3X3)

% P: POINTS (NX3)

% CENTROID: CENTROID OF POLYHEDRON

%

%--

% This function is used to find the distance of a set of 3D points to a

% triangle defined by its vertices.

%

% The algorithm does the following:

% 1. Determine the distances to each triangle edge and vertex.

% These distances are minimized.

% 2. Determine the distances to the plane the triangle lies on.

% 3. Project the points to the plane on the triangles plane.

% 4. Determine if the projected points are inside or outside the

% triangle.

% 5. For those points inside, the distance is to the plane the

% triangle lies on.

%

% Variables:

% DIST2: DISTANCE FROM POINTS TO SEGMENTS OR VERTICIES IN TRIANGLE

% DIST3: DISTANCE FROM POINTS TO PLANE IN TRIANGLE

% P_0: POINTS PROJECTED ON PLANE OF TRIANGLE (NX3)

% FLAG: NX1 ARRAY USED TO DISTINGUISH IF POINT LIES OUTSIDE OR INSIDE

% OF TRIANGLE. IF OUTSIDE, FLAG IS 0. IF INSIDE, FLAG IS 1 (NX1)

% IND: INDICES CORRESPONDING TO FLAG EQUAL TO 1.

% Functions:

% SEGMENT_POINT_DIST_3D - distance from a set of points

% to a line segment in 3D.

% PLANE_VERT_POINT_DIST_3D - computes the distance from a point to

% plane using the 3 vertices of a triangle.

% INHULL - tests if a set of points are inside a convex hull.

%

% Compute the distances from the points to each of the sides or vertex using

% the function seqment_point_dist_3d. Minimize these distances.

%

dist2 = segment_point_dist_3d (t(1,:), t(2,:), p);

dist = dist2;

dist2 = segment_point_dist_3d(t(2,:), t(3,:), p);

dist = min (dist, dist2);

dist2 = segment_point_dist_3d (t(3,:), t(1,:), p);

dist = min (dist, dist2);

% Compute the distance from the points to the plane using the function

% plane_vert_point_dist_3d. This function (plane_vert_point_dist_3d)

% calls the two functions plane_vert2std_3d and plane_std_point_dist3d

% which converts to the standard form of the plane and computes the

% distance while producing a set of projected points respectively.

% Use of the inhull function determines if the projected points lie

% inside or outside the triangle. To do this, we need to feed inhull a

136

% fourth point not on the plane. This allows inhull to determine those

% points within the triangle (added 4th point creates a tetrahedron).

% The 4th point can be chosen arbitrarily, so we use its centroid of the

% quantum dot shape.

[dist3,p_0] = plane_vert_point_dist_3d (t(1,:),t(2,:),t(3,:),p);

dist4 = min (dist , dist3);

flag=inhull(p_0,[t; centroid],[],1.0e-05);

ind=find(flag);

% Replace distances

dist(ind) = dist4(ind);

return

end

B.2.5 Inhull

function in = inhull(testpts,xyz,tess,tol)

% inhull: tests if a set of points are inside a convex hull

% usage: in = inhull(testpts,xyz)

% usage: in = inhull(testpts,xyz,tess)

% usage: in = inhull(testpts,xyz,tess,tol)

%

% arguments: (input)

% testpts - nxp array to test, n data points, in p dimensions

% If you have many points to test, it is most efficient to

% call this function once with the entire set.

%

% xyz - mxp array of vertices of the convex hull, as used by

% convhulln.

%

% tess - tessellation (or triangulation) generated by convhulln

% If tess is left empty or not supplied, then it will be

% generated.

%

% tol - (OPTIONAL) tolerance on the tests for inclusion in the

% convex hull. You can think of tol as the distance a point

% may possibly lie outside the hull, and still be perceived

% as on the surface of the hull. Because of numerical slop

% nothing can ever be done exactly here. I might guess a

% semi-intelligent value of tol to be

%

% tol = 1.e-13*mean(abs(xyz(:)))

%

% In higher dimensions, the numerical issues of floating

% point arithmetic will probably suggest a larger value

% of tol.

%

% DEFAULT: tol = 0

%

% arguments: (output)

% in - nx1 logical vector

% in(i) == 1 --> the i’th point was inside the convex hull.

%

% Example usage: The first point should be inside, the second out

%

% xy = randn(20,2)

% tess = convhull(xy(:,1),xy(:,2));

% testpoints = [0 0; 10 10];

% in = inhull(testpts,xyz,tess)

137

%

% in =

% 1

% 0

%

% A non-zero count of the number of degenerate simplexes in the hull

% will generate a warning (in 4 or more dimensions.) This warning

% may be disabled off with the command:

%

% warning(’off’,’inhull:degeneracy’)

%

% See also: convhull, convhulln, delaunay, delaunayn, tsearch, tsearchn

%

% Author: John D’Errico

% e-mail: woodchips@rochester.rr.com

% Release: 3.0

% Release date: 10/26/06

% get array sizes

% m points, p dimensions

p = size(xyz,2);

[n,c] = size(testpts);

if p ~= c

error ’testpts and xyz must have the same number of columns’

end

if p < 2

error ’Points must lie in at least a 2-d space.’

end

% was the convex hull supplied?

if (nargin<3) || isempty(tess)

tess = convhulln(xyz);

end

[nt,c] = size(tess);

if c ~= p

error ’tess array is incompatible with a dimension p space’

end

% was tol supplied?

if (nargin<4) || isempty(tol)

tol = 0;

end

% build normal vectors

switch p

case 2

% really simple for 2-d

nrmls = (xyz(tess(:,1),:) - xyz(tess(:,2),:)) * [0 1;-1 0];

% Any degenerate edges?

del = sqrt(sum(nrmls.^2,2));

degenflag = (del<(max(del)*10*eps));

if sum(degenflag)>0

warning(’inhull:degeneracy’,[num2str(sum(degenflag)), ...

’ degenerate edges identified in the convex hull’])

% we need to delete those degenerate normal vectors

nrmls(degenflag,:) = [];

nt = size(nrmls,1);

138

end

case 3

% use vectorized cross product for 3-d

ab = xyz(tess(:,1),:) - xyz(tess(:,2),:);

ac = xyz(tess(:,1),:) - xyz(tess(:,3),:);

nrmls = cross(ab,ac,2);

degenflag = repmat(false,nt,1);

otherwise

% slightly more work in higher dimensions,

nrmls = zeros(nt,p);

degenflag = repmat(false,nt,1);

for i = 1:nt

% just in case of a degeneracy

nullsp = null(xyz(tess(i,2:end),:) - repmat(xyz(tess(i,1),:),p-1,1))’;

if size(nullsp,1)>1

degenflag(i) = true;

nrmls(i,:) = NaN;

else

nrmls(i,:) = nullsp;

end

end

if sum(degenflag)>0

warning(’inhull:degeneracy’,[num2str(sum(degenflag)), ...

’ degenerate simplexes identified in the convex hull’])

% we need to delete those degenerate normal vectors

nrmls(degenflag,:) = [];

nt = size(nrmls,1);

end

end

% scale normal vectors to unit length

nrmllen = sqrt(sum(nrmls.^2,2));

nrmls = nrmls.*repmat(1./nrmllen,1,p);

% center point in the hull

center = mean(xyz,1);

% any point in the plane of each simplex in the convex hull

a = xyz(tess(~degenflag,1),:);

% ensure the normals are pointing inwards

dp = sum((repmat(center,nt,1) - a).*nrmls,2);

k = dp<0;

nrmls(k,:) = -nrmls(k,:);

% We want to test if: dot((x - a),N) >= 0

% If so for all faces of the hull, then x is inside

% the hull. Change this to dot(x,N) >= dot(a,N)

aN = sum(nrmls.*a,2);

% test, be careful in case there are many points

in = repmat(false,n,1);

% if n is too large, we need to worry about the

% dot product grabbing huge chunks of memory.

memblock = 1e6;

blocks = max(1,floor(n/(memblock/nt)));

aNr = repmat(aN,1,length(1:blocks:n));

139

for i = 1:blocks

j = i:blocks:n;

if size(aNr,2) ~= length(j),

aNr = repmat(aN,1,length(j));

end

in(j) = all((nrmls*testpts(j,:)’ - aNr) >= -tol,1)’;

end

B.2.6 Segment Point Dist 3D

function [dist] = segment_point_dist_3d (p1, p2, p)

%Segment_point_dist_3d generates the distance from a set of points

%to a line segment in 3D.

%

% SEGMENT_POINT_DIST_3D(P1,P2,P)

% DIST: DISTANCE FROM SEGMENT (Nx1)

% P1: FIRST VERTEX POINT OF LINE SEGEMENT (1X3)

% P2: SECOND VERTEX POINT LINE SEGEMENT (1X3)

%--

%

% Variables:

% BOT: SUM SQUARED OF P2-P1

% T: PARAMETER T

% PN: NORMALIZED VECTOR ALONG LINE

bot = sum ((p2 - p1).^2);

t = (p - ones(size(p,1),1)*p1) * (p2 - p1)’ ./ bot;

t = max (t, 0.0);

t = min (t, 1.0);

pn = ones(size(p,1),1)*p1 + t * (p2 - p1);

dist = sqrt (sum ((pn - p).^2,2));

return

end

B.2.7 Plane Vert Point Dist 3D

function [dist,p_0] = plane_vert_point_dist_3d (p1, p2, p3, p)

%Plane_vert_point_dist_3d computes the distance from a point to plane using

%the 3 vertices of a triangle. It calls the function plane_vert2std_3d to

%convert the plane to standard form;

% STANDARD FORM IS

% A * X + B * Y + C * Z + D = 0;

%

%Also calls the function plane_std_point_dist_3d to determine the

%distance from a set of points to a plane using the standard form’s

%coefficients a,b,c, and d and gives the projected points.

%

% PLANE_VERT_POINT_3D(P1,P2,P3,P)

% DIST: DISTANCE BETWEEN POINT AND PLANE (NX1)

% P_0: PROJECTED POINTS (NX3)

% P1: FIRST POINT (TRIANGLE VERTEX)

% P2: SECOND POINT (TRIANGLE VERTEX)

% P3: THIRD POINT (TRIANGLE VERTEX)

% P: POINTS (NX3)

%--

% Variables:

% A: COEFFICIENT A

% B: COEFFICIENT B

% C: COEFFICIENT C

% D: COEFFICIENT D

140

% P_0: PROJECTED POINTS (Nx3)

[a, b, c, d] = plane_vert2std_3d (p1, p2, p3);

[dist, p_0] = plane_std_point_dist_3d (a, b, c, d, p);

return

end

B.2.8 Plane vert2std 3d

function [a, b, c, d] = plane_vert2std_3d (p1, p2, p3)

%Plane_vert2std_3d converts 3 points on a plane to the standard form in 3D.

% STANDARD FORM IS

% A * X + B * Y + C * Z + D = 0;

%

% PLANE_EXP2IMP_3D(P1,P2,P3)

% A: COEFFICIENT A

% B: COEFFICIENT B

% C: COEFFICIENT C

% D: COEFFICIENT D

% P1: FIRST POINT (TRIANGLE VERTEX)

% P2: SECOND POINT (TRIANGLE VERTEX)

% P3: THIRD POINT (TRIANGLE VERTEX)

%--

a = (p2(2) - p1(2))*(p3(3) - p1(3)) - (p2(3) - p1(3))*(p3(2) - p1(2));

b = (p2(3) - p1(3))*(p3(1) - p1(1)) - (p2(1) - p1(1))*(p3(3) - p1(3));

c = (p2(1) - p1(1))*(p3(2) - p1(2)) - (p2(2) - p1(2))*(p3(1) - p1(1));

d = - p2(1)*a - p2(2)*b - p2(3)*c;

return

end

\end{varbatim}

}

\subsection{Plane_std_point_dist_3d}

{\small

\begin{verbatim}

function [dist, p_0] = plane_std_point_dist_3d (a, b, c, d, p)

%Plane_std_point_dist_3d determines the distance between a set of points

%and a plane when the plane is in the following form:

%

% STANDARD FORM IS

% A * X + B * Y + C * Z + D = 0;

%

%Also determines the points projected on the plane.

% pp_x = x_0+t*a;

% pp_y = y_0+t*b;

% pp_z = z_0+t*c;

%

% PLANE_EXP2IMP_3D(P1,P2,P3)

% DIST: DISTANCE BETWEEN POINT AND PLANE (NX1)

% P_0: PROJECTED POINTS (NX3)

% A: COEFFICIENT A

% B: COEFFICIENT B

% C: COEFFICIENT C

% D: COEFFICIENT D

% P: SET OF POINTS (NX3)

%--

% Variables:

% NORM: "NORMAL" OF THE COEFFICIENTS

% T_0: PARAMETER T

norm = sqrt (a * a + b * b + c * c);

t_0=-(p(:,1)*a + p(:,2)*b + p(:,3)*c + ones(size(p,1),1)*d)./(a * a + b * b + c * c);

141

p_0=[(p(:,1)+t_0*a),(p(:,2)+t_0*b),(p(:,3)+t_0*c)];

dist = abs (p(:,1)*a + p(:,2)*b + p(:,3)*c + ones(size(p,1),1)*d) ./ norm;

return

end

B.3 2D Processing Code

function [glob_K,glob_V,glob_E,enodes] = FEM_2D_QW(p,t,vert,V_nodes)

%FEM_2D_QW This is finite element code that populates the global matrices

%needed to solve Schrodinger’s equation for a quantum wire (2D).

%

%

% FEM_2D_QW(P,T,VERT,V_NODES)

% GLOB_K: KINETIC ENERGY MATRIX (SPARSE MATRIX)

% GLOB_V: POTENTIAL ENERGY MATRIX (SPARSE MATRIX)

% GLOB_E: OVERLAP MATRIX (SPARSE MATRIX)

% ENODES: NODES ON THE BOUNDING BOX (NEEDED FOR POST PROCESSING)

% P: COORDINATES OF NODES (NNODES X 2)

% T: TRIANGULAR ELEMENTS (NEL X NNEL)

% VERT: VERTICES OF QUANTUM WIRE (M X P,M VERTICES IN P DIMENSIONS)

% V_NODES: POTENTIAL AT EACH NODE OTHER THAN OFFSET IN eV (NNODES X 1)

%--

%

% Physical constants:

% m_e: mass of electron in grams

% h_bar: plancks constant in kilograms-Angstrom per second

% q: measure of electron-volt in gram-centimeter squared per second

% squared

% Variables:

% ndof: number of degrees of freedom (dof) per node (1 OR 3)

% m_eff: effective mass of semiconductor in grams(1 X 2)

% V_offset: conduction or valence band offset in eV (1 X 2)

% nnel: number of nodes per element

% nel: number of elements

% nnodes: number of nodes

% interface_nodes: nodes on interface separating the two materials

% elem_size: size of element matrices

% r,c,v: row & column indices of respective element matrix that point

% to value v.

% nd: local node indexing (1 X NNEL)

% xcoord/ycoord: local coordinate indexing (1 X NNEL)

% V: potential energy per node (1 X NNEL)

% m: effective mass of element

% J: Jacobian Matrix (2 X 2)

% Elem_K: elemental kinetic matrix (EDOF X EDOF)

% Elem_V: elemental potential matrix (EDOF X EDOF)

% Elem_E: elemental overlap matrix (EDOF X EDOF)

% index: system degree of freedom assigned to element node(1 X EDOF)

% Functions:

% boundedges: Find boundary edges from mesh

% inhull: Tests if a set of points is inside a convex hull

% jacob_2D: The Jacobian for 2D mapping

% Elem_matrix_K: Computes the elemental kinetic matrix

% Elem_matrix_V: Computes the elemental potential matrix

% Elem_matrix_E: Computes the elemental overlap matrix

% apply_interface_bc_2D: Applies the boundary conditions on the

% interface between the two materials if dof > 1.

% index_2D: Assigns the system dof to the element node

142

% assemble: Builds up row & column indices

% sparse: assembles global matrices by creating a sparse matrix

%

m_e = 9.109*10^-28;

%ENTER USER INPUT HERE---

ndof = 3;

%(1) represents the well and (2) represents the barrier

m_eff(1)=m_e*0.0665;

m_eff(2)=m_e*0.0858;

V_offset(1)=0;

V_offset(2)=0.276;

%END USER INPUT--

%

h_bar = 1.054*10^-19;

q = 1.602*10^-12;

nnel = 3;

nel=length(t(:,1));

nnode=length(p(:,1));

interface_nodes = find(ismember(p,vert,’rows’));

%

%For bound state energies, which this program is solving for, boundary

%conditions require the wavefunction to fall off at regions approaching

%infinity. In order to satisfy this, we bound the barrier region at

%"sufficient" distances.

%

enodes = unique(boundedges(p,t));

%

elem_size = nnel*ndof*nnel*ndof;

r_K = zeros(nel,elem_size);r_V = zeros(nel,elem_size);r_E = zeros(nel,elem_size);

c_K = zeros(nel,elem_size);c_V = zeros(nel,elem_size);c_E = zeros(nel,elem_size);

v_K = zeros(nel,elem_size);v_V = zeros(nel,elem_size);v_E = zeros(nel,elem_size);

%

for iel=1:nel

nd = t(iel,:);

xcoord = p(nd,1);

ycoord = p(nd,2);

IN = inhull([xcoord ycoord],vert,[],0.01);

if (sum(IN) == nnel)

V(1:nnel) = V_offset(1) + V_nodes(nd);

m = m_eff(1);

else

V(1:nnel) = V_offset(2) + V_nodes(nd);

m = m_eff(2);

end

J = jacob_2D(xcoord,ycoord);

%

%Construct the elemental matrices by using functions Elem_matrix_K,

%Elem_matrix_V, and Elem_matrix_E.

elem_K = ((h_bar)^2/(2*m*q))*Elem_matrix_K(J,ndof);

elem_V = Elem_matrix_V(J,V,ndof);

elem_E = Elem_matrix_E(J,ndof);

%

%Add reciprical mass condition at interface if there is more than 1

%dof per node.

if (ndof > 1 && m == m_eff(1))

elem_K = apply_interface_bc_2D(elem_K,interface_nodes,nd,m_eff(2)/m);

elem_V = apply_interface_bc_2D(elem_V,interface_nodes,nd,m_eff(2)/m);

elem_E = apply_interface_bc_2D(elem_E,interface_nodes,nd,m_eff(2)/m);

end

143

%

%Builds up row & column indices using assemble function

%

index = index_2D(nd,ndof);

[r_K(iel,:) c_K(iel,:) v_K(iel,:)] = assemble(elem_K,index);

[r_V(iel,:) c_V(iel,:) v_V(iel,:)] = assemble(elem_V,index);

[r_E(iel,:) c_E(iel,:) v_E(iel,:)] = assemble(elem_E,index);

end

%

%Construct the global matrices using sparse and triples of

%rows/columns/values

%

glob_K = sparse(r_K,c_K,v_K,ndof*nnode,ndof*nnode);

glob_V = sparse(r_V,c_V,v_V,ndof*nnode,ndof*nnode);

glob_E = sparse(r_E,c_E,v_E,ndof*nnode,ndof*nnode);

end

B.3.1 Jacob 2D

function [J] = jacob_2D(x,y)

%Jacob_2D The Jacobian for the 2D mapping

% The Jacobian is constant due to the linear transformation of local

% coordinates to global coordinates. Linear shape functions are used as

% the coordinate transformation.

%

% [J]=JACOB_2D(X,Y)

% J: JACOBIAN MATRIX (2x2)

% X: GLOBAL COORDINATES IN THE X DIRECTION(1x3)

% Y: GLOBAL COORDINATES IN THE Y DIRECTION(1x3)

%--

%

J(1,1) = x(2)-x(1);

J(1,2) = y(2)-y(1);

J(2,1) = x(3)-x(1);

J(2,2) = y(3)-y(1);

end

B.3.2 Elem matrix E

function [elem_E] = Elem_matrix_E(J,ndof)

%Elem_matrix_E Computes the elemental overlap matrix

% The elemental overlap energy matrix is formed using either linear

% basis functions or cubic basis functions.

%

% [ELEM_E]=ELEM_MATRIX_E(J,NDOF)

% ELEM_E: ELEMENTAL OVERLAP ENERGY MATRIX (3 X 3 OR 9 X 9)

% J: JACOBIAN MATRIX (2 X 2)

% NDOF: DEGREE OF FREEDOM PER NODE

%--

%

% Variables:

% Translate: Matrix that converts ELEM_E from local coordinates to

% global coordinates. This is only used when ndof does not equal 1.

%

%Linear basis functions are defined as;

% N_1(x,y)=1-x-y; 0<=x,y<=1

% N_2(x,y)=x; 0<=x,y<=1

% N_3(x,y)=y; 0<=x,y<=1

%

144

%Cubic basis functions are defined as;

% N_1(x,y)=1-3*x^2-3*y^2+2*x^3+2*y^3; 0<=x,y<=1

% N_2(x,y)=x-2*x^2+x^3+1/3*(-x*y+x^2*y-2*x*y^2); 0<=x,y<=1

% N_3(x,y)=y-2*y^2+y^3+1/3*(-x*y+x*y^2-2*x^2*y); 0<=x,y<=1

% N_4(x,y)=3*x^2-2*x^3; 0<=x,y<=1

% N_5(x,y)=-x^2+x^3; 0<=x,y<=1

% N_6(x,y)=1/3*(x*y+2*x^2*y-x*y^2); 0<=x,y<=1

% N_7(x,y)=3*y^2-2*y^3; 0<=x,y<=1

% N_8(x,y)=1/3*(x*y+2*x*y^2-x^2*y); 0<=x,y<=1

% N_9(x,y)=-y^2+y^3; 0<=x,y<=1

%

%--

%

if (ndof == 1)

elem_E = 1/24*[2 1 1 ; 1 2 1 ; 1 1 2];

elem_E = det(J)*elem_E;

else

elem_E = [17/140, 9/560, 9/560, 11/280, -17/1680, 1/210, 11/280, 1/210,...

-17/1680 ; 9/560, 31/11340, 97/45360, 11/1260, -11/5040,...

13/12960, 29/5040, 41/45360, -1/672 ; 9/560, 97/45360,...

31/11340, 29/5040, -1/672, 41/45360, 11/1260, 13/12960,...

-11/5040 ; 11/280, 11/1260, 29/5040, 3/35, -1/60, 23/2520,...

1/40, 1/180, -11/1680 ; -17/1680, -11/5040, -1/672, -1/60,...

1/280, -1/504, -11/1680, -1/720, 17/10080 ; 1/210, 13/12960,...

41/45360, 23/2520, -1/504, 4/2835, 1/180, 101/90720, -1/720 ;...

11/280, 29/5040, 11/1260, 1/40, -11/1680, 1/180, 3/35, 23/2520,...

-1/60 ; 1/210, 41/45360, 13/12960, 1/180, -1/720, 101/90720,...

23/2520, 4/2835, -1/504 ; -17/1680, -1/672, -11/5040, -11/1680,...

17/10080, -1/720, -1/60, -1/504, 1/280];

translate = zeros(9,9);

translate(1,1) = 1;

translate(4,4) = 1;

translate(7,7) = 1;

translate(2:3,2:3) = J;

translate(5:6,5:6) = J;

translate(8:9,8:9) = J;

elem_E = det(J)*(translate’*elem_E*translate);

end

B.3.3 Elem matrix V

function [elem_V] = Elem_matrix_V(J,V,ndof)

%Elem_matrix_V Computes the elemental potential matrix

% The elemental potential energy matrix is formed using either linear

% basis functions or cubic basis functions.

%

% [ELEM_V]=ELEM_MATRIX_V(J,V,NDOF)

% ELEM_V: ELEMENTAL POTENTIAL ENERGY MATRIX (3 X 3 OR 9 X 9)

% J: JACOBIAN MATRIX (2 X 2)

% V: VECTOR CONTAINING POTENTIAL AT NODE (1 X 3)

% NDOF: DEGREE OF FREEDOM PER NODE

%--

%

% Variables:

% Translate: Matrix that converts ELEM_V from local coordinates to

% global coordinates. This is only used when ndof does not equal 1.

%

%Linear shape functions are defined as;

% N_1(x,y)=1-x-y; 0<=x,y<=1

145

% N_2(x,y)=x; 0<=x,y<=1

% N_3(x,y)=y; 0<=x,y<=1

%

%Cubic shape functions are defined as;

% N_1(x,y)=1-3*x^2-3*y^2+2*x^3+2*y^3; 0<=x,y<=1

% N_2(x,y)=x-2*x^2+x^3+1/3*(-x*y+x^2*y-2*x*y^2); 0<=x,y<=1

% N_3(x,y)=y-2*y^2+y^3+1/3*(-x*y+x*y^2-2*x^2*y); 0<=x,y<=1

% N_4(x,y)=3*x^2-2*x^3; 0<=x,y<=1

% N_5(x,y)=-x^2+x^3; 0<=x,y<=1

% N_6(x,y)=1/3*(x*y+2*x^2*y-x*y^2); 0<=x,y<=1

% N_7(x,y)=3*y^2-2*y^3; 0<=x,y<=1

% N_8(x,y)=1/3*(x*y+2*x*y^2-x^2*y); 0<=x,y<=1

% N_9(x,y)=-y^2+y^3; 0<=x,y<=1

%

%--

%

if (ndof == 1)

elem_V = 1/120*[6*V(1)+2*V(2)+2*V(3) 2*V(1)+2*V(2)+1*V(3) 2*V(1)+1*V(2)+2*V(3) ; ...

2*V(1)+2*V(2)+1*V(3) 2*V(1)+6*V(2)+2*V(3) 1*V(1)+2*V(2)+2*V(3); ...

2*V(1)+1*V(2)+2*V(3) 1*V(1)+2*V(2)+2*V(3) 2*V(1)+2*V(2)+6*V(3)];

elem_V = det(J)*elem_V;

else

elem_V = [(1/14)*V(1)+(1/40)*V(3)+(1/40)*V(2),...

(293/90720)*V(3)+(59/12960)*V(2)+(47/5670)*V(1),...

(47/5670)*V(1)+(293/90720)*V(2)+(59/12960)*V(3),...

(1/70)*V(1)+(13/1680)*V(3)+(29/1680)*V(2),...

-(13/3360)*V(1)-(1/480)*V(3)-(1/240)*V(2),...

(139/90720)*V(1)+(127/90720)*V(3)+(83/45360)*V(2),...

(1/70)*V(1)+(13/1680)*V(2)+(29/1680)*V(3),...

(139/90720)*V(1)+(83/45360)*V(3)+(127/90720)*V(2),...

-(13/3360)*V(1)-(1/480)*V(2)-(1/240)*V(3) ;...

(293/90720)*V(3)+(59/12960)*V(2)+(47/5670)*V(1),...

(73/136080)*V(3)+(31/34020)*V(2)+(5/3888)*V(1),...

(13/13608)*V(1)+(23/38880)*V(2)+(23/38880)*V(3),...

(19/11340)*V(3)+(187/45360)*V(2)+(19/6480)*V(1),...

-(1/1296)*V(1)-(1/2268)*V(3)-(11/11340)*V(2),...

(79/272160)*V(1)+(23/54432)*V(2)+(79/272160)*V(3),...

(79/45360)*V(1)+(137/90720)*V(2)+(227/90720)*V(3),...

(1/3888)*V(1)+(41/136080)*V(2)+(47/136080)*V(3),...

-(43/90720)*V(1)-(37/90720)*V(2)-(11/18144)*V(3) ;...

(47/5670)*V(1)+(293/90720)*V(2)+(59/12960)*V(3),...

(13/13608)*V(1)+(23/38880)*V(2)+(23/38880)*V(3),...

(5/3888)*V(1)+(73/136080)*V(2)+(31/34020)*V(3),...

(79/45360)*V(1)+(227/90720)*V(2)+(137/90720)*V(3),...

-(43/90720)*V(1)-(11/18144)*V(2)-(37/90720)*V(3),...

(47/136080)*V(2)+(41/136080)*V(3)+(1/3888)*V(1),...

(19/6480)*V(1)+(187/45360)*V(3)+(19/11340)*V(2),...

(79/272160)*V(1)+(79/272160)*V(2)+(23/54432)*V(3),...

-(1/1296)*V(1)-(11/11340)*V(3)-(1/2268)*V(2) ;...

(1/70)*V(1)+(13/1680)*V(3)+(29/1680)*V(2),...

(19/11340)*V(3)+(187/45360)*V(2)+(19/6480)*V(1),...

(79/45360)*V(1)+(227/90720)*V(2)+(137/90720)*V(3),...

(19/1260)*V(1)+(1/18)*V(2)+(19/1260)*V(3),...

-(17/5040)*V(1)-(5/504)*V(2)-(17/5040)*V(3),...

(121/90720)*V(1)+(121/22680)*V(2)+(223/90720)*V(3),...

(1/252)*V(1)+(53/5040)*V(2)+(53/5040)*V(3),...

(19/22680)*V(1)+(17/6480)*V(2)+(19/9072)*V(3),...

-(11/10080)*V(1)-(29/10080)*V(2)-(13/5040)*V(3) ;...

-(13/3360)*V(1)-(1/480)*V(3)-(1/240)*V(2),...

146

-(1/1296)*V(1)-(1/2268)*V(3)-(11/11340)*V(2),...

-(43/90720)*V(1)-(11/18144)*V(2)-(37/90720)*V(3),...

-(17/5040)*V(1)-(5/504)*V(2)-(17/5040)*V(3),...

(1/1260)*V(1)+(1/504)*V(2)+(1/1260)*V(3),...

-(29/90720)*V(1)-(7/6480)*V(2)-(53/90720)*V(3),...

-(11/10080)*V(1)-(13/5040)*V(2)-(29/10080)*V(3),...

-(1/4536)*V(1)-(1/1620)*V(2)-(5/9072)*V(3),...

(1/3360)*V(1)+(1/1440)*V(2)+(1/1440)*V(3) ;...

(139/90720)*V(1)+(127/90720)*V(3)+(83/45360)*V(2),...

(79/272160)*V(1)+(23/54432)*V(2)+(79/272160)*V(3),...

(47/136080)*V(2)+(41/136080)*V(3)+(1/3888)*V(1),...

(121/90720)*V(1)+(121/22680)*V(2)+(223/90720)*V(3),...

-(29/90720)*V(1)-(7/6480)*V(2)-(53/90720)*V(3),...

(5/27216)*V(1)+(103/136080)*V(2)+(4/8505)*V(3),...

(19/22680)*V(1)+(19/9072)*V(2)+(17/6480)*V(3),...

(41/272160)*V(1)+(131/272160)*V(2)+(131/272160)*V(3),...

-(1/4536)*V(1)-(5/9072)*V(2)-(1/1620)*V(3) ;...

(1/70)*V(1)+(13/1680)*V(2)+(29/1680)*V(3),...

(79/45360)*V(1)+(137/90720)*V(2)+(227/90720)*V(3),...

(19/6480)*V(1)+(187/45360)*V(3)+(19/11340)*V(2),...

(1/252)*V(1)+(53/5040)*V(2)+(53/5040)*V(3),...

-(11/10080)*V(1)-(13/5040)*V(2)-(29/10080)*V(3),...

(19/22680)*V(1)+(19/9072)*V(2)+(17/6480)*V(3),...

(19/1260)*V(1)+(19/1260)*V(2)+(1/18)*V(3),...

(121/90720)*V(1)+(223/90720)*V(2)+(121/22680)*V(3),...

-(17/5040)*V(1)-(17/5040)*V(2)-(5/504)*V(3) ;...

(139/90720)*V(1)+(83/45360)*V(3)+(127/90720)*V(2),...

(1/3888)*V(1)+(41/136080)*V(2)+(47/136080)*V(3),...

(79/272160)*V(1)+(79/272160)*V(2)+(23/54432)*V(3),...

(19/22680)*V(1)+(17/6480)*V(2)+(19/9072)*V(3),...

-(1/4536)*V(1)-(1/1620)*V(2)-(5/9072)*V(3),...

(41/272160)*V(1)+(131/272160)*V(2)+(131/272160)*V(3),...

(121/90720)*V(1)+(223/90720)*V(2)+(121/22680)*V(3),...

(5/27216)*V(1)+(4/8505)*V(2)+(103/136080)*V(3),...

-(29/90720)*V(1)-(53/90720)*V(2)-(7/6480)*V(3) ;...

-(13/3360)*V(1)-(1/480)*V(2)-(1/240)*V(3),...

-(43/90720)*V(1)-(37/90720)*V(2)-(11/18144)*V(3),...

-(1/1296)*V(1)-(11/11340)*V(3)-(1/2268)*V(2),...

-(11/10080)*V(1)-(29/10080)*V(2)-(13/5040)*V(3),...

(1/3360)*V(1)+(1/1440)*V(2)+(1/1440)*V(3),...

-(1/4536)*V(1)-(5/9072)*V(2)-(1/1620)*V(3),...

-(17/5040)*V(1)-(17/5040)*V(2)-(5/504)*V(3),...

-(29/90720)*V(1)-(53/90720)*V(2)-(7/6480)*V(3),...

(1/1260)*V(1)+(1/1260)*V(2)+(1/504)*V(3)];

translate = zeros(9,9);

translate(1,1) = 1;

translate(4,4) = 1;

translate(7,7) = 1;

translate(2:3,2:3) = J;

translate(5:6,5:6) = J;

translate(8:9,8:9) = J;

elem_V = det(J)*(translate’*elem_V*translate);

end

B.3.4 Elem matrix K

function [elem_K] = Elem_matrix_K(J,ndof)

%Elem_matrix_K Computes the elemental kinetic matrix

% The elemental kinetic energy matrix is formed using either linear basis

147

% functions or cubic basis functions.

%

% [ELEM_K]=ELEM_MATRIX_K(J,NDOF)

% ELEM_K: ELEMENTAL KINETIC ENERGY MATRIX (3 X 3 OR 9 X 9)

% J: JACOBIAN MATRIX(2 X 2)

% NDOF: DEGREE OF FREEDOM PER NODE

%--

%The elemental kinetic energy matrix is constructed using the quadratic

%form as represented by the equation Trace(M_C*(JJ^T)^-1). This form is

%convenient because the integrals are carried out once and represented in

%matricies M_C, Mxx, Mxy, Myx, and Myy below.

% Variables:

% M_C: MATRIX REPRESENTING THE PRODUCT OF DERIVATIVES (2 X 2)

% MXX: VECTOR REPRESENTING PRODUCT OF SHAPE FUNCTION DERIVATIVES WITH

% RESPECT TO X (1 X 9 OR 1 X 81)

% MXY: VECTOR REPRESENTING PRODUCT OF SHAPE FUNCTION DERIVATIVES WITH

% RESPECT TO X AND Y (1 X 9 OR 1 X 81)

% MYX: VECTOR REPRESENTING PRODUCT OF SHAPE FUNCTION DERIVATIVES WITH

% RESPECT TO Y AND X (1 X 9 OR 1 X 81)

% MYY: VECTOR REPRESENTING PRODUCT OF SHAPE FUNCTION DERIVATIVES WITH

% RESPECT TO Y (1 X 9 OR 1 X 81)

% TRANSLATE: Matrix that converts ELEM_K from local coordinates to

% global coordinates. This is only used when ndof does not equal 1.

%

%Linear basis functions are defined as;

% N_1(x,y)=1-x-y; 0<=x,y<=1

% N_2(x,y)=x; 0<=x,y<=1

% N_3(x,y)=y; 0<=x,y<=1

%

%Cubic basis functions are defined as;

% N_1(x,y)=1-3*x^2-3*y^2+2*x^3+2*y^3; 0<=x,y<=1

% N_2(x,y)=x-2*x^2+x^3+1/3*(-x*y+x^2*y-2*x*y^2); 0<=x,y<=1

% N_3(x,y)=y-2*y^2+y^3+1/3*(-x*y+x*y^2-2*x^2*y); 0<=x,y<=1

% N_4(x,y)=3*x^2-2*x^3; 0<=x,y<=1

% N_5(x,y)=-x^2+x^3; 0<=x,y<=1

% N_6(x,y)=1/3*(x*y+2*x^2*y-x*y^2); 0<=x,y<=1

% N_7(x,y)=3*y^2-2*y^3; 0<=x,y<=1

% N_8(x,y)=1/3*(x*y+2*x*y^2-x^2*y); 0<=x,y<=1

% N_9(x,y)=-y^2+y^3; 0<=x,y<=1

%

%--

%

K = (J*J’)^-1;

if (ndof == 1)

elem_K = zeros(3,3);

Mxx = [1/2 -1/2 0 -1/2 1/2 0 0 0 0];

Mxy = [1/2 0 -1/2 -1/2 0 1/2 0 0 0];

Myx = [1/2 -1/2 0 0 0 0 -1/2 1/2 0];

Myy = [1/2 0 -1/2 0 0 0 -1/2 0 1/2];

M = [Mxx ; Mxy ; Myx ; Myy];

M_C1 = reshape(M(:,1),2,2)’*K ; M_C2 = reshape(M(:,2),2,2)’*K;

M_C3 = reshape(M(:,3),2,2)’*K ; M_C5 = reshape(M(:,5),2,2)’*K;

M_C6 = reshape(M(:,6),2,2)’*K ; M_C9 = reshape(M(:,9),2,2)’*K;

elem_K(1,1) = trace(M_C1); elem_K(1,2) = trace(M_C2);

elem_K(1,3) = trace(M_C3); elem_K(2,2) = trace(M_C5);

elem_K(2,3) = trace(M_C6); elem_K(3,3) = trace(M_C9);

%

elem_K = elem_K + elem_K’ - diag(diag(elem_K));

148

elem_K = det(J)*elem_K;

else

elem_K = zeros(9,9);

Mxx = [3/5, 11/180, 17/180, -3/5, 1/10, -17/180, 0, -11/180, 0 ...

11/180, 91/1620, 4/405, -11/180, 0, -4/405, 0, 2/405, 0 ...

17/180, 4/405, 31/1620, -17/180, 1/60, -31/1620, 0, -5/324, 0 ...

-3/5, -11/180, -17/180, 3/5, -1/10, 17/180, 0, 11/180, 0 ...

1/10, 0, 1/60, -1/10, 1/30, -1/60, 0, -1/60, 0 ...

-17/180, -4/405, -31/1620, 17/180, -1/60, 31/1620, 0, 5/324, 0 ...

0, 0, 0, 0, 0, 0, 0, 0, 0 ...

-11/180, 2/405, -5/324, 11/180, -1/60, 5/324, 0, 11/324, 0 ...

0, 0, 0, 0, 0, 0, 0, 0, 0];

Mxy = [1/2, 1/10, 0, 0, 0, -1/10, -1/2, -1/10, 1/10 ...

0, 43/3240, 61/3240, 0, 0, -61/3240, 0, -43/3240, 0 ...

1/10, 61/3240, 43/3240, 0, 0, -43/3240, -1/10, -61/3240, 1/60 ...

-1/2, -1/10, 0, 0, 0, 1/10, 1/2, 1/10, -1/10 ...

1/10, 1/60, 0, 0, 0, 0, -1/10, -1/60, 1/60 ...

-1/10, -61/3240, -43/3240, 0, 0, 43/3240, 1/10, 61/3240, -1/60 ...

0, 0, 0, 0, 0, 0, 0, 0, 0 ...

-1/10, -43/3240, -61/3240, 0, 0, 7/3240, 1/10, 43/3240, 0 ...

0, 0, 0, 0, 0, 0, 0, 0, 0];

Myx = [1/2, 0, 1/10, -1/2, 1/10, -1/10, 0, -1/10, 0 ...

1/10, 43/3240, 61/3240, -1/10, 1/60, -61/3240, 0, -43/3240, 0 ...

0, 61/3240, 43/3240, 0, 0, -43/3240, 0, -61/3240, 0 ...

0, 0, 0, 0, 0, 0, 0, 0, 0 ...

0, 0, 0, 0, 0, 0, 0, 0, 0 ...

-1/10, -61/3240, -43/3240, 1/10, 0, 43/3240, 0, 7/3240, 0 ...

-1/2, 0, -1/10, 1/2, -1/10, 1/10, 0, 1/10, 0 ...

-1/10, -43/3240, -61/3240, 1/10, -1/60, 61/3240, 0, 43/3240, 0 ...

1/10, 0, 1/60, -1/10, 1/60, -1/60, 0, 0, 0];

Myy = [3/5, 17/180, 11/180, 0, 0, -11/180, -3/5, -17/180, 1/10 ...

17/180, 31/1620, 4/405, 0, 0, -5/324, -17/180, -31/1620, 1/60 ...

11/180, 4/405, 91/1620, 0, 0, 2/405, -11/180, -4/405, 0 ...

0, 0, 0, 0, 0, 0, 0, 0, 0 ...

0, 0, 0, 0, 0, 0, 0, 0, 0 ...

-11/180, -5/324, 2/405, 0, 0, 11/324, 11/180, 5/324, -1/60 ...

-3/5, -17/180, -11/180, 0, 0, 11/180, 3/5, 17/180, -1/10 ...

-17/180, -31/1620, -4/405, 0, 0, 5/324, 17/180, 31/1620, -1/60 ...

1/10, 1/60, 0, 0, 0, -1/60, -1/10, -1/60, 1/30];

M = [Mxx ; Mxy ; Myx ; Myy];

M_C1 = reshape(M(:,1),2,2)’*K ; M_C2 = reshape(M(:,2),2,2)’*K;

M_C3 = reshape(M(:,3),2,2)’*K ; M_C4 = reshape(M(:,4),2,2)’*K;

M_C5 = reshape(M(:,5),2,2)’*K ; M_C6 = reshape(M(:,6),2,2)’*K;

M_C7 = reshape(M(:,7),2,2)’*K ; M_C8 = reshape(M(:,8),2,2)’*K;

M_C9 = reshape(M(:,9),2,2)’*K ; M_C11 = reshape(M(:,11),2,2)’*K;

M_C12 = reshape(M(:,12),2,2)’*K ; M_C13 = reshape(M(:,13),2,2)’*K;

M_C14 = reshape(M(:,14),2,2)’*K ; M_C15 = reshape(M(:,15),2,2)’*K;

M_C16 = reshape(M(:,16),2,2)’*K ; M_C17 = reshape(M(:,17),2,2)’*K;

M_C18 = reshape(M(:,18),2,2)’*K ; M_C21 = reshape(M(:,21),2,2)’*K;

M_C22 = reshape(M(:,22),2,2)’*K ; M_C23 = reshape(M(:,23),2,2)’*K;

M_C24 = reshape(M(:,24),2,2)’*K ; M_C25 = reshape(M(:,25),2,2)’*K;

M_C26 = reshape(M(:,26),2,2)’*K ; M_C27 = reshape(M(:,27),2,2)’*K;

M_C31 = reshape(M(:,31),2,2)’*K ; M_C32 = reshape(M(:,32),2,2)’*K;

M_C33 = reshape(M(:,33),2,2)’*K ; M_C34 = reshape(M(:,34),2,2)’*K;

M_C35 = reshape(M(:,35),2,2)’*K ; M_C36 = reshape(M(:,36),2,2)’*K;

M_C41 = reshape(M(:,41),2,2)’*K ; M_C42 = reshape(M(:,42),2,2)’*K;

M_C43 = reshape(M(:,43),2,2)’*K ; M_C44 = reshape(M(:,44),2,2)’*K;

M_C45 = reshape(M(:,45),2,2)’*K ; M_C51 = reshape(M(:,51),2,2)’*K;

M_C52 = reshape(M(:,52),2,2)’*K ; M_C53 = reshape(M(:,53),2,2)’*K;

149

M_C54 = reshape(M(:,54),2,2)’*K ; M_C61 = reshape(M(:,61),2,2)’*K;

M_C62 = reshape(M(:,62),2,2)’*K ; M_C63 = reshape(M(:,63),2,2)’*K;

M_C71 = reshape(M(:,71),2,2)’*K ; M_C72 = reshape(M(:,72),2,2)’*K;

M_C81 = reshape(M(:,81),2,2)’*K;

%

elem_K(1,1) = trace(M_C1) ; elem_K(1,2) = trace(M_C2);

elem_K(1,3) = trace(M_C3) ; elem_K(1,4) = trace(M_C4);

elem_K(1,5) = trace(M_C5) ; elem_K(1,6) = trace(M_C6);

elem_K(1,7) = trace(M_C7) ; elem_K(1,8) = trace(M_C8);

elem_K(1,9) = trace(M_C9) ; elem_K(2,2) = trace(M_C11);

elem_K(2,3) = trace(M_C12) ; elem_K(2,4) = trace(M_C13);

elem_K(2,5) = trace(M_C14) ; elem_K(2,6) = trace(M_C15);

elem_K(2,7) = trace(M_C16) ; elem_K(2,8) = trace(M_C17);

elem_K(2,9) = trace(M_C18) ; elem_K(3,3) = trace(M_C21);

elem_K(3,4) = trace(M_C22) ; elem_K(3,5) = trace(M_C23);

elem_K(3,6) = trace(M_C24) ; elem_K(3,7) = trace(M_C25);

elem_K(3,8) = trace(M_C26) ; elem_K(3,9) = trace(M_C27);

elem_K(4,4) = trace(M_C31) ; elem_K(4,5) = trace(M_C32);

elem_K(4,6) = trace(M_C33) ; elem_K(4,7) = trace(M_C34);

elem_K(4,8) = trace(M_C35) ; elem_K(4,9) = trace(M_C36);

elem_K(5,5) = trace(M_C41) ; elem_K(5,6) = trace(M_C42);

elem_K(5,7) = trace(M_C43) ; elem_K(5,8) = trace(M_C44);

elem_K(5,9) = trace(M_C45) ; elem_K(6,6) = trace(M_C51);

elem_K(6,7) = trace(M_C52) ; elem_K(6,8) = trace(M_C53);

elem_K(6,9) = trace(M_C54) ; elem_K(7,7) = trace(M_C61);

elem_K(7,8) = trace(M_C62) ; elem_K(7,9) = trace(M_C63);

elem_K(8,8) = trace(M_C71) ; elem_K(8,9) = trace(M_C72);

elem_K(9,9) = trace(M_C81) ;

%

translate = zeros(9,9);

translate(1,1) = 1;

translate(4,4) = 1;

translate(7,7) = 1;

translate(2:3,2:3) = J;

translate(5:6,5:6) = J;

translate(8:9,8:9) = J;

elem_K = elem_K + elem_K’ - diag(diag(elem_K));

elem_K = det(J)*(translate’*elem_K*translate);

end

B.3.5 Apply interface bc 2D

function [elem_A] = apply_interface_bc_2D(elem_A,int_nodes,nd,m)

%Apply_interface_bc Applies the boundary conditions on the interface

%between the two materials.

%

% [GLOB_A]=APPLY_BC(GLOB_A,INT_NODES,ND,M)

% Elem_A: ELEMENTAL MATRIX

% INT_NODES: VECTOR CONTAINING NODES ON THE INTERFACE BETWEEN THE TWO

% MATERIALS

% ND: LOCAL OR ELEMENTAL NODE INDEXING (1 X 4)

% M: EFFECTIVE MASS

%--

ind = find(ismember(nd,int_nodes));

if (~isempty(ind))

k=0;

for i=1:length(ind)

start=(ind(i)-1)*3;

for j=2:3;

150

k=k+1;

e_index(k)=start+j;

end

end

elem_A(:,e_index) = 1/m*elem_A(:,e_index);

elem_A(e_index,:) = 1/m*elem_A(e_index,:);

end

end

B.3.6 Index 2D

function [index] = index_2D(nd,ndof)

%Index_2D Assigns the system degree of freedom to the element node

% Index is system dof vector which can be used to place the elements

% associated with element matrices in the global matrices.

%

% [INDEX]=INDEX_3D(ND,NNEL,NDOF)

% INDEX: SYSTEM DOF VECTOR

% ND: VECTOR CONTAINING GLOBAL NODE NUMBERS(1 X 4)

% NDOF: DEGREE OF FREEDOM PER NODE

%--

%

start=(nd-1)*ndof+1;

if (ndof == 1)

index = start;

else

index = [start ; start+1 ; start+2];

index = index(:)’;

end

B.3.7 Assemble

function [row column value] = assemble(A,index)

%Assemble Store global matrix information in row, column,

%and value format.

%

% [ROW COLUMN VALUE]=ASSEMBLE(A,INDEX)

% ROW: ROW INDEX CORRESPONDING TO EACH VALUE OF MATRIX ELEMENT

% COLUMN: COLUMN INDEX CORRESPONDING TO EACH VALUE OF MATRIX ELEMENT

% VALUE: MATRIX ELEMENT

% A: ELEMENT MATRIX

% INDEX: SYSTEM DOF VECTOR

%--

%

[row column] = meshgrid(index,index);

row = row(:)’;

column = column(:)’;

value = A(:)’;

end

B.4 3D Processing Code

function [glob_K,glob_V,glob_E,enodes] = FEM_3D_QD(p,t,vert,V_nodes)

%FEM_2D_QW This is finite element code that populates the global matrices

%needed to solve Schrodinger’s equation for a quantum dot (3D).

%

%

% FEM_3D_QD(P,T,VERT,V_NODES)

151

% GLOB_K: KINETIC ENERGY MATRIX (SPARSE MATRIX)

% GLOB_V: POTENTIAL ENERGY MATRIX (SPARSE MATRIX)

% GLOB_E: OVERLAP MATRIX (SPARSE MATRIX)

% ENODES: NODES ON THE BOUNDING BOX (NEEDED FOR POST PROCESSING)

% P: COORDINATES OF NODES (NNODES X 3)

% T: TETRAHEDRAL ELEMENTS (NEL X NNEL)

% VERT: VERTICES OF QUANTUM DOT (M X P,M VERTICES IN P DIMENSIONS)

% V_NODES: POTENTIAL AT EACH NODE OTHER THAN OFFSET IN eV (NNODES X 1)

%--

%

% Physical constants:

% m_e: mass of electron in grams

% h_bar: plancks constant in kilograms-Angstrom per second

% q: measure of electron-volt in gram-centimeter squared per second

% squared

% Variables:

% ndof: number of degrees of freedom (dof) per node (1 OR 4)

% m_eff: effective mass of semiconductor in grams(1 X 2)

% V_offset: conduction or valence band offset in eV (1 X 2)

% nnel: number of nodes per element

% nel: number of elements

% nnodes: number of nodes

% interface_nodes: nodes on interface separating the two materials

% elem_size: size of element matrices

% r,c,v: row & column indices of respective element matrix that point

% to value v.

% nd: local node indexing (1 X NNEL)

% xcoord/ycoord: local coordinate indexing (1 X NNEL)

% V: potential energy per node (1 X NNEL)

% m: effective mass of element

% J: Jacobian Matrix (2 X 2)

% Elem_K: elemental kinetic matrix (EDOF X EDOF)

% Elem_V: elemental potential matrix (EDOF X EDOF)

% Elem_E: elemental overlap matrix (EDOF X EDOF)

% index: system degree of freedom assigned to element node(1 X EDOF)

% Functions:

% surftri: Find surface triangles from mesh

% inhull: Tests if a set of points is inside a convex hull

% jacob_3D: The Jacobian for 2D mapping

% Elem_matrix_K_3D: Computes the elemental kinetic matrix

% Elem_matrix_V_3D: Computes the elemental potential matrix

% Elem_matrix_E_3D: Computes the elemental overlap matrix

% apply_interface_bc_3D: Applies the boundary conditions on the

% interface between the two materials if dof > 1.

% index_3D: Assigns the system dof to the element node

% assemble: Builds up row & column indices

% sparse: assembles global matrices by creating a sparse matrix

%

%ENTER USER INPUT HERE---

ndof = 1;

m_e = 9.109*10^-28;

%(1) represents well and (2) represents barrier

m_eff(1)=m_e*0.009;

m_eff(2)=m_e*0.131;

V_offset(1)=0;

V_offset(2)=2.15;

%END USER INPUT--

%

h_bar = 1.054*10^-19;

152

q = 1.602*10^-12;

nnel = 4;

nel=length(t(:,1));

nnode=length(p(:,1));

interface_nodes = find(ismember(p,vert,’rows’));

%

%For bound state energies, which this program is solving for, boundary

%conditions require the wavefunction to fall off at regions approaching

%infinity. In order to satisfy this, we bound the barrier region at

%"sufficient" distances.

%

enodes = unique(surftri(p,t));

%

elem_size = nnel*ndof*nnel*ndof;

r_K = zeros(nel,elem_size);r_V = zeros(nel,elem_size);r_E = zeros(nel,elem_size);

c_K = zeros(nel,elem_size);c_V = zeros(nel,elem_size);c_E = zeros(nel,elem_size);

v_K = zeros(nel,elem_size);v_V = zeros(nel,elem_size);v_E = zeros(nel,elem_size);

%

for iel=1:nel

nd = t(iel,:);

xcoord = p(nd,1);

ycoord = p(nd,2);

zcoord = p(nd,3);

IN = inhull([xcoord ycoord zcoord],vert,[],0.01);

if (sum(IN) == nnel)

V(1:nnel) = V_offset(1) + V_nodes(nd);

m = m_eff(1);

else

V(1:nnel) = V_offset(2) + V_nodes(nd);

m = m_eff(2);

end

J = jacob_3D(xcoord,ycoord,zcoord);

%

%Construct the elemental matrices by using functions Elem_matrix_K,

%Elem_matrix_V, and Elem_matrix_E.

elem_K = ((h_bar)^2/(2*m*q))*Elem_matrix_K_3D(J,ndof);

elem_V = Elem_matrix_V_3D(J,V,ndof);

elem_E = Elem_matrix_E_3D(J,ndof);

%

%Add reciprical mass condition at interface if there is more than 1

%dof per node.

if (ndof > 1 && m == m_eff(1))

elem_K = apply_interface_bc_3D(elem_K,interface_nodes,nd,m_eff(2)/m);

elem_V = apply_interface_bc_3D(elem_V,interface_nodes,nd,m_eff(2)/m);

elem_E = apply_interface_bc_3D(elem_E,interface_nodes,nd,m_eff(2)/m);

end

%

%Builds up row & column indices using assemble function

%

index = index_3D(nd,ndof);

[r_K(iel,:) c_K(iel,:) v_K(iel,:)] = assemble(elem_K,index);

[r_V(iel,:) c_V(iel,:) v_V(iel,:)] = assemble(elem_V,index);

[r_E(iel,:) c_E(iel,:) v_E(iel,:)] = assemble(elem_E,index);

end

%

%Construct the global matrices using sparse and triples of

%rows/columns/values

%

glob_K = sparse(r_K,c_K,v_K,ndof*nnode,ndof*nnode);

153

glob_V = sparse(r_V,c_V,v_V,ndof*nnode,ndof*nnode);

glob_E = sparse(r_E,c_E,v_E,ndof*nnode,ndof*nnode);

%

end

B.4.1 Jacob 3D

function [J] = jacob_3D(x,y,z)

%Jacob_2D The Jacobian for the 3D mapping

% The Jacobian is constant due to the linear transformation of local

% coordinates to global coordinates. Linear shape functions are used as

% the coordinate transformation.

%

% [J]=JACOB_3D(X,Y)

% J: JACOBIAN MATRIX (3x3)

% X: GLOBAL COORDINATES IN THE X DIRECTION(1x4)

% Y: GLOBAL COORDINATES IN THE Y DIRECTION(1x4)

% Z: GLOBAL COORDINATES IN THE Z DIRECTION(1X4)

%--

%

J(1,1) = x(2)-x(1);

J(1,2) = y(2)-y(1);

J(1,3) = z(2)-z(1);

J(2,1) = x(3)-x(1);

J(2,2) = y(3)-y(1);

J(2,3) = z(3)-z(1);

J(3,1) = x(4)-x(1);

J(3,2) = y(4)-y(1);

J(3,3) = z(4)-z(1);

end

B.4.2 Elem matrix K 3D

function [elem_K] = Elem_matrix_K_3D(J,ndof)

%Elem_matrix_K_3D Computes the elemental kinetic matrix

% The elemental kinetic energy matrix is formed using either linear basis

% functions or cubic basis functions.

%

% [ELEM_K]=ELEM_MATRIX_K_3D(J,NDOF)

% ELEM_K: ELEMENTAL KINETIC ENERGY MATRIX (4 X 4 OR 16 X 16)

% J: JACOBIAN MATRIX(3 X 3)

% NDOF: DEGREE OF FREEDOM PER NODE

%--

%The elemental kinetic energy matrix is constructed using the quadratic

%form as represented by the equation Trace(M_C*(JJ^T)^-1). This form is

%convenient because the integrals are carried out once and represented in

%matrices M_C and vectors Mxx, Mxy, Mxz, Myz, Myy, Myz, Mzx, Mzy, and Mzz

%below.

% Variables:

% M_C: MATRIX REPRESENTING THE PRODUCT OF DERIVATIVES (3 X 3)

% MXX: VECTOR REPRESENTING PRODUCT OF SHAPE FUNCTION DERIVATIVES WITH

% RESPECT TO X (1 X 16 OR 1 X 256)

% MXY: VECTOR REPRESENTING PRODUCT OF SHAPE FUNCTION DERIVATIVES WITH

% RESPECT TO X AND Y (1 X 16 OR 1 X 256)

% MXZ: VECTOR REPRESENTING PRODUCT OF SHAPE FUNCTION DERIVATIVES WITH

% RESPECT TO X AND Z (1 X 16 OR 1 X 256)

% MYX: VECTOR REPRESENTING PRODUCT OF SHAPE FUNCTION DERIVATIVES WITH

% RESPECT TO Y AND X (1 X 16 OR 1 X 256)

% MYY: VECTOR REPRESENTING PRODUCT OF SHAPE FUNCTION DERIVATIVES WITH

154

% RESPECT TO Y (1 X 16 OR 1 X 256)

% MYZ: VECTOR REPRESENTING PRODUCT OF SHAPE FUNCTION DERIVATIVES WITH

% RESPECT TO Y AND Z (1 X 16 OR 1 X 256)

% MZX: VECTOR REPRESENTING PRODUCT OF SHAPE FUNCTION DERIVATIVES WITH

% RESPECT TO Z AND X (1 X 16 OR 1 X 256)

% MZY: VECTOR REPRESENTING PRODUCT OF SHAPE FUNCTION DERIVATIVES WITH

% RESPECT TO Z AND Y (1 X 16 OR 1 X 256)

% MZZ: VECTOR REPRESENTING PRODUCT OF SHAPE FUNCTION DERIVATIVES WITH

% RESPECT TO Z (1 X 16 OR 1 X 256)

% TRANSLATE: Matrix that converts ELEM_K from local coordinates to

% global coordinates. This is only used when ndof does not equal 1.

%

%Linear shape functions are defined as;

% N_1(x,y,z)=1-x-y-z; 0<=x,y,z<=1

% N_2(x,y,z)=x; 0<=x,y,z<=1

% N_3(x,y,z)=y; 0<=x,y,z<=1

% N_4(x,y,z)=z; 0<=x,y,z<=1

%

%Cubic shape functions are defined as;

% N_1(x,y,z)=1-N_5-N_9-N_13; 0<=x,y,z<=1

% N_2(x,y,z)=x-N_5-N_6-N_10-N_14; 0<=x,y,z<=1

% N_3(x,y,z)=y-N_7-N_9-N_11-N_15; 0<=x,y,z<=1

% N_4(x,y,z)=z-N_8-N_12-N_13-N_16 0<=x,y,z<=1

% N_5(x,y,z)=3*x^2-2*x^3; 0<=x,y,z<=1

% N_6(x,y,z)=-x^2+x^3; 0<=x,y,z<=1

% N_7(x,y,z)=x^2*y; 0<=x,y,z<=1

% N_8(x,y,z)=x^2*z; 0<=x,y,z<=1

% N_9(x,y,z)=3*y^2-2*y^3; 0<=x,y,z<=1

% N_10(x,y,z)=x*y^2; 0<=x,y,z<=1

% N_11(x,y,z)=-y^2+y^3; 0<=x,y,z<=1

% N_12(x,y,z)=y^2*z; 0<=x,y,z<=1

% N_13(x,y,z)=3*z^2-2*z^3; 0<=x,y,z<=1

% N_14(x,y,z)=x*z^2; 0<=x,y,z<=1

% N_15(x,y,z)=y*z^2; 0<=x,y,z<=1

% N_16(x,y,z)=-z^2+z^3; 0<=x,y,z<=1

%--

%

K = (J*J’)^-1;

if (ndof == 1)

elem_K = zeros(4,4);

Mxx = [1/6 -1/6 0 0 -1/6 1/6 0 0 0 0 0 0 0 0 0 0];

Mxy = [1/6 0 -1/6 0 -1/6 0 1/6 0 0 0 0 0 0 0 0 0];

Mxz = [1/6 0 0 -1/6 -1/6 0 0 1/6 0 0 0 0 0 0 0 0];

Myx = [1/6 -1/6 0 0 0 0 0 0 -1/6 1/6 0 0 0 0 0 0];

Myy = [1/6 0 -1/6 0 0 0 0 0 -1/6 0 1/6 0 0 0 0 0];

Myz = [1/6 0 0 -1/6 0 0 0 0 -1/6 0 0 1/6 0 0 0 0];

Mzx = [1/6 -1/6 0 0 0 0 0 0 0 0 0 0 -1/6 1/6 0 0];

Mzy = [1/6 0 -1/6 0 0 0 0 0 0 0 0 0 -1/6 0 1/6 0];

Mzz = [1/6 0 0 -1/6 0 0 0 0 0 0 0 0 -1/6 0 0 1/6];

M = [Mxx ; Mxy ; Mxz ; Myx ; Myy ; Myz ; Mzx ; Mzy ; Mzz];

M_C1 = reshape(M(:,1),3,3)’*K ; M_C2 = reshape(M(:,2),3,3)’*K;

M_C3 = reshape(M(:,3),3,3)’*K ; M_C4 = reshape(M(:,4),3,3)’*K;

M_C6 = reshape(M(:,6),3,3)’*K ; M_C7 = reshape(M(:,7),3,3)’*K;

M_C8 = reshape(M(:,8),3,3)’*K ; M_C11 = reshape(M(:,11),3,3)’*K;

M_C12 = reshape(M(:,12),3,3)’*K ; M_C16 = reshape(M(:,16),3,3)’*K;

elem_K(1,1) = trace(M_C1); elem_K(1,2) = trace(M_C2);

elem_K(1,3) = trace(M_C3); elem_K(1,4) = trace(M_C4);

elem_K(2,2) = trace(M_C6); elem_K(2,3) = trace(M_C7);

elem_K(2,4) = trace(M_C8); elem_K(3,3) = trace(M_C11);

155

elem_K(3,4) = trace(M_C12); elem_K(4,4) = trace(M_C16);

%

elem_K = elem_K + elem_K’ - diag(diag(elem_K));

elem_K = det(J)*elem_K;

else

elem_K = zeros(16,16);

Mxx = [6/35, 1/105, 2/105, 2/105, -6/35, 1/28, -2/105, -2/105, 0,...

-1/84, 0, 0, 0, -1/84, 0, 0 1/105, 1/45, 1/630, 1/630, -1/105,...

-1/1260, -1/630, -1/630, 0, 1/420, 0, 0, 0, 1/420, 0, 0 2/105,...

1/630, 1/315, 1/630, -2/105, 1/252, -1/315, -1/630, 0, -1/420, 0,...

0, 0, -1/1260, 0, 0 2/105, 1/630, 1/630, 1/315, -2/105, 1/252,...

-1/630, -1/315, 0, -1/1260, 0, 0, 0, -1/420, 0, 0 -6/35,...

-1/105, -2/105, -2/105, 6/35, -1/28, 2/105, 2/105, 0, 1/84, 0, 0,...

0, 1/84, 0, 0 1/28, -1/1260, 1/252, 1/252, -1/28, 1/105,...

-1/252, -1/252, 0, -1/315, 0, 0, 0, -1/315, 0, 0 -2/105,...

-1/630, -1/315, -1/630, 2/105, -1/252, 1/315, 1/630, 0, 1/420,...

0, 0, 0, 1/1260, 0, 0 -2/105, -1/630, -1/630, -1/315, 2/105,...

-1/252, 1/630, 1/315, 0, 1/1260, 0, 0, 0, 1/420, 0, 0 0, 0,...

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 -1/84, 1/420,...

-1/420, -1/1260, 1/84, -1/315, 1/420, 1/1260, 0, 1/210, 0, 0,...

0, 1/1260, 0, 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...

0, 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 0, 0,...

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 -1/84, 1/420,...

-1/1260, -1/420, 1/84, -1/315, 1/1260, 1/420, 0, 1/1260, 0,...

0, 0, 1/210, 0, 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...

0, 0, 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];

Mxy = [9/70, 2/105, -2/105, 1/84, 0, 0, -3/140, 0, -9/70, -2/105,...

13/420, -1/84, 0, 0, -1/84, 0 -2/105, 1/630, 1/315, -1/315,...

0, 0, -1/252, 0, 2/105, -1/630, -1/252, 1/315, 0, 0, 1/420, 0 ...

2/105, 1/315, 1/630, 1/630, 0, 0, -1/420, 0, -2/105, -1/315, 1/252,...

-1/630, 0, 0, -1/1260, 0 1/84, 1/630, -1/315, 1/630, 0, 0,...

-1/420, 0, -1/84, -1/630, 1/315, -1/630, 0, 0, -1/420, 0 ...

-9/70, -2/105, 2/105, -1/84, 0, 0, 3/140, 0, 9/70, 2/105, -13/420,...

1/84, 0, 0, 1/84, 0 13/420, 1/252, -1/252, 1/315, 0, 0,...

-1/420, 0, -13/420, -1/252, 1/140, -1/315, 0, 0, -1/315, 0 ...

-2/105, -1/315, -1/630, -1/630, 0, 0, 1/420, 0, 2/105, 1/315,...

-1/252, 1/630, 0, 0, 1/1260, 0 -1/84, -1/630, 1/315, -1/630,...

0, 0, 1/420, 0, 1/84, 1/630, -1/315, 1/630, 0, 0, 1/420, 0 ...

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 -3/140, -1/420,...

-1/252, -1/420, 0, 0, 1/1260, 0, 3/140, 1/420, -1/420, 1/420,...

0, 0, 1/1260, 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...

0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 0, 0, 0,...

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 -1/84, -1/1260, 1/420,...

-1/420, 0, 0, 1/1260, 0, 1/84, 1/1260, -1/315, 1/420, 0, 0,...

1/210, 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ...

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];

Mxz = [9/70, 2/105, 1/84, -2/105, 0, 0, 0, -3/140, 0, 0, 0,...

-1/84, -9/70, -2/105, -1/84, 13/420 -2/105, 1/630, -1/315,...

1/315, 0, 0, 0, -1/252, 0, 0, 0, 1/420, 2/105, -1/630, 1/315,...

-1/252 1/84, 1/630, 1/630, -1/315, 0, 0, 0, -1/420, 0, 0,...

0, -1/420, -1/84, -1/630, -1/630, 1/315 2/105, 1/315, 1/630,...

1/630, 0, 0, 0, -1/420, 0, 0, 0, -1/1260, -2/105, -1/315,...

-1/630, 1/252 -9/70, -2/105, -1/84, 2/105, 0, 0, 0, 3/140,...

0, 0, 0, 1/84, 9/70, 2/105, 1/84, -13/420 13/420, 1/252,...

1/315, -1/252, 0, 0, 0, -1/420, 0, 0, 0, -1/315, -13/420,...

-1/252, -1/315, 1/140 -1/84, -1/630, -1/630, 1/315, 0, 0,...

0, 1/420, 0, 0, 0, 1/420, 1/84, 1/630, 1/630, -1/315 -2/105,...

-1/315, -1/630, -1/630, 0, 0, 0, 1/420, 0, 0, 0, 1/1260, 2/105,...

1/315, 1/630, -1/252 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...

156

0, 0, 0 -1/84, -1/1260, -1/420, 1/420, 0, 0, 0, 1/1260, 0,...

0, 0, 1/210, 1/84, 1/1260, 1/420, -1/315 0, 0, 0, 0, 0, 0, 0,...

0, 0, 0, 0, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...

0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...

0 -3/140, -1/420, -1/420, -1/252, 0, 0, 0, 1/1260, 0, 0, 0,...

1/1260, 3/140, 1/420, 1/420, -1/420 0, 0, 0, 0, 0, 0, 0, 0,...

0, 0, 0, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...

0, 0, 0];

Myx = [9/70, -2/105, 2/105, 1/84, -9/70, 13/420, -2/105, -1/84, 0,...

-3/140, 0, 0, 0, -1/84, 0, 0 2/105, 1/630, 1/315, 1/630,...

-2/105, 1/252, -1/315, -1/630, 0, -1/420, 0, 0, 0, -1/1260, 0,...

0 -2/105, 1/315, 1/630, -1/315, 2/105, -1/252, -1/630, 1/315,...

0, -1/252, 0, 0, 0, 1/420, 0, 0 1/84, -1/315, 1/630, 1/630,...

-1/84, 1/315, -1/630, -1/630, 0, -1/420, 0, 0, 0, -1/420, 0,...

0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 0, 0,...

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 -3/140, -1/252,...

-1/420, -1/420, 3/140, -1/420, 1/420, 1/420, 0, 1/1260, 0, 0,...

0, 1/1260, 0, 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...

0, 0 -9/70, 2/105, -2/105, -1/84, 9/70, -13/420, 2/105, 1/84,...

0, 3/140, 0, 0, 0, 1/84, 0, 0 -2/105, -1/630, -1/315, -1/630,...

2/105, -1/252, 1/315, 1/630, 0, 1/420, 0, 0, 0, 1/1260, 0, 0 ...

13/420, -1/252, 1/252, 1/315, -13/420, 1/140, -1/252, -1/315, 0,...

-1/420, 0, 0, 0, -1/315, 0, 0 -1/84, 1/315, -1/630, -1/630,...

1/84, -1/315, 1/630, 1/630, 0, 1/420, 0, 0, 0, 1/420, 0, 0 ...

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 0, 0, 0, 0, 0,...

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 -1/84, 1/420, -1/1260,...

-1/420, 1/84, -1/315, 1/1260, 1/420, 0, 1/1260, 0, 0, 0, 1/210,...

0, 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];

Myy = [6/35, 2/105, 1/105, 2/105, 0, 0, -1/84, 0, -6/35, -2/105,...

1/28, -2/105, 0, 0, -1/84, 0 2/105, 1/315, 1/630, 1/630, 0,...

0, -1/420, 0, -2/105, -1/315, 1/252, -1/630, 0, 0, -1/1260, 0 ...

1/105, 1/630, 1/45, 1/630, 0, 0, 1/420, 0, -1/105, -1/630, -1/1260,...

-1/630, 0, 0, 1/420, 0 2/105, 1/630, 1/630, 1/315, 0, 0,...

-1/1260, 0, -2/105, -1/630, 1/252, -1/315, 0, 0, -1/420, 0 ...

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 0, 0, 0, 0, 0,...

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 -1/84, -1/420, 1/420,...

-1/1260, 0, 0, 1/210, 0, 1/84, 1/420, -1/315, 1/1260, 0, 0,...

1/1260, 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ...

-6/35, -2/105, -1/105, -2/105, 0, 0, 1/84, 0, 6/35, 2/105, -1/28,...

2/105, 0, 0, 1/84, 0 -2/105, -1/315, -1/630, -1/630, 0, 0,...

1/420, 0, 2/105, 1/315, -1/252, 1/630, 0, 0, 1/1260, 0 1/28,...

1/252, -1/1260, 1/252, 0, 0, -1/315, 0, -1/28, -1/252, 1/105,...

-1/252, 0, 0, -1/315, 0 -2/105, -1/630, -1/630, -1/315, 0,...

0, 1/1260, 0, 2/105, 1/630, -1/252, 1/315, 0, 0, 1/420, 0 ...

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 0, 0, 0, 0, 0,...

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 -1/84, -1/1260, 1/420,...

-1/420, 0, 0, 1/1260, 0, 1/84, 1/1260, -1/315, 1/420, 0, 0,...

1/210, 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];

Myz = [9/70, 1/84, 2/105, -2/105, 0, 0, 0, -1/84, 0, 0, 0, -3/140,...

-9/70, -1/84, -2/105, 13/420 1/84, 1/630, 1/630, -1/315, 0,...

0, 0, -1/420, 0, 0, 0, -1/420, -1/84, -1/630, -1/630, 1/315 ...

-2/105, -1/315, 1/630, 1/315, 0, 0, 0, 1/420, 0, 0, 0, -1/252,...

2/105, 1/315, -1/630, -1/252 2/105, 1/630, 1/315, 1/630,...

0, 0, 0, -1/1260, 0, 0, 0, -1/420, -2/105, -1/630, -1/315,...

1/252 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ...

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 -1/84, -1/420,...

-1/1260, 1/420, 0, 0, 0, 1/210, 0, 0, 0, 1/1260, 1/84, 1/420,...

1/1260, -1/315 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...

0 -9/70, -1/84, -2/105, 2/105, 0, 0, 0, 1/84, 0, 0, 0,...

157

3/140, 9/70, 1/84, 2/105, -13/420 -1/84, -1/630, -1/630,...

1/315, 0, 0, 0, 1/420, 0, 0, 0, 1/420, 1/84, 1/630, 1/630,...

-1/315 13/420, 1/315, 1/252, -1/252, 0, 0, 0, -1/315, 0,...

0, 0, -1/420, -13/420, -1/315, -1/252, 1/140 -2/105, -1/630,...

-1/315, -1/630, 0, 0, 0, 1/1260, 0, 0, 0, 1/420, 2/105, 1/630,...

1/315, -1/252 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...

0, 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 -3/140,...

-1/420, -1/420, -1/252, 0, 0, 0, 1/1260, 0, 0, 0, 1/1260,...

3/140, 1/420, 1/420, -1/420 0, 0, 0, 0, 0, 0, 0, 0, 0,...

0, 0, 0, 0, 0, 0, 0];

Mzx = [9/70, -2/105, 1/84, 2/105, -9/70, 13/420, -1/84, -2/105, 0,...

-1/84, 0, 0, 0, -3/140, 0, 0 2/105, 1/630, 1/630, 1/315,...

-2/105, 1/252, -1/630, -1/315, 0, -1/1260, 0, 0, 0, -1/420,...

0, 0 1/84, -1/315, 1/630, 1/630, -1/84, 1/315, -1/630,...

-1/630, 0, -1/420, 0, 0, 0, -1/420, 0, 0 -2/105, 1/315,...

-1/315, 1/630, 2/105, -1/252, 1/315, -1/630, 0, 1/420, 0, 0,...

0, -1/252, 0, 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...

0, 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 0, 0,...

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 -3/140, -1/252,...

-1/420, -1/420, 3/140, -1/420, 1/420, 1/420, 0, 1/1260, 0, 0,...

0, 1/1260, 0, 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...

0, 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 0,...

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 -1/84, 1/420,...

-1/420, -1/1260, 1/84, -1/315, 1/420, 1/1260, 0, 1/210, 0, 0,...

0, 1/1260, 0, 0 -9/70, 2/105, -1/84, -2/105, 9/70, -13/420,...

1/84, 2/105, 0, 1/84, 0, 0, 0, 3/140, 0, 0 -2/105, -1/630,...

-1/630, -1/315, 2/105, -1/252, 1/630, 1/315, 0, 1/1260, 0, 0,...

0, 1/420, 0, 0 -1/84, 1/315, -1/630, -1/630, 1/84, -1/315,...

1/630, 1/630, 0, 1/420, 0, 0, 0, 1/420, 0, 0 13/420, -1/252,...

1/315, 1/252, -13/420, 1/140, -1/315, -1/252, 0, -1/315, 0, 0,...

0, -1/420, 0, 0];

Mzy = [9/70, 1/84, -2/105, 2/105, 0, 0, -1/84, 0, -9/70, -1/84,...

13/420, -2/105, 0, 0, -3/140, 0 1/84, 1/630, -1/315, 1/630,...

0, 0, -1/420, 0, -1/84, -1/630, 1/315, -1/630, 0, 0, -1/420,...

0 2/105, 1/630, 1/630, 1/315, 0, 0, -1/1260, 0, -2/105,...

-1/630, 1/252, -1/315, 0, 0, -1/420, 0 -2/105, -1/315,...

1/315, 1/630, 0, 0, 1/420, 0, 2/105, 1/315, -1/252, -1/630,...

0, 0, -1/252, 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...

0, 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 0, 0,...

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 -1/84, -1/420,...

1/420, -1/1260, 0, 0, 1/210, 0, 1/84, 1/420, -1/315, 1/1260,...

0, 0, 1/1260, 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...

0, 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 0,...

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 -3/140,...

-1/420, -1/252, -1/420, 0, 0, 1/1260, 0, 3/140, 1/420,...

-1/420, 1/420, 0, 0, 1/1260, 0 -9/70, -1/84, 2/105,...

-2/105, 0, 0, 1/84, 0, 9/70, 1/84, -13/420, 2/105, 0, 0,...

3/140, 0 -1/84, -1/630, 1/315, -1/630, 0, 0, 1/420, 0,...

1/84, 1/630, -1/315, 1/630, 0, 0, 1/420, 0 -2/105,...

-1/630, -1/630, -1/315, 0, 0, 1/1260, 0, 2/105, 1/630,...

-1/252, 1/315, 0, 0, 1/420, 0 13/420, 1/315, -1/252,...

1/252, 0, 0, -1/315, 0, -13/420, -1/315, 1/140, -1/252,...

0, 0, -1/420, 0];

Mzz = [6/35, 2/105, 2/105, 1/105, 0, 0, 0, -1/84, 0, 0, 0,...

-1/84, -6/35, -2/105, -2/105, 1/28 2/105, 1/315, 1/630,...

1/630, 0, 0, 0, -1/420, 0, 0, 0, -1/1260, -2/105, -1/315,...

-1/630, 1/252 2/105, 1/630, 1/315, 1/630, 0, 0, 0,...

-1/1260, 0, 0, 0, -1/420, -2/105, -1/630, -1/315, 1/252 ...

1/105, 1/630, 1/630, 1/45, 0, 0, 0, 1/420, 0, 0, 0, 1/420,...

158

-1/105, -1/630, -1/630, -1/1260 0, 0, 0, 0, 0, 0, 0,...

0, 0, 0, 0, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0, 0, 0, 0,...

0, 0, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...

0, 0, 0, 0, 0 -1/84, -1/420, -1/1260, 1/420, 0, 0, 0,...

1/210, 0, 0, 0, 1/1260, 1/84, 1/420, 1/1260, -1/315 0, 0,...

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 0, 0, 0, 0, 0,...

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 0, 0, 0, 0, 0, 0, 0, 0,...

0, 0, 0, 0, 0, 0, 0, 0 -1/84, -1/1260, -1/420, 1/420, 0,...

0, 0, 1/1260, 0, 0, 0, 1/210, 1/84, 1/1260, 1/420, -1/315 ...

-6/35, -2/105, -2/105, -1/105, 0, 0, 0, 1/84, 0, 0, 0,...

1/84, 6/35, 2/105, 2/105, -1/28 -2/105, -1/315, -1/630,...

-1/630, 0, 0, 0, 1/420, 0, 0, 0, 1/1260, 2/105, 1/315, 1/630,...

-1/252 -2/105, -1/630, -1/315, -1/630, 0, 0, 0, 1/1260, 0,...

0, 0, 1/420, 2/105, 1/630, 1/315, -1/252 1/28, 1/252, 1/252,...

-1/1260, 0, 0, 0, -1/315, 0, 0, 0, -1/315, -1/28, -1/252,...

-1/252, 1/105];

M = [Mxx ; Mxy ; Mxz ; Myx ; Myy ; Myz ; Mzx ; Mzy ; Mzz];

M_C1 = reshape(M(:,1),3,3)’*K ; M_C2 = reshape(M(:,2),3,3)’*K;

M_C3 = reshape(M(:,3),3,3)’*K ; M_C4 = reshape(M(:,4),3,3)’*K;

M_C5 = reshape(M(:,5),3,3)’*K ; M_C6 = reshape(M(:,6),3,3)’*K;

M_C7 = reshape(M(:,7),3,3)’*K ; M_C8 = reshape(M(:,8),3,3)’*K;

M_C9 = reshape(M(:,9),3,3)’*K ; M_C10 = reshape(M(:,10),3,3)’*K;

M_C11 = reshape(M(:,11),3,3)’*K ; M_C12 = reshape(M(:,12),3,3)’*K;

M_C13 = reshape(M(:,13),3,3)’*K ; M_C14 = reshape(M(:,14),3,3)’*K;

M_C15 = reshape(M(:,15),3,3)’*K ; M_C16 = reshape(M(:,16),3,3)’*K;

M_C18 = reshape(M(:,18),3,3)’*K ; M_C19 = reshape(M(:,19),3,3)’*K;

M_C20 = reshape(M(:,20),3,3)’*K ; M_C21 = reshape(M(:,21),3,3)’*K;

M_C22 = reshape(M(:,22),3,3)’*K ; M_C23 = reshape(M(:,23),3,3)’*K;

M_C24 = reshape(M(:,24),3,3)’*K ; M_C25 = reshape(M(:,25),3,3)’*K;

M_C26 = reshape(M(:,26),3,3)’*K ; M_C27 = reshape(M(:,27),3,3)’*K;

M_C28 = reshape(M(:,28),3,3)’*K ; M_C29 = reshape(M(:,29),3,3)’*K;

M_C30 = reshape(M(:,30),3,3)’*K ; M_C31 = reshape(M(:,31),3,3)’*K;

M_C32 = reshape(M(:,32),3,3)’*K ; M_C35 = reshape(M(:,35),3,3)’*K;

M_C36 = reshape(M(:,36),3,3)’*K ; M_C37 = reshape(M(:,37),3,3)’*K;

M_C38 = reshape(M(:,38),3,3)’*K ; M_C39 = reshape(M(:,39),3,3)’*K;

M_C40 = reshape(M(:,40),3,3)’*K ; M_C41 = reshape(M(:,41),3,3)’*K;

M_C42 = reshape(M(:,42),3,3)’*K ; M_C43 = reshape(M(:,43),3,3)’*K;

M_C44 = reshape(M(:,44),3,3)’*K ; M_C45 = reshape(M(:,45),3,3)’*K;

M_C46 = reshape(M(:,46),3,3)’*K ; M_C47 = reshape(M(:,47),3,3)’*K;

M_C48 = reshape(M(:,48),3,3)’*K ; M_C52 = reshape(M(:,52),3,3)’*K;

M_C53 = reshape(M(:,53),3,3)’*K ; M_C54 = reshape(M(:,54),3,3)’*K;

M_C55 = reshape(M(:,55),3,3)’*K ; M_C56 = reshape(M(:,56),3,3)’*K;

M_C57 = reshape(M(:,57),3,3)’*K ; M_C58 = reshape(M(:,58),3,3)’*K;

M_C59 = reshape(M(:,59),3,3)’*K ; M_C60 = reshape(M(:,60),3,3)’*K;

M_C61 = reshape(M(:,61),3,3)’*K ; M_C62 = reshape(M(:,62),3,3)’*K;

M_C63 = reshape(M(:,63),3,3)’*K ; M_C64 = reshape(M(:,64),3,3)’*K;

M_C69 = reshape(M(:,69),3,3)’*K ; M_C70 = reshape(M(:,70),3,3)’*K;

M_C71 = reshape(M(:,71),3,3)’*K ; M_C72 = reshape(M(:,72),3,3)’*K;

M_C73 = reshape(M(:,73),3,3)’*K ; M_C74 = reshape(M(:,74),3,3)’*K;

M_C75 = reshape(M(:,75),3,3)’*K ; M_C76 = reshape(M(:,76),3,3)’*K;

M_C77 = reshape(M(:,77),3,3)’*K ; M_C78 = reshape(M(:,78),3,3)’*K;

M_C79 = reshape(M(:,79),3,3)’*K ; M_C80 = reshape(M(:,80),3,3)’*K;

M_C86 = reshape(M(:,86),3,3)’*K ; M_C87 = reshape(M(:,87),3,3)’*K;

M_C88 = reshape(M(:,88),3,3)’*K ; M_C89 = reshape(M(:,89),3,3)’*K;

M_C90 = reshape(M(:,90),3,3)’*K ; M_C91 = reshape(M(:,91),3,3)’*K;

M_C92 = reshape(M(:,92),3,3)’*K ; M_C93 = reshape(M(:,93),3,3)’*K;

M_C94 = reshape(M(:,94),3,3)’*K ; M_C95 = reshape(M(:,95),3,3)’*K;

M_C96 = reshape(M(:,96),3,3)’*K ; M_C103 = reshape(M(:,103),3,3)’*K;

M_C104 = reshape(M(:,104),3,3)’*K ; M_C105 = reshape(M(:,105),3,3)’*K;

159

M_C106 = reshape(M(:,106),3,3)’*K ; M_C107 = reshape(M(:,107),3,3)’*K;

M_C108 = reshape(M(:,108),3,3)’*K ; M_C109 = reshape(M(:,109),3,3)’*K;

M_C110 = reshape(M(:,110),3,3)’*K ; M_C111 = reshape(M(:,111),3,3)’*K;

M_C112 = reshape(M(:,112),3,3)’*K ; M_C120 = reshape(M(:,120),3,3)’*K;

M_C121 = reshape(M(:,121),3,3)’*K ; M_C122 = reshape(M(:,122),3,3)’*K;

M_C123 = reshape(M(:,123),3,3)’*K ; M_C124 = reshape(M(:,124),3,3)’*K;

M_C125 = reshape(M(:,125),3,3)’*K ; M_C126 = reshape(M(:,126),3,3)’*K;

M_C127 = reshape(M(:,127),3,3)’*K ; M_C128 = reshape(M(:,128),3,3)’*K;

M_C137 = reshape(M(:,137),3,3)’*K ; M_C138 = reshape(M(:,138),3,3)’*K;

M_C139 = reshape(M(:,139),3,3)’*K ; M_C140 = reshape(M(:,140),3,3)’*K;

M_C141 = reshape(M(:,141),3,3)’*K ; M_C142 = reshape(M(:,142),3,3)’*K;

M_C143 = reshape(M(:,143),3,3)’*K ; M_C144 = reshape(M(:,144),3,3)’*K;

M_C154 = reshape(M(:,154),3,3)’*K ; M_C155 = reshape(M(:,155),3,3)’*K;

M_C156 = reshape(M(:,156),3,3)’*K ; M_C157 = reshape(M(:,157),3,3)’*K;

M_C158 = reshape(M(:,158),3,3)’*K ; M_C159 = reshape(M(:,159),3,3)’*K;

M_C160 = reshape(M(:,160),3,3)’*K ; M_C171 = reshape(M(:,171),3,3)’*K;

M_C172 = reshape(M(:,172),3,3)’*K ; M_C173 = reshape(M(:,173),3,3)’*K;

M_C174 = reshape(M(:,174),3,3)’*K ; M_C175 = reshape(M(:,175),3,3)’*K;

M_C176 = reshape(M(:,176),3,3)’*K ; M_C188 = reshape(M(:,188),3,3)’*K;

M_C189 = reshape(M(:,189),3,3)’*K ; M_C190 = reshape(M(:,190),3,3)’*K;

M_C191 = reshape(M(:,191),3,3)’*K ; M_C192 = reshape(M(:,192),3,3)’*K;

M_C205 = reshape(M(:,205),3,3)’*K ; M_C206 = reshape(M(:,206),3,3)’*K;

M_C207 = reshape(M(:,207),3,3)’*K ; M_C208 = reshape(M(:,208),3,3)’*K;

M_C222 = reshape(M(:,222),3,3)’*K ; M_C223 = reshape(M(:,223),3,3)’*K;

M_C224 = reshape(M(:,224),3,3)’*K ; M_C239 = reshape(M(:,239),3,3)’*K;

M_C240 = reshape(M(:,240),3,3)’*K ; M_C256 = reshape(M(:,256),3,3)’*K;

%

elem_K(1,1) = trace(M_C1) ; elem_K(1,2) = trace(M_C2) ;

elem_K(1,3) = trace(M_C3) ; elem_K(1,4) = trace(M_C4) ;

elem_K(1,5) = trace(M_C5) ; elem_K(1,6) = trace(M_C6) ;

elem_K(1,7) = trace(M_C7) ; elem_K(1,8) = trace(M_C8) ;

elem_K(1,9) = trace(M_C9) ; elem_K(1,10) = trace(M_C10) ;

elem_K(1,11) = trace(M_C11) ; elem_K(1,12) = trace(M_C12) ;

elem_K(1,13) = trace(M_C13) ; elem_K(1,14) = trace(M_C14) ;

elem_K(1,15) = trace(M_C15) ; elem_K(1,16) = trace(M_C16) ;

elem_K(2,2) = trace(M_C18) ; elem_K(2,3) = trace(M_C19) ;

elem_K(2,4) = trace(M_C20) ; elem_K(2,5) = trace(M_C21) ;

elem_K(2,6) = trace(M_C22) ; elem_K(2,7) = trace(M_C23) ;

elem_K(2,8) = trace(M_C24) ; elem_K(2,9) = trace(M_C25) ;

elem_K(2,10) = trace(M_C26) ; elem_K(2,11) = trace(M_C27) ;

elem_K(2,12) = trace(M_C28) ; elem_K(2,13) = trace(M_C29) ;

elem_K(2,14) = trace(M_C30) ; elem_K(2,15) = trace(M_C31) ;

elem_K(2,16) = trace(M_C32) ; elem_K(3,3) = trace(M_C35) ;

elem_K(3,4) = trace(M_C36) ; elem_K(3,5) = trace(M_C37) ;

elem_K(3,6) = trace(M_C38) ; elem_K(3,7) = trace(M_C39) ;

elem_K(3,8) = trace(M_C40) ; elem_K(3,9) = trace(M_C41) ;

elem_K(3,10) = trace(M_C42) ; elem_K(3,11) = trace(M_C43) ;

elem_K(3,12) = trace(M_C44) ; elem_K(3,13) = trace(M_C45) ;

elem_K(3,14) = trace(M_C46) ; elem_K(3,15) = trace(M_C47) ;

elem_K(3,16) = trace(M_C48) ; elem_K(4,4) = trace(M_C52) ;

elem_K(4,5) = trace(M_C53) ; elem_K(4,6) = trace(M_C54) ;

elem_K(4,7) = trace(M_C55) ; elem_K(4,8) = trace(M_C56) ;

elem_K(4,9) = trace(M_C57) ; elem_K(4,10) = trace(M_C58) ;

elem_K(4,11) = trace(M_C59) ; elem_K(4,12) = trace(M_C60) ;

elem_K(4,13) = trace(M_C61) ; elem_K(4,14) = trace(M_C62) ;

elem_K(4,15) = trace(M_C63) ; elem_K(4,16) = trace(M_C64) ;

elem_K(5,5) = trace(M_C69) ; elem_K(5,6) = trace(M_C70) ;

elem_K(5,7) = trace(M_C71) ; elem_K(5,8) = trace(M_C72) ;

elem_K(5,9) = trace(M_C73) ; elem_K(5,10) = trace(M_C74) ;

160

elem_K(5,11) = trace(M_C75) ; elem_K(5,12) = trace(M_C76) ;

elem_K(5,13) = trace(M_C77) ; elem_K(5,14) = trace(M_C78) ;

elem_K(5,15) = trace(M_C79) ; elem_K(5,16) = trace(M_C80) ;

elem_K(6,6) = trace(M_C86) ; elem_K(6,7) = trace(M_C87) ;

elem_K(6,8) = trace(M_C88) ; elem_K(6,9) = trace(M_C89) ;

elem_K(6,10) = trace(M_C90) ; elem_K(6,11) = trace(M_C91) ;

elem_K(6,12) = trace(M_C92) ; elem_K(6,13) = trace(M_C93) ;

elem_K(6,14) = trace(M_C94) ; elem_K(6,15) = trace(M_C95) ;

elem_K(6,16) = trace(M_C96) ; elem_K(7,7) = trace(M_C103);

elem_K(7,8) = trace(M_C104) ; elem_K(7,9) = trace(M_C105) ;

elem_K(7,10) = trace(M_C106) ; elem_K(7,11) = trace(M_C107) ;

elem_K(7,12) = trace(M_C108) ; elem_K(7,13) = trace(M_C109) ;

elem_K(7,14) = trace(M_C110) ; elem_K(7,15) = trace(M_C111) ;

elem_K(7,16) = trace(M_C112) ; elem_K(8,8) = trace(M_C120) ;

elem_K(8,9) = trace(M_C121) ; elem_K(8,10) = trace(M_C122) ;

elem_K(8,11) = trace(M_C123) ; elem_K(8,12) = trace(M_C124) ;

elem_K(8,13) = trace(M_C125) ; elem_K(8,14) = trace(M_C126) ;

elem_K(8,15) = trace(M_C127) ; elem_K(8,16) = trace(M_C128) ;

elem_K(9,9) = trace(M_C137) ; elem_K(9,10) = trace(M_C138) ;

elem_K(9,11) = trace(M_C139) ; elem_K(9,12) = trace(M_C140) ;

elem_K(9,13) = trace(M_C141) ; elem_K(9,14) = trace(M_C142) ;

elem_K(9,15) = trace(M_C143) ; elem_K(9,16) = trace(M_C144) ;

elem_K(10,10) = trace(M_C154) ; elem_K(10,11) = trace(M_C155) ;

elem_K(10,12) = trace(M_C156) ; elem_K(10,13) = trace(M_C157) ;

elem_K(10,14) = trace(M_C158) ; elem_K(10,15) = trace(M_C159) ;

elem_K(10,16) = trace(M_C160) ; elem_K(11,11) = trace(M_C171) ;

elem_K(11,12) = trace(M_C172) ; elem_K(11,13) = trace(M_C173) ;

elem_K(11,14) = trace(M_C174) ; elem_K(11,15) = trace(M_C175) ;

elem_K(11,16) = trace(M_C176) ; elem_K(12,12) = trace(M_C188) ;

elem_K(12,13) = trace(M_C189) ; elem_K(12,14) = trace(M_C190) ;

elem_K(12,15) = trace(M_C191) ; elem_K(12,16) = trace(M_C192) ;

elem_K(13,13) = trace(M_C205) ; elem_K(13,14) = trace(M_C206) ;

elem_K(13,15) = trace(M_C207) ; elem_K(13,16) = trace(M_C208) ;

elem_K(14,14) = trace(M_C222) ; elem_K(14,15) = trace(M_C223) ;

elem_K(14,16) = trace(M_C224) ; elem_K(15,15) = trace(M_C239) ;

elem_K(15,16) = trace(M_C240) ; elem_K(16,16) = trace(M_C256) ;

%

translate = zeros(16,16);

translate(1,1) = 1;

translate(2:4,2:4) = J;

translate(5,5) = 1;

translate(6:8,6:8) = J;

translate(9,9) = 1;

translate(10:12,10:12) = J;

translate(13,13) = 1;

translate(14:16,14:16) = J;

elem_K = elem_K + elem_K’ - diag(diag(elem_K));

elem_K = det(J)*(translate’*elem_K*translate);

end

B.4.3 Elem matrix V 3D

function [elem_V] = Elem_matrix_V_3D(J,V,ndof)

%Elem_matrix_V_3D Computes the elemental potential matrix

% The elemental potential energy matrix is formed using either linear

% basis functions or cubic basis functions.

%

% [ELEM_V]=ELEM_MATRIX_V_3D(J,V,NDOF)

% ELEM_V: ELEMENTAL POTENTIAL ENERGY MATRIX (4 X 4 OR 16 X 16)

161

% J: JACOBIAN MATRIX (3 X 3)

% V: VECTOR CONTAINING POTENTIAL AT NODE (1 X 4)

% NDOF: DEGREE OF FREEDOM PER NODE

%--

%

% Variables:

% Translate: Matrix that converts ELEM_V from local coordinates to

% global coordinates. This is only used when ndof does not equal 1.

%

%Linear shape functions are defined as;

% N_1(x,y)=1-x-y-z; 0<=x,y,z<=1

% N_2(x,y)=x; 0<=x,y,z<=1

% N_3(x,y)=y; 0<=x,y,z<=1

% N_4(x,y)=z; 0<=x,y,z<=1

%

%Cubic shape functions are defined as;

% N_1(x,y,z)=1-N_5-N_9-N_13; 0<=x,y,z<=1

% N_2(x,y,z)=x-N_5-N_6-N_10-N_14; 0<=x,y,z<=1

% N_3(x,y,z)=y-N_7-N_9-N_11-N_15; 0<=x,y,z<=1

% N_4(x,y,z)=z-N_8-N_12-N_13-N_16 0<=x,y,z<=1

% N_5(x,y,z)=3*x^2-2*x^3; 0<=x,y,z<=1

% N_6(x,y,z)=-x^2+x^3; 0<=x,y,z<=1

% N_7(x,y,z)=x^2*y; 0<=x,y,z<=1

% N_8(x,y,z)=x^2*z; 0<=x,y,z<=1

% N_9(x,y,z)=3*y^2-2*y^3; 0<=x,y,z<=1

% N_10(x,y,z)=x*y^2; 0<=x,y,z<=1

% N_11(x,y,z)=-y^2+y^3; 0<=x,y,z<=1

% N_12(x,y,z)=y^2*z; 0<=x,y,z<=1

% N_13(x,y,z)=3*z^2-2*z^3; 0<=x,y,z<=1

% N_14(x,y,z)=x*z^2; 0<=x,y,z<=1

% N_15(x,y,z)=y*z^2; 0<=x,y,z<=1

% N_16(x,y,z)=-z^2+z^3; 0<=x,y,z<=1

%--

%

if (ndof == 1)

elem_V = 1/720*[6*V(1)+2*V(2)+2*V(3)+2*V(4) 2*V(1)+2*V(2)+1*V(3)+1*V(4)...

2*V(1)+1*V(2)+2*V(3)+1*V(4) 2*V(1)+1*V(2)+1*V(3)+2*V(4) ; ...

2*V(1)+2*V(2)+1*V(3)+1*V(4) 2*V(1)+6*V(2)+2*V(3)+2*V(4)...

1*V(1)+2*V(2)+2*V(3)+1*V(4) 1*V(1)+1*V(2)+2*V(3)+2*V(4) ; ...

2*V(1)+1*V(2)+2*V(3)+1*V(4) 1*V(1)+2*V(2)+2*V(3)+1*V(4)...

2*V(1)+2*V(2)+6*V(3)+2*V(4) 1*V(1)+1*V(2)+2*V(3)+2*V(4) ; ...

2*V(1)+1*V(2)+1*V(3)+2*V(4) 1*V(1)+2*V(2)+1*V(3)+2*V(4)...

1*V(1)+1*V(2)+2*V(3)+2*V(4) 2*V(1)+2*V(2)+2*V(3)+6*V(4)];

elem_V = det(J)*elem_V;

else

elem_V = [(1/150)*V(3)+(1/150)*V(4)+(1/150)*V(2)+(11/700)*V(1),...

(7/7200)*V(3)+(7/7200)*V(4)+(1/756)*V(2)+(143/75600)*V(1),...

(1/756)*V(3)+(7/7200)*V(4)+(7/7200)*V(2)+(143/75600)*V(1),...

(7/7200)*V(3)+(1/756)*V(4)+(7/7200)*V(2)+(143/75600)*V(1),...

(1/560)*V(3)+(1/560)*V(4)+(17/4200)*V(2)+(17/6300)*V(1),...

-(1/2016)*V(3)-(1/2016)*V(4)-(13/12600)*V(2)-(19/25200)*V(1),...

(1/4725)*V(3)+(1/8400)*V(4)+(1/3360)*V(2)+(1/6048)*V(1),...

(1/8400)*V(3)+(1/4725)*V(4)+(1/3360)*V(2)+(1/6048)*V(1),...

(17/4200)*V(3)+(1/560)*V(4)+(1/560)*V(2)+(17/6300)*V(1),...

(1/3360)*V(3)+(1/8400)*V(4)+(1/4725)*V(2)+(1/6048)*V(1),...

-(13/12600)*V(3)-(1/2016)*V(4)-(1/2016)*V(2)-(19/25200)*V(1),...

(1/3360)*V(3)+(1/4725)*V(4)+(1/8400)*V(2)+(1/6048)*V(1),...

(1/560)*V(3)+(17/4200)*V(4)+(1/560)*V(2)+(17/6300)*V(1),...

162

(1/8400)*V(3)+(1/3360)*V(4)+(1/4725)*V(2)+(1/6048)*V(1),...

(1/4725)*V(3)+(1/3360)*V(4)+(1/8400)*V(2)+(1/6048)*V(1),...

-(1/2016)*V(3)-(13/12600)*V(4)-(1/2016)*V(2)-(19/25200)*V(1) ;...

(7/7200)*V(3)+(7/7200)*V(4)+(1/756)*V(2)+(143/75600)*V(1),...

(1/5400)*V(3)+(1/5400)*V(4)+(11/37800)*V(2)+(1/3240)*V(1),...

(23/113400)*V(3)+(23/151200)*V(4)+(23/113400)*V(2)+(107/453600)*V(1),...

(23/151200)*V(3)+(23/113400)*V(4)+(23/113400)*V(2)+(107/453600)*V(1),...

(11/25200)*V(3)+(11/25200)*V(4)+(1/945)*V(2)+(11/18900)*V(1),...

-(1/8400)*V(3)-(1/8400)*V(4)-(1/3780)*V(2)-(1/6300)*V(1),...

(1/18900)*V(3)+(1/33600)*V(4)+(1/12600)*V(2)+(11/302400)*V(1),...

(1/33600)*V(3)+(1/18900)*V(4)+(1/12600)*V(2)+(11/302400)*V(1),...

(17/25200)*V(3)+(1/3360)*V(4)+(1/2520)*V(2)+(53/151200)*V(1),...

(1/15120)*V(3)+(1/37800)*V(4)+(1/18900)*V(2)+(1/32400)*V(1),...

-(13/75600)*V(3)-(1/12096)*V(4)-(1/9072)*V(2)-(89/907200)*V(1),...

(1/20160)*V(3)+(1/28350)*V(4)+(1/37800)*V(2)+(19/907200)*V(1),...

(1/3360)*V(3)+(17/25200)*V(4)+(1/2520)*V(2)+(53/151200)*V(1),...

(1/37800)*V(3)+(1/15120)*V(4)+(1/18900)*V(2)+(1/32400)*V(1),...

(1/28350)*V(3)+(1/20160)*V(4)+(1/37800)*V(2)+(19/907200)*V(1),...

-(1/12096)*V(3)-(13/75600)*V(4)-(1/9072)*V(2)-(89/907200)*V(1) ;...

(1/756)*V(3)+(7/7200)*V(4)+(7/7200)*V(2)+(143/75600)*V(1),...

(23/113400)*V(3)+(23/151200)*V(4)+(23/113400)*V(2)+(107/453600)*V(1),...

(11/37800)*V(3)+(1/5400)*V(4)+(1/5400)*V(2)+(1/3240)*V(1),...

(23/113400)*V(3)+(23/113400)*V(4)+(23/151200)*V(2)+(107/453600)*V(1),...

(1/2520)*V(3)+(1/3360)*V(4)+(17/25200)*V(2)+(53/151200)*V(1),...

-(1/9072)*V(3)-(1/12096)*V(4)-(13/75600)*V(2)-(89/907200)*V(1),...

(1/18900)*V(3)+(1/37800)*V(4)+(1/15120)*V(2)+(1/32400)*V(1),...

(1/37800)*V(3)+(1/28350)*V(4)+(1/20160)*V(2)+(19/907200)*V(1),...

(1/945)*V(3)+(11/25200)*V(4)+(11/25200)*V(2)+(11/18900)*V(1),...

(1/12600)*V(3)+(1/33600)*V(4)+(1/18900)*V(2)+(11/302400)*V(1),...

-(1/3780)*V(3)-(1/8400)*V(4)-(1/8400)*V(2)-(1/6300)*V(1),...

(1/12600)*V(3)+(1/18900)*V(4)+(1/33600)*V(2)+(11/302400)*V(1),...

(1/2520)*V(3)+(17/25200)*V(4)+(1/3360)*V(2)+(53/151200)*V(1),...

(1/37800)*V(3)+(1/20160)*V(4)+(1/28350)*V(2)+(19/907200)*V(1),...

(1/18900)*V(3)+(1/15120)*V(4)+(1/37800)*V(2)+(1/32400)*V(1),...

-(1/9072)*V(3)-(13/75600)*V(4)-(1/12096)*V(2)-(89/907200)*V(1) ;...

(7/7200)*V(3)+(1/756)*V(4)+(7/7200)*V(2)+(143/75600)*V(1),...

(23/151200)*V(3)+(23/113400)*V(4)+(23/113400)*V(2)+(107/453600)*V(1),...

(23/113400)*V(3)+(23/113400)*V(4)+(23/151200)*V(2)+(107/453600)*V(1),...

(1/5400)*V(3)+(11/37800)*V(4)+(1/5400)*V(2)+(1/3240)*V(1),...

(1/3360)*V(3)+(1/2520)*V(4)+(17/25200)*V(2)+(53/151200)*V(1),...

-(1/12096)*V(3)-(1/9072)*V(4)-(13/75600)*V(2)-(89/907200)*V(1),...

(1/28350)*V(3)+(1/37800)*V(4)+(1/20160)*V(2)+(19/907200)*V(1),...

(1/37800)*V(3)+(1/18900)*V(4)+(1/15120)*V(2)+(1/32400)*V(1),...

(17/25200)*V(3)+(1/2520)*V(4)+(1/3360)*V(2)+(53/151200)*V(1),...

(1/20160)*V(3)+(1/37800)*V(4)+(1/28350)*V(2)+(19/907200)*V(1),...

-(13/75600)*V(3)-(1/9072)*V(4)-(1/12096)*V(2)-(89/907200)*V(1),...

(1/15120)*V(3)+(1/18900)*V(4)+(1/37800)*V(2)+(1/32400)*V(1),...

(11/25200)*V(3)+(1/945)*V(4)+(11/25200)*V(2)+(11/18900)*V(1),...

(1/33600)*V(3)+(1/12600)*V(4)+(1/18900)*V(2)+(11/302400)*V(1),...

(1/18900)*V(3)+(1/12600)*V(4)+(1/33600)*V(2)+(11/302400)*V(1),...

-(1/8400)*V(3)-(1/3780)*V(4)-(1/8400)*V(2)-(1/6300)*V(1) ;...

(1/560)*V(3)+(1/560)*V(4)+(17/4200)*V(2)+(17/6300)*V(1),...

(11/25200)*V(3)+(11/25200)*V(4)+(1/945)*V(2)+(11/18900)*V(1),...

(1/2520)*V(3)+(1/3360)*V(4)+(17/25200)*V(2)+(53/151200)*V(1),...

(1/3360)*V(3)+(1/2520)*V(4)+(17/25200)*V(2)+(53/151200)*V(1),...

(11/5040)*V(3)+(11/5040)*V(4)+(43/5040)*V(2)+(11/5040)*V(1),...

-(1/1890)*V(3)-(1/1890)*V(4)-(1/560)*V(2)-(1/1890)*V(1),...

(1/3780)*V(3)+(1/7560)*V(4)+(1/1680)*V(2)+(1/7560)*V(1),...

(1/7560)*V(3)+(1/3780)*V(4)+(1/1680)*V(2)+(1/7560)*V(1),...

163

(73/50400)*V(3)+(3/5600)*V(4)+(73/50400)*V(2)+(3/5600)*V(1),...

(11/50400)*V(3)+(11/151200)*V(4)+(1/3780)*V(2)+(11/151200)*V(1),...

-(19/50400)*V(3)-(23/151200)*V(4)-(31/75600)*V(2)-(23/151200)*V(1),...

(1/12600)*V(3)+(1/18900)*V(4)+(11/151200)*V(2)+(1/37800)*V(1),...

(3/5600)*V(3)+(73/50400)*V(4)+(73/50400)*V(2)+(3/5600)*V(1),...

(11/151200)*V(3)+(11/50400)*V(4)+(1/3780)*V(2)+(11/151200)*V(1),...

(1/18900)*V(3)+(1/12600)*V(4)+(11/151200)*V(2)+(1/37800)*V(1),...

-(23/151200)*V(3)-(19/50400)*V(4)-(31/75600)*V(2)-(23/151200)*V(1) ;...

-(1/2016)*V(3)-(1/2016)*V(4)-(13/12600)*V(2)-(19/25200)*V(1),...

-(1/8400)*V(3)-(1/8400)*V(4)-(1/3780)*V(2)-(1/6300)*V(1),...

-(1/9072)*V(3)-(1/12096)*V(4)-(13/75600)*V(2)-(89/907200)*V(1),...

-(1/12096)*V(3)-(1/9072)*V(4)-(13/75600)*V(2)-(89/907200)*V(1),...

-(1/1890)*V(3)-(1/1890)*V(4)-(1/560)*V(2)-(1/1890)*V(1),...

(1/7560)*V(3)+(1/7560)*V(4)+(1/2520)*V(2)+(1/7560)*V(1),...

-(1/15120)*V(3)-(1/30240)*V(4)-(1/7560)*V(2)-(1/30240)*V(1),...

-(1/30240)*V(3)-(1/15120)*V(4)-(1/7560)*V(2)-(1/30240)*V(1),...

-(31/75600)*V(3)-(23/151200)*V(4)-(19/50400)*V(2)-(23/151200)*V(1),...

-(1/16800)*V(3)-(1/50400)*V(4)-(1/15120)*V(2)-(1/50400)*V(1),...

(1/9450)*V(3)+(13/302400)*V(4)+(1/9450)*V(2)+(13/302400)*V(1),...

-(1/43200)*V(3)-(1/64800)*V(4)-(1/50400)*V(2)-(1/129600)*V(1),...

-(23/151200)*V(3)-(31/75600)*V(4)-(19/50400)*V(2)-(23/151200)*V(1),...

-(1/50400)*V(3)-(1/16800)*V(4)-(1/15120)*V(2)-(1/50400)*V(1),...

-(1/64800)*V(3)-(1/43200)*V(4)-(1/50400)*V(2)-(1/129600)*V(1),...

(13/302400)*V(3)+(1/9450)*V(4)+(1/9450)*V(2)+(13/302400)*V(1) ;...

(1/4725)*V(3)+(1/8400)*V(4)+(1/3360)*V(2)+(1/6048)*V(1),...

(1/18900)*V(3)+(1/33600)*V(4)+(1/12600)*V(2)+(11/302400)*V(1),...

(1/18900)*V(3)+(1/37800)*V(4)+(1/15120)*V(2)+(1/32400)*V(1),...

(1/28350)*V(3)+(1/37800)*V(4)+(1/20160)*V(2)+(19/907200)*V(1),...

(1/3780)*V(3)+(1/7560)*V(4)+(1/1680)*V(2)+(1/7560)*V(1),...

-(1/15120)*V(3)-(1/30240)*V(4)-(1/7560)*V(2)-(1/30240)*V(1),...

(1/25200)*V(3)+(1/75600)*V(4)+(1/15120)*V(2)+(1/75600)*V(1),...

(1/75600)*V(3)+(1/75600)*V(4)+(1/30240)*V(2)+(1/151200)*V(1),...

(1/3780)*V(3)+(11/151200)*V(4)+(11/50400)*V(2)+(11/151200)*V(1),...

(1/25200)*V(3)+(1/100800)*V(4)+(1/25200)*V(2)+(1/100800)*V(1),...

-(1/15120)*V(3)-(1/50400)*V(4)-(1/16800)*V(2)-(1/50400)*V(1),...

(1/75600)*V(3)+(1/151200)*V(4)+(1/100800)*V(2)+(1/302400)*V(1),...

(1/18900)*V(3)+(11/151200)*V(4)+(1/12600)*V(2)+(1/37800)*V(1),...

(1/151200)*V(3)+(1/100800)*V(4)+(1/75600)*V(2)+(1/302400)*V(1),...

(1/151200)*V(3)+(1/151200)*V(4)+(1/151200)*V(2)+(1/453600)*V(1),...

-(1/64800)*V(3)-(1/50400)*V(4)-(1/43200)*V(2)-(1/129600)*V(1) ;...

(1/8400)*V(3)+(1/4725)*V(4)+(1/3360)*V(2)+(1/6048)*V(1),...

(1/33600)*V(3)+(1/18900)*V(4)+(1/12600)*V(2)+(11/302400)*V(1),...

(1/37800)*V(3)+(1/28350)*V(4)+(1/20160)*V(2)+(19/907200)*V(1),...

(1/37800)*V(3)+(1/18900)*V(4)+(1/15120)*V(2)+(1/32400)*V(1),...

(1/7560)*V(3)+(1/3780)*V(4)+(1/1680)*V(2)+(1/7560)*V(1),...

-(1/30240)*V(3)-(1/15120)*V(4)-(1/7560)*V(2)-(1/30240)*V(1),...

(1/75600)*V(3)+(1/75600)*V(4)+(1/30240)*V(2)+(1/151200)*V(1),...

(1/75600)*V(3)+(1/25200)*V(4)+(1/15120)*V(2)+(1/75600)*V(1),...

(11/151200)*V(3)+(1/18900)*V(4)+(1/12600)*V(2)+(1/37800)*V(1),...

(1/100800)*V(3)+(1/151200)*V(4)+(1/75600)*V(2)+(1/302400)*V(1),...

-(1/50400)*V(3)-(1/64800)*V(4)-(1/43200)*V(2)-(1/129600)*V(1),...

(1/151200)*V(3)+(1/151200)*V(4)+(1/151200)*V(2)+(1/453600)*V(1),...

(11/151200)*V(3)+(1/3780)*V(4)+(11/50400)*V(2)+(11/151200)*V(1),...

(1/100800)*V(3)+(1/25200)*V(4)+(1/25200)*V(2)+(1/100800)*V(1),...

(1/151200)*V(3)+(1/75600)*V(4)+(1/100800)*V(2)+(1/302400)*V(1),...

-(1/50400)*V(3)-(1/15120)*V(4)-(1/16800)*V(2)-(1/50400)*V(1) ;...

(17/4200)*V(3)+(1/560)*V(4)+(1/560)*V(2)+(17/6300)*V(1),...

(17/25200)*V(3)+(1/3360)*V(4)+(1/2520)*V(2)+(53/151200)*V(1),...

(1/945)*V(3)+(11/25200)*V(4)+(11/25200)*V(2)+(11/18900)*V(1),...

164

(17/25200)*V(3)+(1/2520)*V(4)+(1/3360)*V(2)+(53/151200)*V(1),...

(73/50400)*V(3)+(3/5600)*V(4)+(73/50400)*V(2)+(3/5600)*V(1),...

-(31/75600)*V(3)-(23/151200)*V(4)-(19/50400)*V(2)-(23/151200)*V(1),...

(1/3780)*V(3)+(11/151200)*V(4)+(11/50400)*V(2)+(11/151200)*V(1),...

(11/151200)*V(3)+(1/18900)*V(4)+(1/12600)*V(2)+(1/37800)*V(1),...

(43/5040)*V(3)+(11/5040)*V(4)+(11/5040)*V(2)+(11/5040)*V(1),...

(1/1680)*V(3)+(1/7560)*V(4)+(1/3780)*V(2)+(1/7560)*V(1),...

-(1/560)*V(3)-(1/1890)*V(4)-(1/1890)*V(2)-(1/1890)*V(1),...

(1/1680)*V(3)+(1/3780)*V(4)+(1/7560)*V(2)+(1/7560)*V(1),...

(73/50400)*V(3)+(73/50400)*V(4)+(3/5600)*V(2)+(3/5600)*V(1),...

(11/151200)*V(3)+(1/12600)*V(4)+(1/18900)*V(2)+(1/37800)*V(1),...

(1/3780)*V(3)+(11/50400)*V(4)+(11/151200)*V(2)+(11/151200)*V(1),...

-(31/75600)*V(3)-(19/50400)*V(4)-(23/151200)*V(2)-(23/151200)*V(1) ;...

(1/3360)*V(3)+(1/8400)*V(4)+(1/4725)*V(2)+(1/6048)*V(1),...

(1/15120)*V(3)+(1/37800)*V(4)+(1/18900)*V(2)+(1/32400)*V(1),...

(1/12600)*V(3)+(1/33600)*V(4)+(1/18900)*V(2)+(11/302400)*V(1),...

(1/20160)*V(3)+(1/37800)*V(4)+(1/28350)*V(2)+(19/907200)*V(1),...

(11/50400)*V(3)+(11/151200)*V(4)+(1/3780)*V(2)+(11/151200)*V(1),...

-(1/16800)*V(3)-(1/50400)*V(4)-(1/15120)*V(2)-(1/50400)*V(1),...

(1/25200)*V(3)+(1/100800)*V(4)+(1/25200)*V(2)+(1/100800)*V(1),...

(1/100800)*V(3)+(1/151200)*V(4)+(1/75600)*V(2)+(1/302400)*V(1),...

(1/1680)*V(3)+(1/7560)*V(4)+(1/3780)*V(2)+(1/7560)*V(1),...

(1/15120)*V(3)+(1/75600)*V(4)+(1/25200)*V(2)+(1/75600)*V(1),...

-(1/7560)*V(3)-(1/30240)*V(4)-(1/15120)*V(2)-(1/30240)*V(1),...

(1/30240)*V(3)+(1/75600)*V(4)+(1/75600)*V(2)+(1/151200)*V(1),...

(1/12600)*V(3)+(11/151200)*V(4)+(1/18900)*V(2)+(1/37800)*V(1),...

(1/151200)*V(3)+(1/151200)*V(4)+(1/151200)*V(2)+(1/453600)*V(1),...

(1/75600)*V(3)+(1/100800)*V(4)+(1/151200)*V(2)+(1/302400)*V(1),...

-(1/43200)*V(3)-(1/50400)*V(4)-(1/64800)*V(2)-(1/129600)*V(1) ;...

-(13/12600)*V(3)-(1/2016)*V(4)-(1/2016)*V(2)-(19/25200)*V(1),...

-(13/75600)*V(3)-(1/12096)*V(4)-(1/9072)*V(2)-(89/907200)*V(1),...

-(1/3780)*V(3)-(1/8400)*V(4)-(1/8400)*V(2)-(1/6300)*V(1),...

-(13/75600)*V(3)-(1/9072)*V(4)-(1/12096)*V(2)-(89/907200)*V(1),...

-(19/50400)*V(3)-(23/151200)*V(4)-(31/75600)*V(2)-(23/151200)*V(1),...

(1/9450)*V(3)+(13/302400)*V(4)+(1/9450)*V(2)+(13/302400)*V(1),...

-(1/15120)*V(3)-(1/50400)*V(4)-(1/16800)*V(2)-(1/50400)*V(1),...

-(1/50400)*V(3)-(1/64800)*V(4)-(1/43200)*V(2)-(1/129600)*V(1),...

-(1/560)*V(3)-(1/1890)*V(4)-(1/1890)*V(2)-(1/1890)*V(1),...

-(1/7560)*V(3)-(1/30240)*V(4)-(1/15120)*V(2)-(1/30240)*V(1),...

(1/2520)*V(3)+(1/7560)*V(4)+(1/7560)*V(2)+(1/7560)*V(1),...

-(1/7560)*V(3)-(1/15120)*V(4)-(1/30240)*V(2)-(1/30240)*V(1),...

-(19/50400)*V(3)-(31/75600)*V(4)-(23/151200)*V(2)-(23/151200)*V(1),...

-(1/50400)*V(3)-(1/43200)*V(4)-(1/64800)*V(2)-(1/129600)*V(1),...

-(1/15120)*V(3)-(1/16800)*V(4)-(1/50400)*V(2)-(1/50400)*V(1),...

(1/9450)*V(3)+(1/9450)*V(4)+(13/302400)*V(2)+(13/302400)*V(1) ;...

(1/3360)*V(3)+(1/4725)*V(4)+(1/8400)*V(2)+(1/6048)*V(1),...

(1/20160)*V(3)+(1/28350)*V(4)+(1/37800)*V(2)+(19/907200)*V(1),...

(1/12600)*V(3)+(1/18900)*V(4)+(1/33600)*V(2)+(11/302400)*V(1),...

(1/15120)*V(3)+(1/18900)*V(4)+(1/37800)*V(2)+(1/32400)*V(1),...

(1/12600)*V(3)+(1/18900)*V(4)+(11/151200)*V(2)+(1/37800)*V(1),...

-(1/43200)*V(3)-(1/64800)*V(4)-(1/50400)*V(2)-(1/129600)*V(1),...

(1/75600)*V(3)+(1/151200)*V(4)+(1/100800)*V(2)+(1/302400)*V(1),...

(1/151200)*V(3)+(1/151200)*V(4)+(1/151200)*V(2)+(1/453600)*V(1),...

(1/1680)*V(3)+(1/3780)*V(4)+(1/7560)*V(2)+(1/7560)*V(1),...

(1/30240)*V(3)+(1/75600)*V(4)+(1/75600)*V(2)+(1/151200)*V(1),...

-(1/7560)*V(3)-(1/15120)*V(4)-(1/30240)*V(2)-(1/30240)*V(1),...

(1/15120)*V(3)+(1/25200)*V(4)+(1/75600)*V(2)+(1/75600)*V(1),...

(11/50400)*V(3)+(1/3780)*V(4)+(11/151200)*V(2)+(11/151200)*V(1),...

(1/100800)*V(3)+(1/75600)*V(4)+(1/151200)*V(2)+(1/302400)*V(1),...

165

(1/25200)*V(3)+(1/25200)*V(4)+(1/100800)*V(2)+(1/100800)*V(1),...

-(1/16800)*V(3)-(1/15120)*V(4)-(1/50400)*V(2)-(1/50400)*V(1) ;...

(1/560)*V(3)+(17/4200)*V(4)+(1/560)*V(2)+(17/6300)*V(1),...

(1/3360)*V(3)+(17/25200)*V(4)+(1/2520)*V(2)+(53/151200)*V(1),...

(1/2520)*V(3)+(17/25200)*V(4)+(1/3360)*V(2)+(53/151200)*V(1),...

(11/25200)*V(3)+(1/945)*V(4)+(11/25200)*V(2)+(11/18900)*V(1),...

(3/5600)*V(3)+(73/50400)*V(4)+(73/50400)*V(2)+(3/5600)*V(1),...

-(23/151200)*V(3)-(31/75600)*V(4)-(19/50400)*V(2)-(23/151200)*V(1),...

(1/18900)*V(3)+(11/151200)*V(4)+(1/12600)*V(2)+(1/37800)*V(1),...

(11/151200)*V(3)+(1/3780)*V(4)+(11/50400)*V(2)+(11/151200)*V(1),...

(73/50400)*V(3)+(73/50400)*V(4)+(3/5600)*V(2)+(3/5600)*V(1),...

(1/12600)*V(3)+(11/151200)*V(4)+(1/18900)*V(2)+(1/37800)*V(1),...

-(19/50400)*V(3)-(31/75600)*V(4)-(23/151200)*V(2)-(23/151200)*V(1),...

(11/50400)*V(3)+(1/3780)*V(4)+(11/151200)*V(2)+(11/151200)*V(1),...

(43/5040)*V(4)+(11/5040)*V(2)+(11/5040)*V(1)+(11/5040)*V(3),...

(1/7560)*V(1)+(1/1680)*V(4)+(1/3780)*V(2)+(1/7560)*V(3),...

(1/7560)*V(1)+(1/7560)*V(2)+(1/3780)*V(3)+(1/1680)*V(4),...

-(1/560)*V(4)-(1/1890)*V(2)-(1/1890)*V(1)-(1/1890)*V(3) ;...

(1/8400)*V(3)+(1/3360)*V(4)+(1/4725)*V(2)+(1/6048)*V(1),...

(1/37800)*V(3)+(1/15120)*V(4)+(1/18900)*V(2)+(1/32400)*V(1),...

(1/37800)*V(3)+(1/20160)*V(4)+(1/28350)*V(2)+(19/907200)*V(1),...

(1/33600)*V(3)+(1/12600)*V(4)+(1/18900)*V(2)+(11/302400)*V(1),...

(11/151200)*V(3)+(11/50400)*V(4)+(1/3780)*V(2)+(11/151200)*V(1),...

-(1/50400)*V(3)-(1/16800)*V(4)-(1/15120)*V(2)-(1/50400)*V(1),...

(1/151200)*V(3)+(1/100800)*V(4)+(1/75600)*V(2)+(1/302400)*V(1),...

(1/100800)*V(3)+(1/25200)*V(4)+(1/25200)*V(2)+(1/100800)*V(1),...

(11/151200)*V(3)+(1/12600)*V(4)+(1/18900)*V(2)+(1/37800)*V(1),...

(1/151200)*V(3)+(1/151200)*V(4)+(1/151200)*V(2)+(1/453600)*V(1),...

-(1/50400)*V(3)-(1/43200)*V(4)-(1/64800)*V(2)-(1/129600)*V(1),...

(1/100800)*V(3)+(1/75600)*V(4)+(1/151200)*V(2)+(1/302400)*V(1),...

(1/7560)*V(1)+(1/1680)*V(4)+(1/3780)*V(2)+(1/7560)*V(3),...

(1/75600)*V(1)+(1/15120)*V(4)+(1/75600)*V(3)+(1/25200)*V(2),...

(1/151200)*V(1)+(1/30240)*V(4)+(1/75600)*V(2)+(1/75600)*V(3),...

-(1/30240)*V(1)-(1/7560)*V(4)-(1/15120)*V(2)-(1/30240)*V(3) ;...

(1/4725)*V(3)+(1/3360)*V(4)+(1/8400)*V(2)+(1/6048)*V(1),...

(1/28350)*V(3)+(1/20160)*V(4)+(1/37800)*V(2)+(19/907200)*V(1),...

(1/18900)*V(3)+(1/15120)*V(4)+(1/37800)*V(2)+(1/32400)*V(1),...

(1/18900)*V(3)+(1/12600)*V(4)+(1/33600)*V(2)+(11/302400)*V(1),...

(1/18900)*V(3)+(1/12600)*V(4)+(11/151200)*V(2)+(1/37800)*V(1),...

-(1/64800)*V(3)-(1/43200)*V(4)-(1/50400)*V(2)-(1/129600)*V(1),...

(1/151200)*V(3)+(1/151200)*V(4)+(1/151200)*V(2)+(1/453600)*V(1),...

(1/151200)*V(3)+(1/75600)*V(4)+(1/100800)*V(2)+(1/302400)*V(1),...

(1/3780)*V(3)+(11/50400)*V(4)+(11/151200)*V(2)+(11/151200)*V(1),...

(1/75600)*V(3)+(1/100800)*V(4)+(1/151200)*V(2)+(1/302400)*V(1),...

-(1/15120)*V(3)-(1/16800)*V(4)-(1/50400)*V(2)-(1/50400)*V(1),...

(1/25200)*V(3)+(1/25200)*V(4)+(1/100800)*V(2)+(1/100800)*V(1),...

(1/7560)*V(1)+(1/7560)*V(2)+(1/3780)*V(3)+(1/1680)*V(4),...

(1/151200)*V(1)+(1/30240)*V(4)+(1/75600)*V(2)+(1/75600)*V(3),...

(1/75600)*V(1)+(1/75600)*V(2)+(1/15120)*V(4)+(1/25200)*V(3),...

-(1/30240)*V(1)-(1/30240)*V(2)-(1/15120)*V(3)-(1/7560)*V(4) ;...

-(1/2016)*V(3)-(13/12600)*V(4)-(1/2016)*V(2)-(19/25200)*V(1),...

-(1/12096)*V(3)-(13/75600)*V(4)-(1/9072)*V(2)-(89/907200)*V(1),...

-(1/9072)*V(3)-(13/75600)*V(4)-(1/12096)*V(2)-(89/907200)*V(1),...

-(1/8400)*V(3)-(1/3780)*V(4)-(1/8400)*V(2)-(1/6300)*V(1),...

-(23/151200)*V(3)-(19/50400)*V(4)-(31/75600)*V(2)-(23/151200)*V(1),...

(13/302400)*V(3)+(1/9450)*V(4)+(1/9450)*V(2)+(13/302400)*V(1),...

-(1/64800)*V(3)-(1/50400)*V(4)-(1/43200)*V(2)-(1/129600)*V(1),...

-(1/50400)*V(3)-(1/15120)*V(4)-(1/16800)*V(2)-(1/50400)*V(1),...

-(31/75600)*V(3)-(19/50400)*V(4)-(23/151200)*V(2)-(23/151200)*V(1),...

166

-(1/43200)*V(3)-(1/50400)*V(4)-(1/64800)*V(2)-(1/129600)*V(1),...

(1/9450)*V(3)+(1/9450)*V(4)+(13/302400)*V(2)+(13/302400)*V(1),...

-(1/16800)*V(3)-(1/15120)*V(4)-(1/50400)*V(2)-(1/50400)*V(1),...

-(1/560)*V(4)-(1/1890)*V(2)-(1/1890)*V(1)-(1/1890)*V(3),...

-(1/30240)*V(1)-(1/7560)*V(4)-(1/15120)*V(2)-(1/30240)*V(3),...

-(1/30240)*V(1)-(1/30240)*V(2)-(1/15120)*V(3)-(1/7560)*V(4),...

(1/2520)*V(4)+(1/7560)*V(2)+(1/7560)*V(1)+(1/7560)*V(3)];

translate = zeros(16,16);

translate(1,1) = 1;

translate(2:4,2:4) = J;

translate(5,5) = 1;

translate(6:8,6:8) = J;

translate(9,9) = 1;

translate(10:12,10:12) = J;

translate(13,13) = 1;

translate(14:16,14:16) = J;

elem_V = det(J)*(translate’*elem_V*translate);

end

B.4.4 Elem matrix E 3D

function [elem_E] = Elem_matrix_E_3D(J,ndof)

%Elem_matrix_E_3D Computes the elemental overlap matrix

% The elemental overlap energy matrix is formed using either linear

% basis functions or cubic basis functions.

%

% [ELEM_E]=ELEM_MATRIX_E_3D(J,NDOF)

% ELEM_E: ELEMENTAL OVERLAP ENERGY MATRIX (4 X 4 OR 16 X 16)

% J: JACOBIAN MATRIX (3 X 3)

% NDOF: DEGREE OF FREEDOM PER NODE

%--

%

% Variables:

% Translate: Matrix that converts ELEM_E from local coordinates to

% global coordinates. This is only used when ndof does not equal 1.

%

%Linear shape functions are defined as;

% N_1(x,y)=1-x-y-z; 0<=x,y,z<=1

% N_2(x,y)=x; 0<=x,y,z<=1

% N_3(x,y)=y; 0<=x,y,z<=1

% N_4(x,y)=z; 0<=x,y,z<=1

%

%Cubic shape functions are defined as;

% N_1(x,y,z)=1-N_5-N_9-N_13; 0<=x,y,z<=1

% N_2(x,y,z)=x-N_5-N_6-N_10-N_14; 0<=x,y,z<=1

% N_3(x,y,z)=y-N_7-N_9-N_11-N_15; 0<=x,y,z<=1

% N_4(x,y,z)=z-N_8-N_12-N_13-N_16 0<=x,y,z<=1

% N_5(x,y,z)=3*x^2-2*x^3; 0<=x,y,z<=1

% N_6(x,y,z)=-x^2+x^3; 0<=x,y,z<=1

% N_7(x,y,z)=x^2*y; 0<=x,y,z<=1

% N_8(x,y,z)=x^2*z; 0<=x,y,z<=1

% N_9(x,y,z)=3*y^2-2*y^3; 0<=x,y,z<=1

% N_10(x,y,z)=x*y^2; 0<=x,y,z<=1

% N_11(x,y,z)=-y^2+y^3; 0<=x,y,z<=1

% N_12(x,y,z)=y^2*z; 0<=x,y,z<=1

% N_13(x,y,z)=3*z^2-2*z^3; 0<=x,y,z<=1

% N_14(x,y,z)=x*z^2; 0<=x,y,z<=1

% N_15(x,y,z)=y*z^2; 0<=x,y,z<=1

% N_16(x,y,z)=-z^2+z^3; 0<=x,y,z<=1

167

%--

%

if (ndof == 1)

elem_E = 1/120*[2 1 1 1; 1 2 1 1; 1 1 2 1; 1 1 1 2];

elem_E = det(J)*elem_E;

else

elem_E = [1/28, 13/2520, 13/2520, 13/2520, 13/1260, -1/360, 1/1260,...

1/1260, 13/1260, 1/1260, -1/360, 1/1260, 13/1260, 1/1260,...

1/1260, -1/360 ; 13/2520, 11/11340, 1/1260, 1/1260,...

19/7560, -1/1512, 1/5040, 1/5040, 13/7560, 1/5670, -1/2160,...

1/7560, 13/7560, 1/5670, 1/7560, -1/2160 ; 13/2520, 1/1260,...

11/11340, 1/1260, 13/7560, -1/2160, 1/5670, 1/7560, 19/7560,...

1/5040, -1/1512, 1/5040, 13/7560, 1/7560, 1/5670, -1/2160 ;...

13/2520, 1/1260, 1/1260, 11/11340, 13/7560, -1/2160,...

1/7560, 1/5670, 13/7560, 1/7560, -1/2160, 1/5670, 19/7560,...

1/5040, 1/5040, -1/1512 ; 13/1260, 19/7560, 13/7560,...

13/7560, 19/1260, -17/5040, 17/15120, 17/15120, 1/252,...

19/30240, -11/10080, 1/4320, 1/252, 19/30240, 1/4320,...

-11/10080 ; -1/360, -1/1512, -1/2160, -1/2160, -17/5040,...

1/1260, -1/3780, -1/3780, -11/10080, -1/6048, 1/3360,...

-1/15120, -11/10080, -1/6048, -1/15120, 1/3360 ; 1/1260,...

1/5040, 1/5670, 1/7560, 17/15120, -1/3780, 1/7560,...

1/15120, 19/30240, 1/10080, -1/6048, 1/30240, 1/4320,...

1/30240, 1/45360, -1/15120 ; 1/1260, 1/5040, 1/7560,...

1/5670, 17/15120, -1/3780, 1/15120, 1/7560, 1/4320,...

1/30240, -1/15120, 1/45360, 19/30240, 1/10080, 1/30240,...

-1/6048 ; 13/1260, 13/7560, 19/7560, 13/7560, 1/252,...

-11/10080, 19/30240, 1/4320, 19/1260, 17/15120, -17/5040,...

17/15120, 1/252, 1/4320, 19/30240, -11/10080 ; 1/1260,...

1/5670, 1/5040, 1/7560, 19/30240, -1/6048, 1/10080,...

1/30240, 17/15120, 1/7560, -1/3780, 1/15120, 1/4320,...

1/45360, 1/30240, -1/15120 ; -1/360, -1/2160, -1/1512,...

-1/2160, -11/10080, 1/3360, -1/6048, -1/15120, -17/5040,...

-1/3780, 1/1260, -1/3780, -11/10080, -1/15120, -1/6048,...

1/3360 ; 1/1260, 1/7560, 1/5040, 1/5670, 1/4320, -1/15120,...

1/30240, 1/45360, 17/15120, 1/15120, -1/3780, 1/7560,...

19/30240, 1/30240, 1/10080, -1/6048 ; 13/1260, 13/7560,...

13/7560, 19/7560, 1/252, -11/10080, 1/4320, 19/30240,...

1/252, 1/4320, -11/10080, 19/30240, 19/1260, 17/15120,...

17/15120, -17/5040 ; 1/1260, 1/5670, 1/7560, 1/5040,...

19/30240, -1/6048, 1/30240, 1/10080, 1/4320, 1/45360,...

-1/15120, 1/30240, 17/15120, 1/7560, 1/15120, -1/3780 ;...

1/1260, 1/7560, 1/5670, 1/5040, 1/4320, -1/15120,...

1/45360, 1/30240, 19/30240, 1/30240, -1/6048, 1/10080,...

17/15120, 1/15120, 1/7560, -1/3780 ; -1/360, -1/2160,...

-1/2160, -1/1512, -11/10080, 1/3360, -1/15120, -1/6048,...

-11/10080, -1/15120, 1/3360, -1/6048, -17/5040, -1/3780,...

-1/3780, 1/1260];

translate = zeros(16,16);

translate(1,1) = 1;

translate(2:4,2:4) = J;

translate(5,5) = 1;

translate(6:8,6:8) = J;

translate(9,9) = 1;

translate(10:12,10:12) = J;

translate(13,13) = 1;

translate(14:16,14:16) = J;

elem_E = det(J)*(translate’*elem_E*translate);

end

168

B.4.5 Apply interface bc 3D

function [elem_A] = apply_interface_bc_3D(elem_A,int_nodes,nd,m)

%Apply_interface_bc Applies the boundary conditions on the interface

%between the two materials using the method as outlined my Ram-Mohan.

%

% [GLOB_A]=APPLY_BC(GLOB_A,INT_NODES,ND,M)

% Elem_A: ELEMENTAL MATRIX

% INT_NODES: VECTOR CONTAINING NODES ON THE INTERFACE BETWEEN THE TWO

% MATERIALS

% ND: LOCAL OR ELEMENTAL NODE INDEXING (1 X 4)

% M: EFFECTIVE MASS

%--

%

ind = find(ismember(nd,int_nodes));

if (~isempty(ind))

k=0;

for i=1:length(ind)

start=(ind(i)-1)*4;

for j=2:4;

k=k+1;

e_index(k)=start+j;

end

end

elem_A(:,e_index) = 1/m*elem_A(:,e_index);

elem_A(e_index,:) = 1/m*elem_A(e_index,:);

end

end

B.4.6 Index 3D

function [index] = index_3D(nd,ndof)

%Index_3D Assigns the system degree of freedom to the element node

% Index is system dof vector which can be used to place the elements

% associated with element matrices in the global matrices.

%

% [INDEX]=INDEX_3D(ND,NNEL,NDOF)

% INDEX: SYSTEM DOF VECTOR

% ND: VECTOR CONTAINING GLOBAL NODE NUMBERS(1 X 4)

% NDOF: DEGREE OF FREEDOM PER NODE

%--

%

start=(nd-1)*ndof+1;

if (ndof == 1)

index = start;

else

index = [start ; start+1 ; start+2 ; start+3];

index = index(:)’;

end

B.5 Post Processing Code

function [E psi] = Energy_psi(glob_K,glob_V,glob_E,ndof,V)

%Energy_psi Computes the energy eigenvalues and wavefuntion

% Using the global matricies obtained from processing code, this function

% will compute the energy and normalized wavefunction. The energy levels

% are sorted from lowest to highest.

%

% [E PSI]=ENERGY_PSI (GLOB_K,GLOB_V,GLOB_E,NDOF,V)

169

% E: ENERGY EIGENVALUES

% PSI: NORMALIZED WAVEFUNCTION

% GLOB_K: GLOBAL KINETIC ENERGY MATRIX

% GLOB_V: GLOBAL POTENTIAL ENERGY MATRIX

% GLOB_E: GLOBAL OVERLAP MATRIX

% NDOF: DEGREES OF FREEDOM PER NODE

% V: VALUE OF SMALLEST POTENTIAL VALUE IN MESH

%--

% Functions:

% SPTARN: Eigenvalues and eigenvectors of sparse matrix in interval

% [0.1*V,V].

[psi E result] = sptarn(glob_K+glob_V,glob_E,0.1*V,V);

psi = psi(1:ndof:end,:);

for i=1:length(psi(1,:))

normal = norm(psi(:,i));

psi(:,i) = psi(:,i)./normal;

end

end

B.5.1 Simp psi plot

function simp_psi_plot(gcoord,psi,n)

%simp_psi_plot Plots the 2D wavefuntion corresponding to the energy

%eigvenvalue number obtained from Energy_psi.

%

% SIMP_PSI_PLOT (GCOORD,PSI,N)

% GCOORD: COORDINATES OF MESH

% PSI: WAVEFUNCTION

% N: ENERGY LEVEL NUMBER (OBTAINED FROM ENERGY_PSI)

%--

% Variables:

% F: interpolated function defined by coordinates of mesh corresponding

% to the values of the wavefunction.

% i: increment in x direction

% j: increment in y direction

% x: x coordinates used in the surface plot

% y: y coordinates used in the surface plot

% Z: interpolated wavefunction values at x and y coordinates

% Functions:

% TriScatteredInterp: Interpolate scattered data

% Meshgrid: Generate X and Y arrays for 3D plots

% Surf: 3D shaded surface plot

F = TriScatteredInterp(gcoord(:,1),gcoord(:,2),psi(:,n));

i = (max(gcoord(:,1))-min(gcoord(:,1)))/50;

j = (max(gcoord(:,2))-min(gcoord(:,2)))/50;

x = min(gcoord(:,1)):i:max(gcoord(:,1));

y = min(gcoord(:,2)):j:max(gcoord(:,2));

[X Y] = meshgrid(x,y);

Z = F(X,Y);

surf(X,Y,Z);

end

170

Vita

Steven Evans Jenks was born in Washington Twp., New Jersey on January 31, 1980. He attended The
College of New Jersey from 1998 - 2002 and received a Bachelor of Science in Engineering Science. He began
his graduate studies at Drexel University in September 2004 and received a Masters of Science in physics in
June 2007. Under the direction of Dr. Robert Gilmore, he will complete his Doctor of Philosophy in physics
in 2012.

A notable list of his accomplishments and acknowledgments during his time at Drexel University is as
follows:

• Quantum dot solar cell: Materials that produce two intermediate bands, with Robert Gilmore, J.
Renewable Sustainable Energy, 2, 013111 (2010).

• Selecting semiconductor materials for the quantum dot solar cell, with Robert Gilmore, J. Renewable
Sustainable Energy (to be submitted).

• Asked to speak about our research at the 2011 and 2012 CMOS emerging technologies conference (see
www.cmoset.com).

Dear Dr. Jenks, I am chairing emerging technologies meeting in Whistler 2011, attached
or www.cmoset.com. I have read with great interests your QD paper. Would you be
interested in giving a talk at our event?...best regards, Kris

Steve, we are starting to look for 2012 speakers for Vancouver meeting, attached, per-
haps you can suggest some people to contact or might be interested in giving a talk your-
self...best regards, Kris

• Asked to contribute a chapter in a Microsystems textbook.

Any interests in contributing a chapter to the Microsystems book I am editing?...best
regards, Kris

• I have reviewed a manuscript in the journal IEEE Electron Device Letters.

Dear Dr. Jenks:
Based on your expertise and specialized knowledge, I would like to invite you to review

the above mentioned manuscript (see the abstract below) submitted to the IEEE Electron
Device Letters. As EDL is a fast-turnaround journal, it is very important that we receive
your comments within one (1) week.

Please respond to my invitation as soon as possible by clicking the appropriate link below
to automatically record your reply within our online system, ScholarOne Manuscripts. If
you are unable to review at this time, your recommendation of another expert reviewer
would be appreciated.

Once you accept, you will be notified by e-mail about how to access the paper.
Thank you for your contribution in maintaining the high standards of the Journal.
Sincerely, Prof. Jesus del Alamo EDL Editor alamo@mit.edu

	Frontmatter
	Title Page
	Copyright Page
	Dedications
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Introduction and Background
	Conventional Photovoltaic Device
	Detailed Balance of Efficiency

	Intermediate Band Solar Cell
	One Intermediate Band Detailed Balance Analysis
	Two Intermediate Band Detailed Balance Analysis
	Remarks

	Quantum Dot Intermediate Band Solar Cell
	Heterostructures
	Quantum Dot Intermediate Band Solar Cell
	Design Considerations and Results
	Remarks

	Finite Element Method and its Application to Schrödinger's Equation
	Finite Element Method
	Developing Basis Functions
	Elemental Kinetic Matrix In 1D
	Elemental Potential Matrix In 1D
	Elemental Overlap Matrix In 1D

	Higher Dimensions
	Elemental Kinetic Matrix - Higher Dimensions
	Elemental Potential Matrix - Higher Dimensions
	Elemental Overlap Matrix - Higher Dimensions

	Degrees of Freedom
	Remarks

	Finite Element Program
	Stages of FEM Programming
	FEM Program - Preprocessing Code
	Implementation
	Examples

	FEM Program - Processing Code
	FEM Program - Post Processing Code
	FEM Program - Benchmarked Solutions
	Circular symmetric finite potential well in 2D
	Quantum wire square cross-section
	Spherically symmetric finite potential well in 3D

	Remarks

	Strain Induced Potential in Quantum Dot Structures
	Strain-Stress-Displacement Relations for Quantum Dots
	Elemental Stiffness Matrix
	Elemental Force Vector
	Boundary Conditions

	Strain Potential
	Example of a FEM Strain Program
	Remarks

	Quantum Dot Intermediate Band Solar Cell Materials
	Assumptions
	Model
	Results
	Remarks

	Final Remarks and Outlook

	Backmatter
	Bibliography
	Schödinger's Equation in Variational Form
	FEM Source Code
	2D Preprocessing Code
	Example of a relative edge length function

	3D Preprocessing Code
	Five Sided Pyramid Distance Function
	Rectangular Prism Distance Function
	Polygon_Centroid_3D
	Triangle_point_dist_3d
	Inhull
	Segment_Point_Dist_3D
	Plane_Vert_Point_Dist_3D
	Plane_vert2std_3d

	2D Processing Code
	Jacob_2D
	Elem_matrix_E
	Elem_matrix_V
	Elem_matrix_K
	Apply_interface_bc_2D
	Index_2D
	Assemble

	3D Processing Code
	Jacob_3D
	Elem_matrix_K_3D
	Elem_matrix_V_3D
	Elem_matrix_E_3D
	Apply_interface_bc_3D
	Index_3D

	Post Processing Code
	Simp_psi_plot

	Vita

