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Abstract
Representation Theory of Dynamical Systems

Daniel J. Cross
Robert Gilmore, Ph.D.

In physics, experiments form the bridge connecting theory to reality. This bridge is often quite narrow:

one typically only records one of the myriad variables responsible for generating a complicated dynamical

behavior. Nevertheless, every variable can usually be “reconstructed” from that single observation. Such a

reconstruction provides an embedding of the original phase space into some Euclidean space. However, this

reconstruction or embedding is not unique. Most analyses of experimental data from complex dynamical

systems depend on these reconstructions, and they could, in principle, depend on the choice of reconstruction.

It is the purpose of this thesis to establish a framework suitable to address this dependence on reconstruction:

a representation theory for dynamical systems.

This dynamical representation theory is constructed in analogy with the well known representation theory

for groups. We regard reconstructions or embeddings as representations of dynamical phase spaces. DiUerent

embeddings may or may not be equivalent under smooth deformations. The program of representation theory

is to work out all inequivalent representations in Euclidean spaces of various dimension and to identify the

topological obstructions preventing equivalence between distinct representations.

Our main result is the complete representation theory for three dimensional dynamical systems. This

is possible because the theory of three dimensional systems is rather well understood. In contrast, higher

dimensional systems are much less thoroughly understood, so we oUer only preliminary results for the repre-

sentation theory of a certain class of dynamical systems that exist in every dimension. We also present some

results for equivariant dynamical systems. While not a part of representation theory proper, these investiga-

tions were motivated by a problem that manifests only when viewing reconstructions of the Lorenz system

from the perspective of representation theory.





1

Chapter 1: Introduction and Background

In the physical world, things change with time. Dynamical systems are abstract, mathematical models of such

time-dependent realities. More precisely, they are sets of ordinary diUerential equations dxi/dt = f i(x),

i = 1, . . . , N . The most fundamental example is Newton’s second law. Though these equations are second

order, following Hamilton, they can be transformed into Vrst order equations. However, we are not primarily

concerned with any particular dynamical system or the physics it describes, but rather with developing a

framework capable of handling a wide range of dynamical systems that could ultimately describe a wide

range of physics.

There is a deVnite and useful distinction between those dynamical systems which are linear and those

which are non-linear. The mathematics necessary to thoroughly analyze and understand linear systems is

classical, and it now comes standard in every physicist’s toolbox. In stark contrast, the mathematics necessary

to thoroughly analyze and understand non-linear systems is not yet fully developed. We can appreciate this

lack of complete understanding if we grasp the sheer magnitude of all possible non-linear behaviors, and

how diUerent each is from the other. As Bob Gilmore paraphrases Tolstoy: all linear systems are alike; each

non-linear system is non-linear in its own way.

The pioneering days on this non-linear frontier were characterized by the study of individual systems.

Much as in biology, one must begin with a catalog of creatures. Eventually, similarities between diUerent sys-

tems became apparent, including certain types of universality shared among wide classes of systems. Moving

beyond these observations to a theoretical understanding came at a price: great mathematical sophistication.

Owing to the complexity of the problems we study, complex mathematics is unavoidable. The main

purpose of this chapter is to review some of those mathematical structures that have been developed to aid

our understanding of non-linear dynamical systems. This review will be rather abstract and quickly paced.

Most applications of this mathematical ediVce are deferred to later chapters. The reader may prefer to skip

directly to Chap. 2 and then refer back here as the need arises.

In Chap. 2 we motivate, introduce, and discuss the central idea of this thesis: a representation theory
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for dynamical systems. In Chaps. 3 and 4 we work out this theory for (essentially all) three dimensional

dynamical systems. We retreat from generality in Chap. 5 to discuss in detail a question that our theory

raises concerning the Lorenz dynamical system. Some of these results depend on the symmetry of the Lorenz

system. In Chap. 6 we extend this analysis to all systems with discrete symmetries. We then make some steps

into higher dimensions in Chap. 7 by working out the representation theory for a certain class of dynamical

systems that exists in every dimensions, generalizing those systems studied in Chap. 3. Finally, we conclude

in Chap. 8.

We now lay the foundation upon which this thesis will build. This foundation consists of material drawn

from three central areas: diUerential topology, knot theory, and dynamical systems theory. DiUerential topol-

ogy is the general mathematical setting in which all other material is embedded. Knot theory concerns how

many diUerent ways a string may be knotted in space and how to distinguish one knotting from another. Some

results here are fundamental to the theory of dynamical systems, which is the immediate setting of this thesis.

Our review of dynamical systems theory will be focused on building up to the Birman-Williams theorem and

the classiVcation of three dimensional dynamical systems. Of course, not everything can be presented in this

introduction. In particular, we assume the reader is familiar with basic notions and results from point-set

topology.

1.1 DiUerential Topology

1.1.1 Manifolds

Consider a smooth surface in three dimensional space. On this surface, one may deVne smooth functions

or mappings, introduce a notion of distance (metric), and quantify its shape through curvature. A smooth

manifold is a generalization of these smooth surfaces to objects of arbitrary dimension and without reference

to an ambient space. Standard references for the material in this chapter are [7, 17, 31, 36, 39].

A smooth surface “looks” locally like a subset of the plane R2. More speciVcally, about any point p in the

surface, there is an open neighborhood homeomorphic to an open set in R2. The idea of space looking locally

like Euclidean space (that is, having topologically equivalent neighborhoods) is the central notion deVning a

manifold. A topological space is called locally Euclidean if every point has a neighborhood U homeomorphic

to an open subset V of Rn for some n. The homeomorphism ϕ : U → V is called an n-dimensional
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coordinate chart. We can envision the inverse ϕ−1 as covering U with the coordinate system of Rn. A

topological manifold is a second countable1 HausdorU2 space that is locally Euclidean.

Now that we have an appropriate topological space, the next step is to introduce smoothness so that we

can do calculus. Let (U,ϕ) and (U ′, ϕ′) be two coordinate charts about p. If we consider the two charts as

introducing two separate coordinate systems into the overlap U ∩ U ′, then we have the coordinate change

function ϕ′ ◦ ϕ−1. This is a map from one subset of Euclidean space to another, ϕ(U ∩ U ′) → ϕ′(U ∩ U ′)

(see Fig. 1.1). It certainly makes sense to ask whether maps such as this are diUerentiable in the usual calculus

sense. A mapping is Cr , 1 ≤ r < ∞ if all partial derivatives through order r exist and are continuous,

and it is C∞ or smooth if all partials of all orders and type exist. For completeness, a function is C0 if it is

continuous. A Cr diUerentiable manifold is a topological manifold such that all coordinate change functions

are Cr , r ∈ {1, 2, · · · ,∞}. A C0 manifold is a topological manifold. Unless otherwise noted, the term

manifold will always mean a smooth (C∞) manifold.

U U ′

ϕ(U ∩ U ′) ϕ′(U ∩ U ′)
ϕ′ ◦ ϕ−1

ϕ ϕ′

Figure 1.1: Overlap maps for a manifold.

The set of charts covering a manifold is called an atlas. The atlas is Cr if all transition maps are Cr . A

chart is admissible to a Cr-atlas if all coordinate change maps between this new chart and all those in the

atlas are Cr . An atlas determines a unique maximal atlas by adding all admissible charts. This maximal atlas

is called a Cr diUerentiable structure. A diUerentiable structure is determined by specifying any admissible

atlas.

An atlas is called oriented if the Jacobians of all overlap maps have positive determinants. A manifold is

orientable if it possesses an oriented atlas, and it is oriented if an oriented atlas has been chosen. An orientable

manifold always possesses two distinct orientations.

1Second countablemeans that the topology has a countable basis. This prevents the space from being too big and ensures embeddability
in Euclidean space (Whitney’s theorem, Thm. 1.2).

2HausdorU means that pairs of points may be separated by neighborhoods, a desirable non-local property.
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Once manifoldsM and N are endowed with diUerentiable structures, it is possible to do calculus. A real

valued function f : M → R is deVned to be smooth at a point p if for any3 chart (U,ϕ) about p, the local

expression floc ≡ f ◦ϕ−1 is smooth (in the calculus sense). We may represent these mappings in the diagram

U ⊆M f
//

ϕ

��

R

Rm
floc

;;wwwwwwwww

(1.1)

More generally a map f : M → N of manifolds is smooth at p if in charts (U,ϕ) of p and (V, ψ) of f(p), the

local expression floc ≡ ψ ◦ f ◦ ϕ−1 is smooth (in the calculus sense), which is expressed by the diagram

U ⊆M f
//

ϕ

��

V ⊆ N
ψ

��

Rm
floc // Rn

(1.2)

The former case is a special version of the latter by considering R as a smooth manifold with the standard

atlas (R, id). If f : M → N is a homeomorphism which is smooth and has a smooth inverse, we say f is a

diUeomorphism and we write4 M ∼= N .

Many spaces of interest carry natural diUerentiable structures. For example, the single chart atlas (Rn, id)

deVnes the standard or usual diUerentiable structure on Rn. It is a classical result that this structure is unique

(up to diUeomorphism) when n ≤ 3. Smale [75] was able to conVrm that this structure is unique for every

n ≥ 5. However, the theory developed by Smale fails catastrophically in dimension four: as Vrst shown by

Freedman [18], R4 supports more than one smooth structure. Even worse, we have the following remarkable

theorem [80]:

Theorem 1.1 (Taubes). There exists uncountably inVnitely many (2ℵ0) distinct diUerentiable structures on

R4.

Interestingly, many of these exotic R4s may be embedded in the usual R4, that is, there are subsets of usual

3We note that by the chain rule and the requirement of smooth coordinate changes, these compositions are smooth in one chart if and
only if they are smooth in all charts.

4There are diUerent standards in use in the literature to denote various equivalences between objects. We will write X ∼ Y to
denote that X and Y are homologous, X ' Y to denote that they are homotopic, and X ∼= Y to denote that they are homeomorphic,
diUeomorphic, or isomorphic, depending on context. We will also use ∼ to denote a generic equivalence relation.
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R4 that are homeomorphic to R4, but the diUerentiable structure they inherit is not the usual one [14].

The unit sphere Sn inherits a natural diUerentiable structure5 from the usual structure on Rn+1. One may

ask whether spheres support alternative diUerentiable structures. In many cases the answer is yes, as Milnor

[48] Vrst showed in 1959 for S7. This was the Vrst example of an exotic smooth structure. We will discuss this

point further in Chap. 7.

Let M be a manifold and γ : R → M a smooth curve with γ(0) = p. If U is a neighborhood of p and

f : U → R a smooth function, then the directional derivative of f along γ is

Dγ(f) =
d

dt

∣∣∣∣
0

f(γ(t)), (1.3)

and the operator Dγ is the tangent vector to γ at p. In other words, we deVne tangent vectors to curves on a

manifold as Vrst order diUerential operators on functions. Two tangent vectors Dγ and Dγ′ are equal if they

take the same value at p on every function f . The collection of all tangent vectors at p is the tangent space

to p, denoted TpM . The collection of all tangent spaces Vt together smoothly to yield a manifold of twice the

dimension ofM called the tangent bundle, TM .

If x1, . . . , xn are local coordinates, then writing γ(t) = (γ1(t), . . . , γn(t)) (where we deVne γi = xi(γ)

as the local coordinates of γ), we Vnd that

Dγ(f) =
∂f

∂xi

∣∣∣∣
p

dγi

dt

∣∣∣∣
0

, (1.4)

so that we can identify Dγ = ai∂i. Here, ai = dγi/dt are the components of the vector in the (coordi-

nate) basis spanned by the partial derivatives ∂i|p at p. Under a coordinate change x → x′ these quantities

transform as

a′i =
∂f

∂x′i

∣∣∣∣
p

= aj
∂xj

∂x′i
, (1.5)

by the chain rule. This is the deVning transformation of a (contravariant) vector. Local coordinates for the

tangent bundle are then given by (xi, aj).

For any smooth map f : M → N of manifolds there is an induced map of tangent spaces f∗ = df :

5This smooth structure is the same as the smooth structure deVned by stereographic projection charts.



6

TpM → TpN , deVned by (f∗v)(g) = v(g ◦ f) for any function g. In local coordinates, f∗ is just the Jacobian

matrix. There is therefore an induced map of tangent bundles TM → TN given by the pair (f, f∗) at each

point. For a mapping f of manifolds, if f∗ is injective we say that f is an immersion, and if f∗ is surjective

we say that f is a submersion. Note that in these deVnitions it is f∗ and not f that is injective or surjective. In

some contexts a submanifold is deVned as the image of an injective immersion (that is, when both f and f∗

are injective). However, the topology of the image as a subset need not be the same as the original topology,

i.e. f may fail to be a homeomorphism (topological embedding). In such cases, a submanifold need not be

a manifold at all (see Fig 1.2). When f is additionally a homeomorphism, the image is called an embedded

submanifold, which is in fact a manifold. For us, submanifold will always mean an embedded submanifold.

( (

x
−∞ ∞

Figure 1.2: Injective immersion of R into R2, which is not an embedding. This mapping does not
preserve the topology of R since points near∞ accumulate at x.

This brings us the notion of an embedding. An embedding of a manifold M into another manifold N

is a diUeomorphism f : M → f(M) ⊆ N . Equivalently, it is a smooth homeomorphism of M onto a

submanifold of N . Embeddings are always one-to-one: they possess no self intersections. Our deVnition

of manifold is an intrinsic one that makes no reference to an ambient space, whereas our initial motivation

was considering surfaces in space. We recover the idea of surfaces in space by considering embeddings. An

important question is whether our notion of manifold is more general than that of submanifolds of Euclidean

space. Put another way, is every manifold embeddable into some RN . Using genericity arguments, Whitney

[87] showed that the notion of manifold is no more general than that of submanifold:

Theorem 1.2 (Whitney Embedding). Everym-dimensional manifoldM embeds in R2m+1.

This result says that, generically, a collection of 2m + 1 functions on any m-manifold may be used as coor-

dinates deVning an embedding into Euclidean space. The essential idea is that given an arbitrary mapping of

M into R2m+1, any self intersections may be pulled apart by small perturbations (the self-intersections are

necessarily non-transverse. See Pg. 11). Thus, if a given set of functions does not provide an embedding, then
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another arbitrarily close set does. Whitney improved this result to 2m (though genericity is lost) and showed

that this is the optimal linear bound on the minimum dimension of the embedding space6.

Consider a smooth surjection of manifolds π : E →M . We say that E has the structure of a Vber bundle

overM with Vber F if it satisVes the following triviality condition: E is locally a product of F overM . More

speciVcally, if p ∈M then there is some neighborhood U of p inM for which we have the diagram

π−1(U)
ϕ
//

π

��

U × F

π1

zzttttttttttt

U,

(1.6)

where π1 is projection onto the Vrst factor and ϕ is a diUeomorphism. A pictorial representation of this

diagram is given in Fig. 1.3. This bundle is sometimes written F ↪→ E
π→ M to emphasize the Vber.

The global structure of the bundle is implicit in π. If the Vber F ∼= Rn is a vector space and in the local

trivialization the association v 7→ ϕ−1(x, v) is a vector space isomorphism, then π : E → M is a vector

bundle.

ϕ

π

p( )
U

π1

U

F

Figure 1.3: Local product structure of a Vber bundle.

For example, the cylinder and the Möbius strip are both line (R) bundles over S1. The cylinder is just the

product R× S1, and thus a trivial bundle. The Möbius strip cannot be a product since it is not orientable. Up

to diUeomorphism, these are the only two line bundles over S1.

An important class of vector bundles is provided by the tangent bundle to any manifold. A manifold is

called parallelizable if the tangent bundle is trivial, TM ∼= M ×Rn. The only parallelizable spheres are those

supporting a division algebra structure: S1, S3, and S7, which are the unit complex numbers, quaternions,

6This bound is saturated for eachm a power of two by the real projective spaces RPm: these spaces do not embed in (2n−1)-space.
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and octonians respectively. When a metric g is present on a vector bundle we may consider two new bundles.

The Vrst is the unit tangent bundle, the sub-bundle consisting of all vectors v with g(v, v) = 1, and the second

is the unit disk bundle, the sub-bundle consisting of all vectors v with g(v, v) ≤ 1.

For any bundle π : E →M , a (global) section σ is a smooth mapping σ : M → E such that π ◦σ = idM .

In other words, for each x ∈ M , σ picks out a unique member σ(x) out of the Vber over x, F |x ∼= π−1(x),

and this selection varies smoothly with x. A section of the tangent bundle v : M → TM is the smooth

selection of a tangent vector at each point ofM , or a smooth (tangent) vector Veld. A vector bundle always

possesses a section (take v(x) = 0), but a general bundle need not.

The fundamental characteristic of a manifold was that every point have a Euclidean neighborhood. This

means that while the sphere S2 is a manifold, the three-ball D3 is not, since in the latter case the points of

the boundary ∂D3 = S2 do not have Euclidean neighborhoods in D3. This leads us the more general notion

of a manifold with boundary, which is the same as a manifold, but now every point has a neighborhood

homeomorphic with an open set of the half-space Rn+ = {(x1, . . . , xn) ∈ Rn | xn ≥ 0}. The set of points of

M that do not possess Euclidean neighborhoods are the boundary points, denoted ∂M . The boundary is itself

a manifold (without boundary) of codimension one inM (all points in the boundary have neighborhoods in

the boundary homeomorphic to subsets of Rn−1). We will use the term manifold to refer to a manifold with

or without boundary. If we wish to emphasize that ∂M = ∅, we will say thatM is boundaryless or closed7.

IfM andN are closed manifolds, then the product spaceM ×N inherits a natural smooth structure from

M andN . The product manifold is also closed. IfM has boundary andN is closed, thenM×N is a manifold

with boundary ∂(M ×N) = ∂M ×N . If bothM and N have boundary, thenM ×N cannot be given the

structure of a smooth manifold. It is a more general manifold with corners (see Fig. 1.4).

Manifolds of dimension at most two have been classiVed. Since the disjoint union of manifolds forms a

new manifold in a trivial way, we assume in the following that all manifolds are connected. A zero dimen-

sional manifold is simply a one point space. For one dimensional manifolds we have the following [31]:

Theorem 1.3 (ClassiVcation of one-manifolds). Every one dimensional manifold is diUeomorphic to one of the

following: the real line R, the half line [0,∞), the interval [0, 1], or the circle S1.

7Note that some authors deVne a closed manifold as being both boundaryless and compact.
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(a) [0, 1]× (0, 1) (b) [0, 1]× [0, 1]

Figure 1.4: The product [0, 1] × (0, 1) is a manifold with boundary {0, 1} × (0, 1), while the product
[0, 1]× [0, 1] is a manifold with corners.

The second and third have non-empty boundary and the last two are compact. There is only one closed

compact one-manifold: S1. Every one-manifold is orientable. If in the two dimensional case we restrict our

attention to connected compact orientable closed two-manifolds, i.e. closed surfaces, then have the following

[31, 39]:

Theorem 1.4 (ClassiVcation of Surfaces). Every connected compact orientable closed two-manifold is diUeo-

morphic to a genus-g surface: the 2-sphere, the torus, and more generally a torus with g holes, g ∈ N (see

Fig. 1.5).

· · ·
1 2 g

Figure 1.5: Genus g surface.

In a sense, a torus with g holes is composed of g tori that are smoothly patched together. This procedure

is described by the process of connected sum, or the joining of two manifolds by a tube. Naïvely, one would

cut out the interiors of a disk from each surface, then glue the ends (boundaries) of a tube S1 × [0, 1] to the

boundaries left in the surfaces from where the disks were removed. Alternatively, the tube may be dispensed

with and the two boundaries of the manifolds identiVed directly (Fig. 1.6). This procedure yields a topological

manifold, but not a smooth manifold. While we could turn this topological manifold into a smooth one by

some smoothing procedure, it is advantageous to deVne a smooth gluing procedure directly.

The idea is to throw away a distinguished point (rather than a disk) of each manifold and then smoothly
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# =

(a) Topological construction.

# =

(b) Smooth construction.

Figure 1.6: Connected sum of manifolds.

identify Euclidean neighborhoods of those points with each other (Fig. 1.6). It is this smooth identiVcation of

neighborhoods which immediately yields a smooth construction. Moreover, this procedure agrees with the

topological one described above; that is, it yields a homeomorphic topological manifold. Let α : (0,∞) →

(0,∞) be an arbitrary orientation reversing diUeomorphism and deVne αn : Rn − {0} → Rn − {0} by

αn(v) = α(||v||) v

||v|| , (1.7)

where || · || is the Euclidean norm. Let hi : Rn → Mi, i = 1, 2 be two arbitrary embeddings of Rn. If

M is oriented, let h1 preserve orientation and h2 reverse orientation. The connected sum M1#M2 of two

n-manifolds M1 and M2 is the space obtained by removing hi(0) from Mi and then identifying h1(v) in

M1 − h1(0) with h2(αn(v)) inM2 − h2(0). The connected sum of two manifolds is always itself a smooth

manifold. For connected manifolds, the connected sum is independent of the choices of h1, h2, and α [39].

For manifolds with boundary there is an analogous construction called boundary connected sum. It is es-

sentially the connected sum of the boundary manifolds, appropriately extended into the interiors. SpeciVcally,

let hi : Rn−1 → ∂Mi be embeddings (h1 orientation reversing and h2 preserving) and h̄i : Rn+ → M arbi-

trary embeddings extending the hi. The boundary connected sum M1#∂M2 is obtained from M1 − h1(0)

and M2 − h2(0) by identifying h̄1(v) with h̄2(αn(v)). As before, the result is a manifold (with boundary)

independent of α, hi, or the extensions h̄i (assuming connected boundaries).
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The connected sum may be thought of as a binary algebraic operation on the set of connected closed

n-manifolds. Thought of in this way, we obtain a commutative monoid8 with the n-sphere (with usual diUer-

entiable structure) as the identity element:

1. M1#M2 = M2#M1,

2. (M1#M2)#M3 = M1#(M2#M3),

3. M#Sn = M .

We may now describe or rather construct a genus g surface as the connected sum of g tori, T 2 # · · ·#︸ ︷︷ ︸
g

T 2. If

we remove the restriction of orientability, we may rephrase and extend Thm. 1.4 as follows [39]:

Theorem 1.5 (ClassiVcation of compact two-manifolds). The monoid of compact connected closed two-manifolds

is generated by the torus T 2 and the projective plane RP 2 and has a single relation: RP 2#RP 2#RP 2 =

T 2#RP 2.

This classiVcation is essentially topological: it only depends on the structure of these spaces as topological

manifolds. Since every topological manifold of dimension at most three admits a unique smooth structure,

this classiVcation passes to the smooth case as well. We note that the Klein bottle is constructed as the sum

RP 2#RP 2. Hence, attaching either a torus or a Klein bottle to RP 2 results in the same manifold.

The Vnal concept we introduce in this section is transversality. This captures the intuitive notion of two

submanifolds intersecting in a stable fashion: no (suXciently small) perturbation of either submanifold can

remove the intersection. Let f1 : Mm1
1 → Nn and f2 : Mm2

2 → Nn be embeddings of M1 and M2 into

N . Suppose that the submanifolds intersect at p = f1(x1) = f2(x2). ThenM1 andM2 intersect transversely

at p, M1>∩pM2 if df1(Tx1
) ⊕ df2(Tx2

) = TpN . In other words, the images of the tangent spaces span the

tangent space of the image point. If the submanifolds intersect transversely at every point of intersection (or

if they never intersect), we writeM1>∩M2. Some examples of transverse and non-transverse intersections are

given in Fig. 1.7.

Non-transverse intersections are unstable against perturbations. In particular, an arbitrarily small pertur-

bation can change a non-transverse intersection into a transverse intersection. On the other hand, transverse

8A monoid may be thought of as a group lacking inverses or as a semi-group with identity.
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(a) (b)

Figure 1.7: Example of a transverse (a) and a non-transverse (b) intersection in R3.

intersections are stable against arbitrary small perturbations, and the intersection set itself has the structure

of a smooth manifold with codimM1 ∩M2 = codimM1 + codimM2. It is immediate that in order for two

manifolds to intersect transversely at p, the sum of their dimensions must at least equal the dimension of the

ambient space, or else there is no way for their tangent spaces to span the image tangent space: m1 +m2 ≥ n.

Of course, this condition is not suXcient.

1.1.2 Algebraic Topology and Homotopy

The ultimate goal of topology is the classiVcation of all spaces up to homeomorphism, though this is quite

impossible. Nevertheless, it is useful to have some criteria by which spaces may be distinguished. This

means developing certain properties that are invariants of homeomorphism, so that spaces which do not

share this property cannot possibly be homeomorphic. The theory of algebraic topology associates groups

(or other algebraic structures) to topological spaces as homeomorphism invariants. It follows that spaces

may be distinguished if their associated groups are distinct. Moreover, the topology of a manifold can be

an obstruction to the existence of certain vector Velds, and this topological obstruction is measured by these

groups (Thm. 1.6). The particular groups we will discuss here are the fundamental and homology groups.

The association of groups to spaces is a functor from the category of topological spaces and continuous

maps (Top) to the category of groups and homomorphisms (Grp). The functor F : Top → Grp associates to

every topological space X a group F (X) and to every continuous map f : X → Y of topological spaces a

group homomorphism F (f) : F (X)→ F (Y ) in a way that preserves the structure of the categories: that is,

we require that F preserve identities and compositions: F (idX) = idF (X) and F (f ◦ g) = F (f) ◦ F (g). All
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of this may be summarized by demanding that F take commutative diagrams to commutative diagrams:

X
f
//

g◦f
  

@@
@@

@@
@ Y

g

��

Z

F

=⇒

F (X)
F (f)

//

F (g)◦F (f)
##G

GG
GG

GG
GG

F (Y )

F (g)

��

F (Z)

(1.8)

Given two continuous mappings f0, f1 : X → Y , we say that f0 and f1 are homotopic, f0 ' f1, if there

exists a continuous mapping F : X × [0, 1] with F (x, 0) = f0(x) and F (x, 1) = f1(x). In other words,

f0 may be deformed into f1 through continuous mappings. Note that none of these maps is required to be

injective. Two spaces X and Y are said to be homotopy equivalent or have the same homotopy type, X ' Y ,

if there are continuous maps f : X → Y and g : Y → X such that g ◦ f ' idX and f ◦ g ' idY . The

maps g and f are called homotopy inverses of each other. Note that these maps are not true inverses: their

compositions need only be homotopic to the identity, which is far weaker than being the identity.

Spaces that are homotopy equivalent share certain (though not all) topological properties, such as path

or simple connectedness, and have many of the same algebraic invariants9. A space is contractible if it is

homotopy equivalent to a one-point space. Each Rn, and more generally any convex or star-shaped space,

is contractible. In particular, all Euclidean spaces are homotopy equivalent to a single point and therefore to

each other: Rn ' Rm for every n,m. On the other hand, no sphere Sn is contractible and Sn ' Sm if and

only if n = m.

A loop γ at p ∈ X is a continuous mapping γ : [0, 1] → X with γ(0) = γ(1) = p, or a path beginning

and ending at p. We say that p is the base point of γ. Two loops are homotopic, γ0 ' γ1 if they are homotopic

as maps and if the homotopy preserves base points. In other words, if F is the homotopy, we require that

F (0, t) = F (1, t) = p for all t ∈ [0, 1]. Homotopy is an equivalence relation on the set of maps or loops

preserving base points. Denote by [γ] the homotopy class of γ.

A loop is contractible or homotopically trivial, γ ' p, if it is homotopic to the constant loop γ(t) = p.

9It is not necessary that an algebraic homeomorphism invariant be a homotopy invariant, but since the algebraic constructions
considered here use homotopy or weaker notions to deVne them, they will be homotopy invariants.
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Given two loops, γ1 and γ2, the product γ1γ2 of two loops can be made into a loop by deVning

γ1γ2(t) =





γ1(2t), 0 ≤ t ≤ 1
2 ,

γ2(2t− 1), 1
2 ≤ t ≤ 1.

(1.9)

Moreover, if γ1 ' γ′1 and γ2 ' γ′2 then γ1γ2 ' γ′1γ
′
2. In other words, given [γ1] and [γ2], the product

[γ1][γ2] = [γ1γ2] is well-deVned, independent of representative. With concatenation as multiplication, the

homotopy classes of loops at p becomes a group, where the identity is the class of the constant loop 1 = [p].

This group is Poincaré’s fundamental or Vrst homotopy group, denoted π1(X, p). If X is path-connected10,

then changing the base point merely changes π1 by inner-automorphism [7], hence it makes sense to speak of

the fundamental group of X forgetting base points, which is denoted by π1(X).

As was mentioned, the fundamental group is a functor from Top to Grp. If f : X → Y and γ is a

loop at p in X , then f ◦ γ is a loop in Y at f(p). There is an induced map f] : π1(X, p) → π1(Y, f(p)).

If f, g : X → Y are homotopic, then the induced maps are equal, f] = g]. Finally, the induced map of a

composition is the composition of the induced maps, (f ◦ g)] = f] ◦ g].

The fundamental group of a space is generally non-abelian, diXcult to compute, and diXcult to compare

with other groups given a presentation. We may obtain a simpler, though less sensitive, invariant by taking

its abelianization, π1/[π1, π1]. A theorem of Hurewicz states that this group is in fact isomorphic to another

group constructed in algebraic topology: the Vrst homology group, H1. Loosely speaking, homology groups

identify “holes” in a space. For instance, there is a sense in which each sphere Sn has a central hole, and this

is reWected in a non-trivial homology group (the n-th). Homology groups detect such holes, or rather give

precise meaning to the intuitive concept of a hole. While there are many diUerent homology theories, they are

all constructed in essentially the same way. We will discuss singular homology theory below.

Given any topological space X , a singular simplex is a continuous (not necessarily injective) mapping

σ : ∆p → X of the standard p-simplex into X . The standard p-simplex is the convex hull of the unit

vectors {e0, . . . ep} in Rp+1 and is denoted by [eo, . . . ep]. The boundary ∂pσ is essentially the restric-

tion of σ to the boundary of ∆p, but with an alternating sign to account for orientation. SpeciVcally,

10A connected manifold is always path-connected, though this is not necessarily true of an arbitrary topological space.
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∂σ([eo, . . . ep]) =
∑
i(−1)iσ([eo, . . . , êi, . . . , ep]), where the hat indicates a missing term (see Fig. 1.8).

A singular chain is a Vnite formal sum of singular simplexes. Taking all singular simplexes as generators, the

set of all singular chains in X , Cp(X), becomes a free abelian group. The boundary map extends to chains

and yields a homomorphism ∂p : Cp → Cp−1. One can verify that the composition ∂p−1 ◦ ∂p ≡ 0, thus

(Cp, ∂p) forms a chain complex called the singular chain complex. The singular homology groups are given

by the “homology” of this complex. SpeciVcally, if we let Zp(X) = ker ∂p denote the kernel of ∂p (the set of

p-cycles or closed p-chains) and Bp(X) = im ∂p+1 denote the image of ∂p+1 (the set of p-boundaries), then

the n-th singular homology group is the quotient of cycles modulo boundaries,

Hp(X) =
cycles

boundaries
=
Zp(X)

Bp(X)
=

ker ∂p
im ∂p+1

. (1.10)

e0 e1

e2

Figure 1.8: Boundary of a simplex. ∂[e0, e1, e2] = [e1, e2]− [e0, e2] + [e0, e1].

Non-triviality of some Hp indicates a cycle which is not a boundary, which captures the idea of a hole:

if there were no holes11, every cycle would be a boundary. We can also say that two p-cycles z1 and z2 are

homologous, z1 ∼ z2, if they diUer by a boundary, z1 − z2 = b = ∂c. We say that z1 and z2 have the

same homology class, [[z1]] = [[z2]], and the homology groups are just these homology classes of p-cycles. For

a manifoldM of dimension n, the groups Hp(M) for p > m are always trivial. IfM is compact, then all of

the homology groups are Vnitely presented. This is why Hp is used as an invariant rather than Zp and Bp –

the latter two are generally far too large to be useful.

Being a quotient of abelian groups, eachHp is abelian. When an abelian groupG is Vnitely generated, the

fundamental theorem of abelian groups says that such a group always has the form G ∼= Zr ⊕ Zq1 · · · ⊕ Zqs .

The integer r is an isomorphism invariant called the rank of G, and the Vnite cyclic part is called the torsion.

The rank12 of the n-th homology group is sometimes called the n-th Betti number. The Euler characteristic is
11We are speaking very loosely here. Homology groups can contain elements of Vnite order (torsion), which represent topological

features that cannot be regarded as holes – what kind of hole vanishes if traversed a Vnite number of times?
12If chains are deVned using real coeXcients rather than integer coeXcients, then the groups C , Z , and H become real vector spaces
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deVned to be the alternating sum of Betti numbers,

χ(X) =
∑

i

(−1)i rankHi(X). (1.11)

The group H0 never has torsion, and its rank indicates the number of connected components in the space.

As an example, the torus T 2 = S1 × S1 has the homology groups H0
∼= Z, H1

∼= Z2, and H2
∼= Z,

which have ranks 1, 2, and 1 respectively, and χ(T 2) = 1 − 2 + 1 = 0. That H0
∼= Z just means that T 2 is

connected. Each Z factor in H1 is generated by one of the circles deVning T 2 as a product (a longitude and a

meridian). The generator of H2 is the torus surface itself13. The surface can be written as the sum of singular

2-simplexes, has no boundary, and does not bound any singular 3-chain inside of T 2 (the boundary of any

n+ 1-chain in an n-manifold is zero).

If X is triangulated14, this quantity may be calculated as the alternating sum of the number of simplexes

used in its construction in various dimensions. This comes from developing a simplicial homology theory,

analogous to the singular theory discussed above, and showing that for triangulated spaces (simplicial com-

plexes), the resulting homology groups are isomorphic. If X is a polyhedron, this yields the famous formula

χ(X) = V − E + F , where V , E, and F are the number of vertices, edges, and faces in the triangulation,

respectively.

One notable use of homology theory is restricting the structure of vector Velds on a compact manifold.

This restriction is related to the indices of the vector Veld at its singularities. If a vector Veld v on an n-

manifoldM has a singularity at p, we say that the singularity is isolated if there exists a neighborhood U of

p such that p is the only singularity in U . Let U be a small neighborhood of the isolated singularity p. The

index of v at p is the degree of a map to Sn−1,

ind v ≡ deg
v(x)

||v(x)|| , (1.12)

and rank is replaced by dimension. Moreover, the rank of Hp computed with integer coeXcients is equal to the dimension of Hp

computed with real coeXcients. Torsion information, however, is lost.
13The top homology of a compact and closed manifold is Z iU it is oriented. The generator is the manifold itself, with a choice of

orientation.
14Loosely, a triangulation of a space X is a decomposition of X in terms of a number of embedded simplexes glued together along

faces.
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deVned on a small (n − 1)-sphere about p contained in U . The degree of a map measures the number of

times (counting orientation) that the map wraps the domain around the range15. In this situation, the degree

measures the number of times the vector Veld “goes around” the singularity, counting direction. A degree may

be deVned at a non-singular point, but it will always have the value zero.

(a) Index −1. (b) Index +1. (c) Index +2.

Figure 1.9: Indexes of vector Velds. The Vrst two are non-degenerate while the last is degenerate.

A zero of v at p is non-degenerate if dvp : Tp(M)→ Tp(M) is bijective. Non-degenerate zeros are always

isolated and they correspond to transverse intersection of v with the zero section of TM . The index of a non-

degenerate zero may be calculated as the sign of the determinant of dvp, or equivalently as (−1)q , where q

is the number of unstable directions at p, which is given by the number of eigenvalues of dvp with negative

real part. It follows that a non-degenerate zero can only have index ±1. A degenerate zero corresponds to

a non-transverse intersection of v with the zero section of TM and may thus be split through an arbitrarily

small perturbation into a number of non-degenerate zeros, with the sum of the indices of the new zeros equal

to the index of the original degenerate zero.

The link between the topology of a manifold and the structure of its vector Velds is given by the following:

Theorem 1.6 (Poincaré-Hopf Index Theorem). LetM be an oriented compact manifold and v : M → TM a

smooth vector Veld onM with Vnitely many singularities. IfM has boundary we assume the Wow is strictly

outward on ∂M . Then the global sum of the indices of v is equal to the Euler characteristic ofM ,
∑

ind v =

χ(M).

If, on the other hand, the vector Veld Wows inward on ∂M , we have the following [61]:

Theorem 1.7 (Relative Poincaré-Hopf Index Theorem). LetM be an oriented compact manifold with boundary

and v : M → TM a smooth vector Veld onM with Vnitely many singularities, which Wows inward on ∂M .
15A map f of oriented, closed, and compact n-manifolds induces a homomorphism onHn

∼= Z. This map must be multiplication by
an integer. This integer is the degree of f .
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Then the global sum of the indices of v is equal to the Euler characteristic of M relative to its boundary,

∑
ind v = χ(M,∂M) = χ(M)− χ(∂M).

In fact, Pugh [61] has proven a generalization of this theorem valid for essentially arbitrary behavior of

the vector Veld on the boundary, including tangencies. He must assume a certain niceness condition on

the boundary behavior, but this is satisVed by almost all16 vector Velds. However, we have no need of this

generalization here.

The relative Euler characteristic is the alternating sum of the ranks of the relative homology groups

Hp(M,∂M). Consider a pair of spaces (X,A) with A ⊂ X . A relative p-cycle in X is a p-chain whose

boundary (if non-empty) lies in A; it is a cycle “mod” A. Similarly, a relative p-boundary is a chain of the

form ∂c+ a, where c is a chain in X and a is a chain in A; it is a boundary “mod” A. Two relative cycles are

considered homologous if their diUerence is a relative p-boundary. The relative homology groups Hp(X,A)

are the relative p-cycles modulo relative p-boundaries. The relative homology groups Vt into a long exact17

sequence [7]

· · · → Hp(A)→ Hp(X)→ Hp(X,A)→ Hp−1(A)→ · · · . (1.13)

Since the alternating sum of the ranks of the groups in an exact sequence is zero [33] (assuming there are all

Vnitely presented, as they are for compact manifolds), we see that

0 =
∑

i

(−1)i (rankHi(A)− rankHi(X) + rankHi(X,A)) = χ(A)− χ(X) + χ(X,A), (1.14)

which veriVes the last line of Thm. 1.7 with X = M and A = ∂M .

Clearly a non-vanishing vector Veld has index zero. The converse of this fact is also true: a non-zero Euler

characteristic is the only obstruction for a compact oriented manifold to possess a nowhere vanishing vector

Veld [31].

16An open and dense set in the Cr-topology on the space of all vector Velds.
17A sequence is exact when the image of each map (arrow) is equal to the kernel of the next.
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1.2 Knot Theory

Knots arise naturally in the context of dynamical systems as periodic orbits of Wows. As Poincaré observed

[59], periodic orbits “yield solutions so precious, that is to say, they are the only breach through which we can

penetrate into a place, which up to now has been reputed to be inaccessible.” As we will investigate further

in a later section, periodic orbits are ubiquitous in non-linear systems. Generally, these orbits are unstable

so they are not directly seen. A typical trajectory of a system (experimental time series) will not be strictly

periodic, but will often come close to exhibiting periodic behavior when the system state comes suXciently

near one of the unseen periodic solutions. In a very real sense, these unstable periodic orbits organize the

dynamics of the entire system. The Birman-Williams theorem (Sec. 1.3.2) yields a nice fundamental picture of

how these orbits arise, behave, and inWuence the dynamics. We therefore take this opportunity to understand

these orbits (knots) abstractly. Standard references for this section are [13, 64].

By a knot K we mean an embedding K : S1 → M of the circle into a three-dimensional manifold M .

Very oftenM will be R3 or a submanifold of R3. An m-component link L is an embedding L : S1 × · · · ×

S1 → M of m copies of the circle as disjoint subsets ofM . A knot is therefore a link with one component.

An oriented knot or link is deVned the same way, but all copies of the circle are endowed with orientations.

We are generally interested in oriented knots since the periodic orbits of a Wow inherit an orientation from the

Wow direction.

We want to consider a pair of knots or links as equivalent if they can be smoothly deformed one into the

other. In some cases knots and links are deVned to be these equivalence classes. This equivalence is formalized

by the notion of ambient isotopy. An ambient isotopy of a manifoldM is a smooth mapH : M× [0, 1]→M ,

such that H(x, 0) = x and Ht(x) = H(x, t) is a diUeomorphism for each Vxed t. In other words, it is

a sequence of diUeomorphisms of M to itself, or a smooth deformation of M . Two knots K1 and K2 are

considered equivalent if there exists an ambient isotopy Ht ofM such that H1(K1) = K2. If the knots are

oriented then they must not only agree as subsets, but they must have equivalent orientations. Two links L1

and L2 are equivalent if there is an ambient isotopyH ofM such thatH1(L1) = L2, that is, each component

knot of L1 is taken onto a component knot of L2. If the link is oriented, the ambient isotopy must respect

orientations.
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A somewhat weaker relation is that of isotopy. Given two embeddings f, g : X →M , a (smooth) isotopy

of f to g is a smooth map h : X× [0, 1]→M such that h(x, 0) = f(x), h(x, 1) = g(x), and ht(x) = h(t, x)

is an embedding for each Vxed t. In other words, it is a smooth deformation of one embedding into another

through embeddings. Clearly an ambient isotopy ofM taking f to g induces an isotopy of f to g. One simply

deVnes the isotopy h by setting h(t, x) = H(t, f(x)). On the other hand, though it seems reasonable, it is not

clear whether every isotopy may be extended to an ambient isotopy. As it turns out, not every isotopy can be

extended [39]. However, this is always possible when X is compact andM closed [9, 39, 53]:

Theorem 1.8 (Isotopy Extension). Let f : X → M be an embedding of compact X into closed M . If

h : X × [0, 1] → M is an isotopy of f , then there exists an ambient isotopy H : M × [0, 1] → M such that

H(f(x), t) = h(x, t) for all x ∈ X and t ∈ [0, 1].

Thus, for embeddings of compact manifolds, there is no distinction between isotopy and ambient isotopy, so

the two notions may be used interchangeably. In particular, knot equivalence may be established using either

type of deformation.

We note that in the topological category, even for compact objects, these notions are distinct. In particular,

any (continuous) knot in R3 (a topological embedding of S1) is continuously isotopic to the trivial knot

(S1 ⊂ R2 ↪→ R3). The process essentially involves “pulling tightly” on the knot, shrinking the knotted parts

until they become inVnitesimally small and Vnally disappear. This is called Bachelor’s unknotting (Fig. 1.10)

[13]. During this unknotting, the space around the knot is essentially torn, and this isotopy cannot be extended

to an ambient one. This unknotting trick fails for smooth embeddings since the change in direction of the

tangent vectors of the knot would increase without bound as the knotted portions are shrunk. Though isotopy

is a trivial equivalence relation for continuous knots and links, ambient isotopy remains non-trivial, and this

is often the equivalence relation used in practice. It turns out that continuous and smooth knot theory are

equivalent, that is, the continuous ambient isotopy classes of knots are in bijective correspondence with the

smooth ambient isotopy classes of knots 18. This is, however, a low dimensional coincidence – the continuous

and smooth knot theories for embeddings of k-spheres, k > 1, into higher dimensional Euclidean spaces are

generally distinct. This distinction is relevant to our investigations in Chap. 7.

18Actually, for this to be true we must ignore “wild knots”. These are topological embeddings of S1 that do not extend to embeddings
ofD2 × S1 and are not ambient isotopic to any smooth knot. Such knots exhibit pathological properties.
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Figure 1.10: Bachelor’s unknotting.

There are many useful invariants of knots and links. These are quantities that are invariants of isotopy

and computable given a description of a knot or link. Since we regard isotopic knots as equivalent, these

quantities help distinguish one equivalence class from another. The knot complement is one such invariant.

In fact, for knots, the complement is a complete invariant – two knots are equivalent if and only if they have

homeomorphic complements19. This is the Gordon-Luecke theorem [27]. This is not, however, a practical

scheme for determining knot equivalence in general, since the homeomorphism problem for three manifolds

is intrinsically more diXcult. The most important open problem in knot theory is to Vnd a complete set of

“easily” computable invariants that distinguish any two non-isotopic knots. Most known invariants take the

form of numbers, polynomials, or other algebraic quantities [64] that are algorithmically computable given a

description of a knot or link.

For links in R3, a useful and readily computable invariant is the Gauss linking number. There are many

diUerent and equivalent means of deVning this quantity [64]. The most common is through the linking

integral. Let γ1, γ2 : S1 → R3 be a pair of disjoint knots or a two component link. Then the linking number

lk(γ1, γ2) of the pair is given by the integral

lk(γ1, γ2) =
1

4π

∮

γ1

∮

γ2

γ2 − γ1

||γ2 − γ1||3
· (dγ1 × dγ2) (1.15)

=
1

4π

∫
det

(
γ2 − γ1,

∂γ1

∂s
,
∂γ2

∂t

)
ds dt

||γ2 − γ1||3
, (1.16)

where the matrix in parenthesis is built by interpreting each entry as a column vector in its components. This

19This is not true of links in general. Two inequivalent links may have homeomorphic complements.
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expression is equivalent [17] to the degree of a map S1 × S1 → S2,

lk(γ1, γ2) = deg
γ2 − γ1

||γ2 − γ1||
. (1.17)

The degree of a map is an invariant of any continuous deformations of γ1 and γ2 so long as the map remains

well deVned, that is, so long as the two curves remain disjoint20. Since the linking integral can be expressed

as the degree of a map, it is necessarily integer valued. Finally, in practice it is usually simplest to compute

the linking number by adding the signed number crossings in a two-dimensional projection rather than using

the above formulas. If in a projection the (oriented) segment a crosses above segment b, then the sign of the

crossing is positive if the cross product a × b points toward the observer and negative if it points away (see

Fig. 1.11).

ab

(a)

ba

(b)

Figure 1.11: Positive (a) and negative (b) crossings.

Finally, we note that while a non-trivial linking number lk(γ1, γ2) 6= 0 between two curves indicates that

they are non-trivially linked, the converse is not true. A simple example is provided by the Whitehead link,

shown in Fig. 1.12. In addition to having zero linking number, both component knots of this link are actually

unknots. To show that this link is non actually trivial one must resort to other invariants, such as the Jones

polynomial [64].

Figure 1.12: The Whitehead link is non-trivial, but it has linking number zero.

20The degree of a map is actually a homotopy invariant. It’s value is invariant under any continuous deformation of the knots γ1 and
γ2, even if they fail to remain embeddings (they may self-intersect).
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1.3 Dynamical Systems

This section provides a selected review of the theory of dynamical systems with the goal of stating the Birman-

Williams theorem, Thm. 1.13. Canonical references for this section are [15, 20, 25, 26, 30, 82]. Let M be a

smooth manifold. An (autonomous) dynamical system onM is a set of time-independent Vrst order ordinary

diUerential equations, or equivalently, a smooth vector Veld onM . If v : M → TM is a smooth vector Veld

then we can write

ẋ = v(x), (1.18)

as the dynamical system on M . No generality is lost in considering only the autonomous case, since a non-

autonomous dynamical system can always be made autonomous through a standard trick. SpeciVcally, if

ẋ = v(x, t) is the non-autonomous dynamical system, introduce the new variable s = t and consider the new

system ẋ = v(x, s), ṡ = 1. This new system is autonomous and equivalent to the original system, though it

lives in a manifold of one higher dimension.

The unique solution ϕ : M × R → M of Eq. (1.18) is called the Wow associated to v. We often write

ϕt(x) = ϕ(x, t). As a solution of Eq. (1.18), ϕ satisVes

d

dt
ϕt(x)

∣∣∣∣
t=τ

= v(ϕτ (x)), (1.19)

for every time τ ∈ R for which ϕτ (x) is deVned. In general the solution Eq. (1.19) need only exist locally and

thus may not be deVned for all time. If the vector Veld becomes arbitrarily large, solutions may wander oU of

M in Vnite time. This behavior is prevented ifM is compact. In this case, a global solution always exists. A

manifoldM equipped with a dynamical system or Wow will be called a phase space21.

For any Vxed x0 ∈ M , ϕt(x0) is a curve inM giving the solution of Eq. (1.18) starting at x0, called the

trajectory of x0. If ϕt(x0) = x0 for all t, then x0 is a Vxed point of the Wow. Fixed points correspond to zeros

of the vector Veld, v(x0) = 0. If x0 is not a Vxed point, but there exists some T > 0 such that ϕT (x0) = x0,

then the solution γt = ϕt(x0) is a simple closed curve, which we call a periodic orbit. If T is the least time

21This terminology is consistent with, but distinct from, that used in mechanics, where the fundamental equations are of second order.
Solutions are not unique in conVguration space, the position manifold, but on the phase space, which is the cotangent bundle. This is
where the Vrst order Hamilton equations are deVned. If the phase space is deVned to be the minimal manifold for unique solutions, then
both usages are consistent.
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such that ϕT (x0) = x0, that is, ϕt(x0) 6= x0 for any 0 < t < T , we say that the orbit has (least) period T . A

period T orbit masquerades as an orbit of period qT for every q ∈ Z+. In certain contexts it is advantageous

to consider masquerading orbits among the periodic orbits of a given period. Where it is important, we will

be explicit about whether the period of an orbit is to be considered the minimal period.

Let γ be some periodic orbit of the Wow with period T . A local Poincaré section is a codimension one

hypersurface Σ ⊂ M transverse to the Wow and intersecting γ (Fig. 1.13). If p = γ ∩ Σ, then for points x

suXciently close to p there is a Poincaré or Vrst return map deVned by f(x) = ϕτ (x), where τ is the Vrst

return time for the trajectory of x to intersect Σ. As x → p, τ → T , but in general τ 6= T . If Σ may be

chosen to intersect all solution curves ϕt(x), then Σ is a global Poincaré section. We note that Σ need not be

connected.

f(p)

p

Σ

γ

Figure 1.13: Local Poincaré section Σ about orbit γ and Vrst return map f .

Given a diUeomorphism f : Σ → Σ of a manifold Σ, one may construct a Wow that “suspends” f by

taking the trivial Wow on the mapping torus of f . The mapping torus Σf is the quotient space Σ × R/ ∼,

where (f(x), s) ∼ (x, s + 1) (see Fig. 1.14). This may also be thought of as the cylinder Σ × [0, 1] with

the ends glued together via f (and appropriately smoothed). This space is equipped with the trivial Wow

ϕt(x, s) = (x, s+ t). Thus the point (x, 0) Wows to (x, 1), but this is identiVed with (f(x), 0). Thus we see

that the Wow ϕt creates a smooth analogue of the discrete mapping f . This suspension Wow has f as a a global

Poincaré map on Σ. We note that when f is isotopic to the identity then Σf ∼= Σ× S1, the “torus” of Σ. On

the other hand, if f is not isotopic to the identity, then Σf need not be a product. For example, the suspension
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of the map f : [0, 1]→ [0, 1], x 7→ −x yields the Möbius strip, which is distinct from the cylinder [0, 1]×S1.

In general, the space Σf will be a Vber bundle over S1 with Vber Σ.

0 1
ϕt

0 1

1 0

f : x → −x
Σf

Figure 1.14: Suspension of a diUeomorphism.

The suspension construction is essentially the inverse of the global Poincaré map as the suspended map

becomes the Poincaré map of the suspension Wow. A great deal of information about a Wow is contained in

its Poincaré map. For example, periodic orbits of the Wow become (discrete) periodic orbits of the map (period

one orbits of the Wow become Vxed points of the map). The stability properties of the continuous orbits are

equivalent to the stability properties of the corresponding discrete orbits.

We now deVne some important sets for Wows. There are analogous notions for maps which may be deVned

with obvious modiVcations. For any Wow ϕt on M , an invariant set Λ is any subset that is invariant under

the Wow, that is, ϕt(x) ∈ Λ for all x ∈ Λ and t ∈ R. The individual points of Λ may move around under the

Wow, but they are conVned to Λ. Fixed points and periodic orbits are obviously invariant sets. More generally,

any solution curve ϕt(x0) is invariant.

A point p is an ω-limit point if some orbit ϕt(x) converges to p, that is, if there exists a sub-sequence

ϕt1(x), ϕt2(x), . . . such that ϕti(x)→ p as ti →∞. The ω-limit set of x, ω(x) is the set of all ω-limit points

of the orbit through x and may be expressed as (see Fig. 1.15)

ω(x) =
⋂

τ∈R
{ϕt(x) | t > τ}. (1.20)

An α-limit point is deVned similarly, but with ti → −∞. They are ω-limit points of the time-reversed Wow.

A closed invariant set Λ ⊂M is an attracting set if there is a neighborhood U of Λ such that for every x ∈ U ,
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ϕt(x) ∈ U for every t ≥ 0 and ϕt(x)→ Λ as t→∞. The union of all such U , ∪t≤0ϕt(U) is the domain of

attraction of Λ. A repelling set is deVned by replacing t→ −t.

γ

Figure 1.15: The periodic orbit γ is the ω-limit set for the indicated Wow in R2.

The deVnition of attracting set appears to be too restrictive to always encapsulate the idea of attraction

[30]. The reason is that a set does not need to attract every nearby orbit in order to appear as an attractor. It is

therefore reasonable to deVne an (measure) attractor Λµ as a closed invariant set such that every neighborhood

U of Λµ contains a subset V of positive (Lebesgue) measure, µ(V ) > 0, such that for every x ∈ V , ω(x) ∈

Λµ. In other words, suXciently close points are attracted to Λµ with positive probability. In particular, if

µ(V ) = µ(U), the set of orbits not attracted to Λµ will be negligible, and in practice, all observed orbits will

converge to Λµ.

We note in passing that with this more general deVnition, complicated situations can emerge: intermin-

gling basins of attraction. Here, points in an open set have positive probability of being attracted to multiple

attractors. For example, consider the discrete dynamical system on the cylinder S1 × [0, 1] given by the

mapping

f(θ, x) = (2θ, x+ 1
2x(x− 1) cos θ). (1.21)

This system has two attractors: the two boundary circles S1 × {0, 1}, and their basins of attraction are

intermingled: every non-empty open set in S1 × [0, 1] intersects each basin in a set of positive measure [37].

Hence, one cannot know to which attractor an initial condition will converge, unless that initial condition is

known exactly. A graphical approximation of the intermingled basins may found on Scholarpedia [49].

A more complicated invariant set is the non-wandering set ΛNW , which is roughly the set of all points that

are arbitrary close to being periodic. SpeciVcally, a point p is called non-wandering if for any neighborhood

U of p there exists a t > 1 such that ϕt(U)∩U 6= ∅. Notice that p itself need not return to U . If p does return

to U then p is said to be recurrent. The non-wandering set is the collection of all non-wandering points.
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Note that wandering (the opposite of non-wandering) is an open condition: if there exists a neighborhood

U of p such that ϕt(U) ∩ U = ∅, then every point of U is wandering. Hence ΛNW is closed and, since it

contains all Vxed points and periodic orbits, it must also contain their closure. It also contains all recurrent

points and the α- and ω-limit sets of every point in phase space. One deVcit of the non-wandering set is that

it is not invariant under iteration, meaning that in general ΛNW (ΛNW ) 6= ΛNW .

One of the most general and useful invariant sets is the chain-recurrent set deVned as follows. A point

x ∈ M is called chain-recurrent if it is part of a sequence of trajectories that together are arbitrarily close

to being periodic. More speciVcally, x is chain-recurrent if for every distance ε > 0 and time T > 0 there

exists a sequence of points x = x0, x1, . . . , xn = x and times t0, t1, . . . , tn−1, all greater than T , such that

d(φti(xi), xi+1) < ε for all 0 ≤ i ≤ n − 1 (see Fig. 1.16). Since for any ε > 0 ϕt(x) is within ε of x for all

suXciently small t, the restriction on T in the deVnition is to prevent choosing the next point in the sequence

from the immediate trajectory (i.e. T can be arbitrary large). The chain-recurrent set, ΛCR, is the set of all

chain-recurrent points. This set is closed and invariant under the Wow, and thus compact ifM is compact.

x0

ϕt4(x3)
x1

ϕt1(x0)

x2

ϕt2(x1)

x3

ϕt3(x2)

ϕt1

ϕt2

ϕt3

ϕt4

Figure 1.16: Illustration of chain recurrence.

The chain recurrent set includes all recurrent points, since these are just chain-recurrent with a chain of

length one. However, the chain-recurrent set also includes the non-wandering set, and therefore all periodic

orbits and their closure. Unlike the non-wandering set, the chain-recurrent set is closed under iteration:

ΛCR(ΛCR) = ΛCR. The importance of the chain-recurrent set will be seen when we discuss the Birman-

Williams theorem.
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We are often interested in the dynamics on these invariant sets, especially when the dynamics is suf-

Vciently complicated or chaotic. When the invariant set possesses chaotic dynamics, its attractor is called

strange. While there is no universally accepted deVnition of chaos, Devaney [15] has suggested the following

three essential characteristic to describe chaotic behavior. A map or Wow on an invariant set Λ is chaotic if it:

• Displays sensitivity to initial conditions;

• Is topologically transitive;

• Has periodic orbits that are dense in Λ.

These characteristics correspond to instability, irreducibility, and regularity, respectively. We say that a Wow

on a manifoldM is chaotic if its restriction to some invariant set Λ is chaotic. Note that the dynamics need

not be chaotic on all ofM . We now deVne these conditions.

A Wow ϕt on Λ has sensitive dependence on initial conditions if there exists a δ > 0 such that for any

x ∈ Λ and neighborhood U of x, there is some y ∈ U and t > 0 such that d(ϕt(x), ϕt(y)) > δ. In

other words, given any point there are certain other points that, no matter how close initially, will eventually

separate by the Vnite distance δ. This is the source of future unpredictability, also known as the weather man

is always wrong – predictions diverge in Vnite time unless the current conditions are known exactly, which

is of course impossible. There are two things to note. The Vrst is that this does not require that all nearby

trajectories diverge in Vnite time. Second, there is no required lower bound on the rate of separation, though

in practice the separation rate is often exponential (as it is for the hyperbolic systems studied later).

Topological transitivity is a generalization of the non-wandering property. A Wow ϕt is topologically

transitive if for every pair of open sets U, V ⊂ Λ there exists a T > 0 such that ϕT (U) ∩ V 6= ∅. This

condition says that the dynamics are irreducible – points from any one arbitrarily small neighborhood map

inside any other, so the two cannot be dynamically separated. This condition is equivalent to having Λ possess

a dense orbit. If an invariant set is reducible, then it may be decomposed into smaller, disjoint pieces.

The periodic orbits have the nicest behavior possible and they are dense in Λ – any point is arbitrarily

close to behaving nicely. This also means that the structure of the periodic orbits determines to a great extent

the structure of the Wow on a neighborhood of the invariant set and perhaps the entire system. These solutions
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determine the short term behavior of typical solutions as they come suXciently close to some periodic solution.

This idea forms the basis of the method of close returns for determining periodic orbits in a system.

1.3.1 Symbolic Dynamics

A fortunate and tremendously simplifying property available to many chaotic systems is a description in terms

of symbolic dynamics. This is an abstract dynamics deVned in terms of sequences of letters in some alphabet.

An alphabet is just a set (of letters) A = {x1, . . . , xN}. These letters can be thought of, for example, as

labeling regions in phase space. An itinerary is a bi-inVnite (inVnite in both directions) sequence of letters

· · · a−1a0a1 · · · , where ai = xj ∈ A for each i ∈ Z. The set of all itineraries

ΣA = {· · · a−1a0a1 · · · : ai ∈ A} ∼= AZ, (1.22)

is the same as the set of all mappings Z→ A (in other words, any such mapping f is a bi-inVnite sequence of

letters in A deVned by ai = f(i)). This is the space on which the dynamics will be deVned.

This space of all itineraries ΣA may be endowed with a natural metric. Two itineraries are considered

close if they share many common iterates. SpeciVcally, given two itineraries a = (ai) and b = (bi), we deVne

the distance d(a, b) between them by

d(a, b) =

∞∑

n=−∞

δ(n)

2|n|
, δ(n) =





0 : an = bn

1 : an 6= bn

. (1.23)

The space ΣA is complete with respect to this metric. With the topology induced by this metric, ΣA is

homeomorphic to a Cantor set.

We can now deVne a dynamical system on ΣA by iterating the itineraries. We deVne the shift map

σ : ΣA → ΣA by

σ(· · · a−2a−1.a0a1 · · · ) = (· · · a−1a0.a1a2 · · · ), (1.24)

where we have introduced a decimal point for clarity. The shift map shifts the sequence one iterate to the left,

it sends the letter ai → ai−1 for every i. It is a homeomorphism. The dynamical system (ΣA, σ) is called a
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full N-shift.

Sometimes we want a subset of this full dynamics. If the pair of letters xixj occur in some sequence

a, then there is an itinerary that goes from xi to xj . There may be situations when we want to prohibit or

restrict certain transitions. Perhaps xi and xj represent states of a system which never makes the transition

xi → xj . Allowing certain transitions and prohibiting others can be encoded in a transition matrix,M . This

is an N ×N matrix of zeros and ones deVned by

Mij =





1 : xi → xj

0 : xi 9 xj

(1.25)

M encodes which pair of letters may or may not appear in itineraries. The sequence xixj may appear if and

only if Mij = 1. An itinerary is admissible with respect to M if whenever akak+1 = xixj , Mij = 1, i.e.

the itinerary makes only allowed transitions. Obviously, this property is preserved under the shift map σ. If

we denote by ΣM ⊂ ΣA the set of all itineraries admissible toM , then the pair (ΣM , σ) is also a dynamical

system, called a subshift (of Vnite type). Much information of interest concerning the dynamical system may

be extracted directly from the matrixM , such as the structure of periodic orbits and the topological entropy22

(the natural logarithm of the Perron-Frobenius eigenvalue [1, 19, 58]).

While shifts are easy enough to deVne, their dynamics are often enormously complicated. Notice that if

a is periodic with period p, then it has the form a = (· · · a0a1 · · · ap−1a0a1 · · · ap−1 · · · ) and σp(a) = a.

Consider the full shift on the alphabet A = {0, 1}. There are 2p distinct symbol sequences of length p.

This implies that σ has 2p periodic orbits for each p, though many of these are masquerading orbits. A

periodic itinerary can be deVned by giving the repeated word that deVnes it. For instance, a0a1 · · · ap−1 will

denote a periodic itinerary with period p. The set of all periodic sequences is dense in ΣA. To see this, let

a = (· · · a−1a0a1 · · · ) be an arbitrary itinerary, and consider the sequence of periodic trajectories b0 = a0,

b1 = a−1a0a1, and so on. It is apparent that in the metric Eq. (1.23), the sequence converges to a, (bi) → a.

We see that a is in the closure of the set of periodic orbits, hence the latter is dense in ΣA.

A dense orbit can be constructed by successively concatenating all strings of all lengths. Consider the orbit

22Topological entropy is a measure of complexity. A positive entropy indicates chaotic dynamics [25].
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a∗ = (· · · 0 1︸︷︷︸
1

00 01 10 11︸ ︷︷ ︸
2

000 001 · · ·︸ ︷︷ ︸
3

· · · ), (1.26)

(its deVnition for places to the left of 0 is inconsequential). For any itinerary a, some iterate σq(a∗) will agree

with a in an arbitrarily large number of places about the zeroth, hence these two orbits become arbitrarily

close, hence a∗ is dense in ΣA.

Finally, let a and b be two itineraries that Vrst diUer in the |k|-th place. Then d(a, b) ≤ 2−|k−1|. However,

after k iterations the itineraries diUer in the zeroth place, and 1/2 ≤ d(σk(a), σk(b)). In other words, any

two distinct itineraries, no matter how close, are eventually separated by at least a distance of 1/2, thus shift

dynamics display sensitivity to initial conditions. In summary, according to our deVnition (Pg. 1.3), shift

dynamics are chaotic. Subshifts are often chaotic, but it depends on the transition matrix. For example, if

the only allowed transition is xi → xi, then there is only one orbit, and therefore no sensitivity to initial

conditions.

1.3.2 The Theorem of Birman and Williams

Let ϕt be a Wow on M . Assume that M is compact and equipped with a metric d. We have seen that there

are a number of closed sets invariant under the Wow that are of dynamical interest, such as the set of Vxed

points, periodic orbits, the non-wandering set, and the chain-recurrent set. An invariant Λ set is said to have

a hyperbolic structure if the restriction of the tangent bundle ofM to Λ may be written as a continuous sum

TM = ES ⊕ EU ⊕ EC of sub-bundles, the stable, unstable, and center bundles respectively. Each of these

bundles must be invariant under the Wow (speciVcally, under the diUerential Dϕt). The center bundle EC is

spanned by the vector Veld tangent to the Wow (and hence one-dimensional). The stable and unstable bundles

are deVned by the following exponential growth conditions. There are constants C, λ > 0 such that for all

t ≥ 0 we have

||Dϕt(v)|| ≤ Ce−λt||v|| v ∈ ES (1.27)

||Dϕt(v)|| ≥ Ceλt||v|| v ∈ EU . (1.28)
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If all ofM is hyperbolic, the corresponding Wow is said to be Anosov.

For a subset X of a hyperbolic set Λ we have the stable WS(X) and unstable WU (X) manifolds of X ,

which given by

WS(X) = {y | d(ϕt(y), ϕt(X))→ 0, as t→∞} (1.29)

WU (X) = {y | d(ϕt(y), ϕt(X))→ 0, as t→ −∞}. (1.30)

Intuitively, the stable manifold is the set of all points that approach X asymptotically into the future, while

the unstable manifold is the set of all points that approach X asymptotically into the past. Contrary to what

their names might imply, these sets are not generally embedded submanifolds of M . In the most interesting

cases they wind aroundM densely. When X = {x} is a single point, we have the following [34]:

Theorem 1.9 (Stable Manifold Theorem). The sets WS(x) and WU (x) are smooth injective immersions of

the spaces ES and EU respectively. Moreover, they are tangent to these spaces at x, T |xWS(x) = Es|x and

T |xWU (x) = EU |x.

When the chain-recurrent set is hyperbolic, Smale [74] has shown that it possesses a Vnite “prime” decom-

position:

Theorem 1.10. Given a Wow ϕt onM having a hyperbolic chain-recurrent set ΛCR(ϕt), ΛCR decomposes as

the disjoint union of a Vnite number of basic sets Bi. Each Bi is closed, invariant, and contains a dense orbit.

The set of periodic orbits within each Bi is also dense within Bi.

Another condition worth mentioning, but not necessary for the Birman-Williams theorem, is strong

transversality. A Wow is said to satisfy the strong transversality condition if the stable and unstable mani-

folds of each pair of points in ΛCR intersect transversely: WS(x)>∩WU (y) for all x, y ∈ ΛCR. An important

consequence of a Wow ϕ satisfying this condition is that all nearby Wows are conjugate to ϕ, so that they

all possess the same dynamics. This is called structural stability. We thus have the following theorem of

Robinson [63]:

Theorem 1.11. Any Wow ϕ onM having a hyperbolic chain recurrent set and satisfying the strong transver-

sality condition is structurally stable.
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The corresponding theorem for diUeomorphisms was proven earlier by Robbin [62].

Let B be a basic set as in Smale’s theorem and suppose that its topological dimension23 is dimB = 1.

Bowen [5] has shown that under this hypothesis the Wow always has a Poincaré section ∆. Moreover, this

section can always be taken to be a Vnite union of disjoint disks, ∆i. The Wow induces a diUeomorphism of

the section ∆. This induced diUeomorphism turns out to be very nice – it is essentially a subshift of Vnite type

[6]:

Theorem 1.12. Let F : N → N be a diUeomorphism with hyperbolic chain-recurrent set ΛCR and B ⊂ ΛCR

a basic set. There exists a semi-conjugacy h : ΣA → B of a subshift of Vnite type ΣA onto B. SpeciVcally, h is

a continuous surjection that satisVes h ◦ σ = f ◦ h.

This implies that on B the Wow ϕt is a suspended subshift of Vnite type and admits a description in symbolic

dynamics.

The essential step in the proof of Thm. 1.12 is the construction of a Markov partition. A Markov partition

is built up from (generally non-geometric) “rectangles”. A closed set R is a rectangle if its interior is dense

in R and the stable and unstable manifolds of every pair of points in R intersect at a single point, also

in R. A Markov partition for an invariant set Λ is a Vnite union Λ = ∪Ri of rectangles with disjoint

interiors. If x ∈ intRi and f(x) ∈ intRj , then f preserves stable and unstable manifolds. In other words,

f(WS(x) ∩Ri) ⊂WS(f(x)) ∩Rj and (WU (f(x)) ∩Rj) ⊂ f(WU (x) ∩Ri). Once a Markov partition has

been established the shift is easily deVned. If there are N rectangles, the N ×N shift matrix A is deVned by

Ai,j =





1 : f(Ri) ∩Rj 6= ∅

0 : f(Ri) ∩Rj = ∅
. (1.31)

Figure 1.17 shows a Markov partition with two rectangles for Arnold’s “cat map”. This is a linear map of

23Also known as the Lebesgue covering dimension, the topological dimension is deVned to be the minimum value of n ∈ Z such that
every open cover of the set has a reVnement in which no point is covered by more than n+ 1 elements. The covering dimension of Rn

is n. For example, any open covering of the real line by intervals may be reVned so that no point is contained in more than two intervals.
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the torus24 given by 

x

y


 7→




2 1

1 1






x

y


 . (1.32)

Linear maps of Rn are never dynamically complex, but the compactness of T 2 allows for complexity: the

stable and unstable manifolds of each point wrap densely around T 2. In this case the rectangles are geometric

squares, and their axes align with the stable and unstable directions of the map, which are just the eigen-

directions of the deVning matrix. The stretching and squeezing rates are given by the eigenvalues of the matrix,

which are (3±
√

5)/2. The Vgure demonstrates that both rectangles are mapped across both rectangles. The

corresponding transition matrix represents a full shift

A :=




1 1

1 1


 , (1.33)

which has eigenvalues 2 and 0, and thus an entropy of ln 2.

2 2
1

11

(
2 1
1 1

)
1

1

1 1

2

2

2

Figure 1.17: Markov partition for Arnold’s cat map.

Going back to our general discussion, the Markov partition of the basic sets in the Poincaré section may

be extended into Markov Wowboxes in the Wow. This is a sort of suspension of the Markov partition. The Wow

boxes have two types – in-going and out-going. Projecting out the stable directions, one is left with essentially

a two-dimensional object carrying only the Wow and unstable directions. This “Birman-Williams” projection

of the stable manifold may be described in terms of an equivalence relation: two points are identiVed if they

24Think of T 2 as the unit square in R2 with identiVcations. This linear map acts on R2 and takes lattice points to lattice points, hence
descends to T 2.
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share the same asymptotic future (Fig. 1.18)

x ∼ y iff lim
t→∞

||ϕt(x)− ϕt(y)|| → 0. (1.34)

x

y

EU

ES

ϕt(x)

Figure 1.18: Projection of stable manifolds.

This quasi two-dimensional object is called a branched two-manifold or template (see Fig. 1.19). A branched

manifold is a manifold with a Vnite number of singular regions. These take the form of line singularities (join-

ing charts) and point singularities (splitting charts). The in-going and out-going Wow boxes project onto the

joining and splitting charts respectively. It is customary to collapse the middle lower boundary region of the

splitting chart to a point (see Fig. 1.20).

Since this collapse may be done smoothly, it induces an an ambient isotopy of all periodic orbits in the

Wow. This is called the Birman-Williams projection. Collecting these results we have the Birman-Williams

theorem [4]:

Theorem 1.13 (Birman and Williams). Given a Wow ϕt on a three-dimensional manifoldM having a hyper-

bolic chain-recurrent set, there is a smooth projection of the Wow onto a semi-Wow on an embedded branched

manifold T ⊂ M , which is a suspension of a subshift of Vnite type. The link of all periodic orbits inM is in

bijective correspondence with the link of periodic orbits in T . On any Vnite sublink, this correspondence is via

ambient isotopy.

Note that, in agreement with Thm. 1.12, the projection induces only a semi-conjugacy, and the Wow on the

template is only a semi-Wow. This means that it is only deVned for forward time. The reason is that when the

stable manifolds are collapsed, distinct orbits are identiVed if they share the same asymptotic future (they may
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Birman-Williams projection

Figure 1.19: Birman-Williams projection. On the left is the projection of an in-going Markov Wowbox to
a joining chart, and on the right is the projection of an out-going Markov Wowbox to a splitting chart.
The Wow direction is from top to bottom and the parallel lines represent the stable foliation, which is
projected out.

Figure 1.20: ModiVcation of the splitting chart.

have wildly diUerent pasts). This occurs at the line singularity or branchline on the joining charts (Fig. 1.19).

Flowing backward through a branchline requires a choice and is not unique.

So far we have assumed that dimB = 1. The problem with the case dimB > 1 is that, while the Birman-

Williams projection may be carried out, the resulting object need not be a template. In particular, when the

stable manifolds are dense in the space (e.g., suspensions of Anosov diUeomorphisms such as Arnold’s cat

map), the quotient space fails even to be HausdorU, so is certainly not a template. Nevertheless, this more

general case may be reduced to the case already considered by Vrst perturbing the chain recurrent set through

a process calledDA (derived from Anosov [4], also called Smale surgery [74] or orbit splitting). The purpose of

this perturbation is to disrupt the density of the stable manifolds. The construction is as follows (see Fig. 1.21).
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(a) (b)

Figure 1.21: The DA. Shown is the Vrst return map of the stable direction of the periodic orbit as the
control parameter δ is varied (from top to bottom). Fixed points are given by intersections of the map
with the diagonal. The orientable case (a) results in a pitchfork bifurcation, while the non-orientable
case (b) results in a period doubling bifurcation. In (b) both the Vrst and second iterate of the Vrst return
map are shown in order to show clearly the period doubling. The second iterate undergoes a pitchfork
bifurcation.

First suppose dimB = 3. Let γ be a periodic orbit in B. There is a well-deVned coordinate frame

(eS , eU , eC) along γ based on the stable, unstable, and center manifolds according to hyperbolicity. This

frame can be extended to a coordinate system within a small tubular neighborhoodNε of γ. LetX be a vector

Veld supported in Nε, vanishing along γ, but pointing “outward” along the stable direction. For instance,

if x = (xS , xU , xC) is a point in Nε, then X(x) = (xS , 0, 0), inside a smaller tubular neighborhood, will

suXce. One then replaces the original Wow by

dϕ

dt
→ dϕ

dt
+ δX, (1.35)

where δ > 0 is a parameter. For δ suXciently small the qualitative features of the Wow are the same as the

stable direction will still dominate over X . But, when δ is suXciently large to overcome the stability, γ will

bifurcate from a saddle to a source and one or two new saddle orbits will be created within Nε. The stable



38

manifold of each point along γ is a line (R) by Thm. 1.9, so the stable manifold of γ is a line bundle over S1,

which can either be a cylinder (orientable) or a Möbius strip (not orientable). Whether one orbit or two gets

created depends on whether the stable manifold of γ was orientable (two orbits) or not (one).

Remarkably, this preserves hyperbolicity while having the eUect of reducing the dimension of the basic

set by one. The DA procedure may then be repeated to reduce the dimension from two to one. Note that in

this case one dimension of the basic set belongs to the Wow direction. The basic set contains either the stable

or the unstable direction, but not both. The other direction will be transverse to the set. Assume it contains

the stable direction so that it is a repeller (the unstable direction being transverse). Then one can split an orbit

along the stable direction as before. If it is an attractor, then it becomes a repeller under time-reversal and one

can then split the same way. Either way the dimension of B is reduced to one and the general result follows.

Pictures illustrating the application of the DA to the chain recurrent set of Arnold’s cat map (which has the

structure of a Cantor set times an interval) may be found in [11].

There are two major problems with the Birman-Williams theorem. The Vrst is that it is only formulated for

three dimensional systems, and the second is the requirement of hyperbolicity. The Vrst problem relates to the

failure of orbit splitting to preserve invariant sets [4], thus not every higher dimensional Wow is necessarily

well-represented by a template (at least not one obtainable through the DA procedure). However, there is

no reason why the Birman-Williams projection cannot be carried out in general, especially when the chain-

recurrent set is already one dimensional. Of course, in general the projection may not yield a reasonable

object, but for one dimensional chain-recurrent sets, a higher-dimensional branched manifold (with, perhaps,

higher dimensional singular sets) is possibly attainable.

Restricting our attention to three dimensional systems, the assumption of hyperbolicity is overly strong.

In practice, attractors are never hyperbolic. Nevertheless, for systems such as Rössler’s, a template description

is essentially obvious just from looking at the attractor25 (compare Figs. 1.24 and 2.1). Global hyperbolicity

fails when it is not possible to distinguish the stable and unstable directions at a point, a so-called homoclinic

tangency.

For “folding maps” of the plane, the existence of such points distinguishes between hyperbolic maps and

25That is, looking at a typical numerically integrated trajectory, which yields a visual approximation to the underlying attracting set.
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non-hyperbolic ones (see Fig. 1.22). An example of a hyperbolic map is Smale’s horseshoe, which is a simple

stretch and fold of the plane. One example of a non-hyperbolic map is the Hénon map, deVned by

x′ = y + 1− ax2

y′ = bx,

(1.36)

and has folding-like properties. Another example is given by the Poincaré map of the Rössler dynamical

system, which is the Wow deVned by the equations

ẋ = −y − z

ẏ = x+ ay

ż = b+ z(x− c).

(1.37)

Away from the Vxed points, this Wow resembles a suspension of the Hénon map.

(a) (b) (c)

Figure 1.22: Comparison of folding maps of the plane: the Smale horseshoe (a), the Hénon map (b), and
the Rössler system Poincaré map (c). The Hénon map was iterated with (a, b) = (1.4, 0.3). The Rössler
Poincaré map was taken as a subset of the plane y = −0.528 (through the central Vxed point) and was
found by numerical integration with (a, b, c) = (0.398, 2.0, 4.0). The thickness of the image under this
map is greatly exaggerated for clarity.

In the latter two cases, the folding area becomes part of the attracting set, and a homoclinic tangency is

forced somewhere along this bent region. This phenomenon introduces a breakdown in the symbolic dynamics

analogous to the breakdown in unimodal interval maps when iterates of the critical point need to be taken into

account. In fact, the Rössler system is so highly dissipative its return map is “practically” one-dimensional. A

symbolic dynamics can be recovered by utilizing the so-called kneading theory [15, 25]. A good discussion of

this phenomenon in the case of the Hénon map may be found in Sec. 2.11.2 of [25].

In any case, hyperbolic systems are stable under small perturbations since they are deVned in terms of
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transversality conditions. This implies that the underlying templates are also stable. Real non-hyperbolic

attractors are typically not invariant under small perturbations. As control parameters are varied, families of

solutions can be created or destroyed (exhibited in a bifurcation diagram). This can imply violent changes

for the underlying template, with entire branches being grafted or pruned. The symbolic dynamics on these

templates can fail to be Vnite subshifts – they can require an inVnite number of symbols (or an inVnite number

of entries in the appropriate transition “matrix”).

For many real systems there seems to be a related hyperbolic system and associated template into which

the dynamics can be embedded. Since the real Wow only occupies a subset of this new Wow, it will not fully

represent the dynamics of the latter. In particular, there will be periodic sequences in the new Wow that do not

represent sequence in the actual Wow. However, under small parameter changes, the dynamics may bifurcate

and change, but always within the conVnes of the Vxed larger system. This suggests an extension of the

Birman-Williams theorem to families of dynamical systems.

1.3.3 The ClassiVcation of Three Dimensional Systems

The Birman-Williams theorem yields a classiVcation of dynamical systems at the level of branched two-

manifolds. The essential elements of any three dimensional dynamical may be constructed by gluing together

joining and splitting charts. Recall that these charts and the branched manifold arose from the Birman-

Williams projection applied to the Markov Wowboxes. The union of these Wowboxes determines the funda-

mental phase space in which all of the important dynamics takes place. In particular, this is where the chain

recurrent set lives. In this section we look at the classiVcation of dynamical systems at the level of phase

spaces.

Each Wowbox is, up to continuous isotopy, a trinion (see Fig. 1.23). These are essentially three dimensional

balls, D3, with three distinguished disks in the boundary. The Wow is transverse to the boundary only along

these disks where they enter or leave the trinion. Trinions are the fundamental regions where the Wow is

mixed or split and chaotic behavior is created. The out-going Wowboxes correspond to splitting trinions and

contain splitting charts in the branched manifold. Likewise, in-going Wowboxes correspond to joining trinions

and contain joining charts.

Our smooth trinions enclose the Markov Wowboxes. The output disks on the joining trinions correspond
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(a) (b)

Figure 1.23: Fundamental trinions and included charts – splitting (a) and joining (b).

to the component disks ∆i of the Poincaré section in Bowen’s theorem [5]. The union of all these trinions,

matching each out-going port of a trinion to an in-going port of another and leaving no free ends, results in

a handlebody. A handlebody is a three dimensional manifold whose boundary is a closed, orientable surface.

A handlebody is said to have genus g if its boundary has genus g. Just as a genus g surface may be created as

the connected sum of g tori, a genus g handlebody may be created as the boundary connected sum of g solid

tori. From the trinion viewpoint, a genus g handlebody is composed of 2(g − 1) trinions: g − 1 splitting and

g − 1 joining.

These handlebodies are the natural phase spaces for Wows with one-dimension chain recurrent sets. There

are, however, two exceptional cases. The Vrst is the genus one handlebody or solid torus, D2 × S1. This

handlebody is unique in that it cannot be decomposed into trinions. The solid torus is the natural phase

space for driven (suspensions of) two dimensional oscillators and certain other autonomous three dimensional

Wows, such as the Rössler dynamical system [66]. These systems are created by a continuous “stretch and

fold” process, which does not have a well-deVned splitting region. In practice, this is generally related to lack

of hyperbolicity [25]. For example, the Rössler system can be described by the “template” shown in Fig. 1.24,

which can be thought of as one squeezing and one joining chart connected to each other, but with the spurious

hold “zipped up”.

The second exceptional case is the genus two handlebody, which never occurs as a phase space. A genus

two handlebody must be composed of two trinions: one joining and one splitting. The two possible ways to

distribute the Wow directions in a genus two handlebody are shown in in Fig. 1.25. The Vrst possibility was

already dealt with above, viz. the Wow is actually genus one and the second hole is spurious. The second
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(a) (b)

Figure 1.24: Template (a) for Rössler attractor with one joining chart (left) and one splitting chart (right)
and the template-like object that results from zipping up the spurious hole (b). The arrow indicates the
Wow direction.

possibility indicates that the Wow is really of one higher genus – rather than having a spurious hole, one is

missing. Discussing this point further requires some preparation.

(a) (b)

Figure 1.25: The two possibilities for genus two Wow. Either the Wow is parallel in two adjacent branches
and a genus one Wow is obtained by removing the right hole (a) or the Wow is always contrary in adjacent
branches and a genus three Wow is obtained by adding a central hole (b).

The boundary of a handlebody is a closed surface of genus g. We may restrict the Wow to this surface and

obtain a two-dimensional vector Veld, v||. By the Poincaré-Hopf theorem (Thm. 1.6), the sum of the indices of

this vector Veld is equal to the Euler characteristic of the surface, which we investigate next.

The genus zero surface is the sphere S2, which has homology groupsH0
∼= Z,H1

∼= 0, andH2
∼= Z. The

Euler characteristic is thus χ(S2) = 1− 0 + 1 = 2. The genus one surface is the torus, which has homology

groups H0
∼= H2

∼= Z and H1
∼= Z2, so that χ(T 2) = 0. A surface of genus g > 1 is constructed from

the connected sum of g tori. One can show26 that for compact, closed, oriented manifolds, the homology of

a connected sum is the sum of the homology groups except in dimensions zero and n, where they remain Z.

Hence it follows that for T 2#T 2, H0
∼= H2

∼= Z and H1
∼= Z2 ⊕ Z2 ∼= Z4. For g summands it follows by

26see Appendix A.
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induction that H0
∼= H2

∼= Z and H1
∼= Z2g . The 2g generators of H1 are the g longitudes and g meridians

from the tori in the sum. Finally, we see that the Euler characteristic of a genus g surface is χ = 2− 2g.

Thus, for a genus-g surface, we have
∑

ind v|| = 2(1− g). While the Wow never has singularities inside

the handlebody, the induced Wow on the surface may. In fact, for g 6= 1, it must. We may adjust the boundary

surface by isotopy to ensure that these singularities are isolated. At these isolated singularities the Wow is

perpendicular to the surface, so by hyperbolicity, the induced Wow in a neighborhood of the singular point is

dominated by the stable and unstable manifolds of the trajectory. In other words, there is a contracting and

an expanding direction to the induced Wow. Hence, the singular point is necessarily a saddle, which has index

−1. We may rephrase the Poincaré-Hopf result as

#saddles = 2(g − 1). (1.38)

We note that this result automatically eliminates S2 as a possible phase space since it has genus zero, and

would have to support a negative number of saddle points.

We now return to our genus two case with contrary Wow directions in adjacent branches. In this case we

have a pair of saddle singularities on the boundary. By consulting Fig. 1.25, one can easily add the boundary

singularities, yielding Fig. 1.26. There is a trajectory from the top singularity to the bottom singularity, which

is not a part of the “interior Wow”. Removing or “drilling out” this trajectory increases the genus by one.

This phenomenon is apparent in the Lorenz system (see Fig. 1.27), where the pruned trajectory is the stable

manifold of the central Vxed point [25, 83].

Figure 1.26: Surface singularities for a genus two Wow. “Drilling out” the trajectory connecting the
boundary singularities results in a genus three Wow.
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This relationship between the holes of a handlebody and the singularities of the original Wow is quite gen-

eral [25, 83]. These singularities provide the lowest level of structure organizing the dynamics. For example,

consider the singular structure of the Lorenz Wow (branched manifold) indicated in Fig. 1.27. The two sym-

metry related foci organize the outward rotational motion, while the central saddle tears the Wow, sending

“half” toward each saddle. At the next level, connecting curves seem to extend this organization around one

dimensional sets [22]. The structure of branched manifolds and bounding tori, together with this organization

by singular points, leads to the introduction of canonical forms, which describe the diUerent ways a genus

g torus may be dressed with a Wow. This theory is developed elsewhere [25, 26, 83] and is not needed here.

We conclude that the fundamental phase spaces for three dimensional Wows are genus g handlebodies, where

g ∈ Z+ − {2}.

Figure 1.27: Organization of the Lorenz Wow by its singular structure. The splitting of the Wow by the
central saddle is evident.

1.3.4 Observation Functions and Reconstructions

Since each point of a manifoldM dressed with a Wow represents some particular state of a dynamical system, a

smooth real valued function onM , f : M → Rmay be regarded as giving the values of some state-dependent

property of the dynamical system. For instance, if the dynamical system Eq. (1.18) models laser activity, then f

could measure laser intensity as a function of the state variables x (population inversion, etc.). In this context

such a function is called an observation function. Data recorded during an experiment are the values of some

observation function f sampled along the trajectory of the system as it evolves in time. In other words, the

composition

f(φt(x0)), (1.39)

is recorded as a function of time t, usually discretely sampled at regular intervals.
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In a typical experiment, only one such time series is recorded. It would seem that most of the information

contained in the original multi-dimensional dynamics is irretrievably lost. Surprisingly, this is not so, as the

following theorem shows [79]:

Theorem 1.14 (Takens). LetM be an n-dimensional smooth manifold. If v is a vector Veld onM with Wow ϕt

and f is an observation function onM , then for generic choices of v and f , the map Φ : M → Rm deVned by

x 7→
(
f(x),

d

dt

∣∣∣∣
0

f(ϕt(x)), . . . ,
dm−1

dtm−1

∣∣∣∣
0

f(ϕt(x))

)
, (1.40)

is an embedding whenm = 2n+ 1.

This theorem is best understood as a generalization of Whitney’s Vrst embedding theorem [87]. Whitney

showed that, generically, any set of 2n + 1 functions on M provide coordinates deVning an embedding.

Takens showed that a single function and its Vrst 2n derivatives sampled along a trajectory fulVll this rôle.

Takens [79] also proved alternative versions of the same theorem valid for discrete sampling intervals and for

Vnite sample times.

A mapping of the form of Eq. (1.40) is called a diUerential mapping. It is called a diUerential embedding

when it provides an embedding (which it does, generically, when m ≥ 2n + 1). Since in actual experiments

data are discretely sampled, typically at even intervals, it is important to consider the discretized version of

Eq. (1.40). This is called a time delay mapping as is given by

x 7→
(
f(x), f(ϕτ (x)), . . . , f(ϕ(m−1)τ (x))

)
, (1.41)

where τ is some multiple of the experimental sampling time. We note that for minimal time delay, linear com-

binations of delay coordinates may be used to approximate derivatives, and therefore a diUerential mapping

may be approximated using delay coordinates.

DiUerential embeddings have four attractive features: (i) Each embedding coordinate is the derivative

of the previous coordinate (Xi+1 = Ẋi); (ii) Attempts to model the dynamics using the embedding coor-

dinates involve construction of only one unknown source function [43], for the last time derivative ẊN =

h(X1, X2, . . . , XN ); (iii) An explicit expression for the source function hmay be constructed when the diUer-
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ential equations are known; and (iv) In three dimensions it is a simple matter to determine the topological orga-

nization of all unstable periodic orbits simply by inspection of their projection onto the (X1, X2) = (X1, Ẋ1)

subspace. In this projection all crossings in the upper half plane have sign −1 while all crossings in the lower

half plane have sign +1. The linking number of two periodic orbits is half the number of crossings in the

lower half plane minus half the number of crossings in the upper half plane [21, 25].

The principal drawback of diUerential embeddings of scalar time series is the signal to noise problem. As

a rough rule of thumb, there is an order of magnitude loss of S/N ratio for each derivative (or integral) that is

taken. A diUerential embedding of the type x→ (x, ẋ, ẍ) generally suUers two orders of magnitude reduction

in this ratio. One way around this problem is to use an integral-diUerential embedding x → (
∫
x, x, ẋ). In

this case the integral and diUerential each lose about one order of magnitude. The three coordinates remain

diUerentially related. Care must be taken that secular terms be removed from the scalar time series before the

integral is taken. The subtle points involved in such embeddings have been described in the Vrst topological

analysis of experimental data that was carried out [50]. These points were ampliVed on in [21, 25].

BrieWy, in the Vrst topological analysis, the data set under consideration behaved like a relaxation oscillator,

with a slow linear change over about half a cycle. The diUerential embedding (x, ẋ, ẍ) collapsed to a straight

line, as can be seen in Fig. 4 of Ref. [50]. Spline Vts [60] were unable to lift this degeneracy, as indeed no

data processing method based on local Vtting methods could succeed. More recently, newer data processing

methods have been developed to treat problems of this type [46].

This concludes our review of foundational material. We now turn our attention to deVning and carrying

out the representation theory for dynamical systems, which will occupy us for the remainder of this thesis.
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Chapter 2: The Program of Representation Theory

The idea of a representation theory for dynamical systems is a natural for anyone familiar with the theory

of groups. The classical groups are groups of transformations acting on vector spaces by means of certain

matrices. There is an abstract group isomorphic to this transformation group of matrices, and the latter may

be regarded as a representation of the former. One may then ask if there are other ways this abstract group

may act on the same vector space, or if it may act on other vector spaces. In other words, what are all the

representations of the group? Representation theory aims to enumerate all of the inequivalent ways the a

given abstract group may be represented as a group of matrices acting on various vector spaces.

More speciVcally, an (n-dimensional) representation of a group G is a mapping Γ : G → Matn(F ) (the

set of n× n matrices over a Veld F ) which preserves the group structure. That is

g · h = gh

↓ ↓ ↓

Γ(g) · Γ(h) = Γ(gh)

, (2.1)

for g, h ∈ G. When the mapping Γ is injective the representation is called faithful. Let V denote the

n-dimensional vector space on which the representation Γ acts. Two representation Γ1 and Γ2 of G are

equivalent if there exists an isomorphismM : V → V such that the following diagram commutes

V
M //

Γ1

��

V

Γ2

��

V
M // V

(2.2)

This essentially says that the two representations have the same action as seen from two diUerent coordinate

systems that are related byM . Thus, we do not regard them as distinct.

A familiar example in physics is the Lie group SO(3), consisting of all rotations of R3. Equivalently,

these are all of the orientation preserving isometries of geometrically Wat Euclidean space that preserving the
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origin. The usual representation is in terms of 3 × 3 orthogonal matrices R, which satisfy R>R = I3 and

detR = 1. The most well known representations are given by the scalars (trivial), vectors (usual) and second

rank tensors:

scalar: f → (1)f ;

vector: vµ → Rµαv
α

tensor: tµν → RµαR
ν
βt
αβ⇒ t(µν) → R(µν)

(αβ)t
(αβ).

Notice that by grouping indices appropriately, second rank tensors form a vector space of dimension 32 = 9,

and the two rotation matrices become a single 9 × 9 matrix. The mathematical problem of enumerating all

of the representations of this group is important for physics – it yields the theory of angular momentum in

quantum mechanics.

The corresponding theory for dynamical systems begins with the following observation. When studying a

physical system, one does not have direct access to the underlying dynamics. Experiments yield only indirect

access through measured data. Quite often this data is a scalar time series. As was observed in Chap. 1, in

order to study the dynamics of the system, one must attempt to “reconstruct” the original dynamics through

some embedding technique applied to that scalar data.

The term “reconstruction” implies that the dynamics obtained through an embedding is in some sense

unique. This is not the case: many diUerent embeddings are possible (see Fig. 2.1). It is therefore more

appropriate to call the result of such a procedure a representation rather than a reconstruction, as the former

term connotes non-uniqueness.

These considerations raise three very important questions.

1. For any analysis methodology, which results depend on the representation and which are representation

independent?

2. For an experimental attractor, what is its spectrum of inequivalent representations and how are they

distinguished?

3. As the embedding dimension increases, which representations remain inequivalent?
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(a) Original System

→
(b) Scalar Data

↙ ↓

(c) Reconstruction 1 (d) Reconstruction 2

Figure 2.1: Illustration of reconstruction procedure for the Rössler attractor (a). Many diUerent recon-
structions (c and d) are possible from time series (b).

Question (1) has a precise answer. All geometric measures (e.g., spectrum of fractal dimensions1 [25, 54]

are diUeomorphism invariants. All dynamical measures (e.g., spectrum of Lyapunov exponents2 [25, 30]) are

also embedding invariants, except that care must be taken to account for the extra or “spurious” Lyapunov

exponents3 [68]. As a result, these measures should be independent of the particular representation used

to compute them. This means that the second and third questions are not important when the objectives

of an analysis are restricted to computation of geometric and dynamical invariants. Unfortunately, such

analyses do not provide information about the mechanism responsible for generating chaotic behavior [65,

24]. By mechanism, we mean an understanding of how diUerent regions of the phase space are brought

together and compressed under the Wow, generating complicated dynamical behavior. In terms of the branched

1For example, if chaotic dynamics are created by a repeated “stretch and fold”, the chain-recurrent set will have a layered fractal
structure, often a Cantor set. (Think of an inVnitely folded pastry.)

2A Wow on an n-manifold has n Lyapunov exponents λi, giving the average stretching (λi > 0) and squeezing (λi < 0) rates over
the whole dynamics. There is always at least one zero exponent corresponding to the Wow direction itself.

3If a dynamical system is n-dimensional there are n Lyapunov exponents, but if an embedding has codimenion p > 0, there will be
p spurious Lyapunovs implying relaxation onto the embedded submanifold. These are artifacts of the embedding process.
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manifolds describing a three-dimensional Wow, mechanism describes how the separate branches, each coded

by a separate symbol, are joined together at branch lines, rather than how they wrap around each other when

situated in RN .

Topological measures depend on the particular representation [21]. For three-dimensional representa-

tions, the spectrum of the linking numbers of unstable periodic orbits depends in a well-deVned way on the

representation. Indeed, their link type is determined by the particular embedding. However, the mechanism

responsible for generating chaotic behavior is representation independent [65, 24]. It is naturally an intrin-

sic property of the abstract Wow. For topological analyses, the second and third questions are of paramount

importance.

The goal of representation theory is therefore to answer the second and third questions.

A time series represents the image under some unknown observation function of a solution to the dy-

namics in the original phase space, staring from some unknown initial condition. This phase space is some

diUerentiable manifold, and one may speak of diUerential embeddings of this manifold into Euclidean spaces.

An embedding in this sense is a mapping of the manifold into some RN , which is a diUeomorphism onto its

image. Such an embedding induces an embedding of any particular trajectory or indeed any subspace of the

phase space manifold onto an image in RN . For trajectories or attracting sets, this induced mapping is an em-

bedding in the sense of the previous paragraph. We intend to study the representation problem for dynamical

systems by studying the embeddings of the phase space manifolds.

Let (M,ψ) be an abstract dynamical system. A representation (N,φ) of (M,ψ) is a smooth surjective

mapping f : (M,ψ)→ (N,φ), N ⊂ Rn. The mapping f takes the Wow ψ onto φ, i.e. f is a semi-conjugacy.

More explicitly, we have φ(f(x), t) = f ◦ ψ(x, t) for every x and t. This is summarized by the commutative

diagram

M
f
//

ψ

��

N

φ

��

M
f
// N.

(2.3)

We have not required that f be injective. If f is injective, then it is a diUeomorphism and we say, in analogy

with the group case, that (N,φ) provides a faithful representation of (M,ψ). Since we are concerned pri-

marily with faithful representations, hereafter the word representation will imply faithful, unless otherwise
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indicated.

To make the enumeration of representations tractable we require an appropriate notion of equivalence. We

wish to regard two representations fi : (M,ψ) → (Ni, φi), i = 0, 1, of a dynamical systems as equivalent

if one is smoothly deformable into the other. The intuitive notion of a smooth deformation is made precise

though the notion of isotopy. This is the same notion used to deVne knot equivalence in Chap. 1. Two

embeddings f0 and f1 of M are isotopic if there exists a smooth map F (x, t) : M × [0, 1] → Rn such

that F (x, 0) = f0(x), F (x, 1) = f1(x) and ft(x) = F (x, t) is an embedding for each Vxed t. An isotopy

is a smoothly varying family of embeddings indexed by t. Non-isotopic embeddings provide inequivalent

representations of a dynamical system since one is not deformable into the other without self-intersection.

M

[0, 1]
F

f0

f1

ft

Rn

Figure 2.2: Illustration of an isotopy. The embedding f0 is isotoped into the embedding f1 through the
family ft.

As also mentioned in Chap. 1, there is another closely related notion called an ambient isotopy. Two

embeddings f0 and f1 are ambient isotopic if there exists a smooth map F (x, t) : Rn × [0, 1] → Rn such

that G(x, 0) = x and G(f0(x), 1) = f1(x). Since the phase space manifolds we shall deal with we always

compact, the Isotopy Extension Theorem [39] guarantees that the notions of isotopy and ambient isotopy are

equivalent. We will thus use these two notions interchangeably.

When two embeddings are non-isotopic there is some topological obstruction preventing the isotopy. Such

obstructions are the topological indices that distinguish representations. In the representation theory of groups

there exists an inVnite number of representations on vectors spaces of arbitrarily high dimension. By contrast,

we expect that in the dynamical systems case the number of inequivalent representations to be a decreasing

function of embedding dimension. This is because we may induce a representation in Rn+1 from one in Rn

by the natural inclusion Rn ↪→ Rn+1, and generally the greater ambient room will allow some of topological

obstructions to be surmounted and the previously distinct representations to become equivalent under isotopy.
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This creates a tower of fewer and fewer representations in higher and higher dimensions. One might

expect to eventually reach a summit in some RN in which there is only one representation up to isotopy. In

fact, this summit always exists. Wu has shown that for n ≥ 2, any two embeddings of an n-manifold intoRN

are isotopic when N = 2n + 1 [88]. We call this unique representation the universal representation. While

Wu guarantees that this universal representation exists in 2n + 1 dimensions, in all of the cases we consider

it exists in a lower dimension. Once the existence of a universal representation has been established, all of

the various inequivalent representations in lower dimensions may be regarded as inequivalent projections or

shadows of the one universal form. This Platonic perspective emphasizes the unity of all representations.

The problem of enumerating all inequivalent embeddings of a manifold M may be roughly partitioned

into an extrinsic and an intrinsic part. The extrinsic part consists of enumerating, up to isotopy, all of the

diUerent subsets of Rn that M can map onto. The subsets are considered setwise rather than pointwise, so

one does not keep track of which points ofM are mapped onto which points in the subset.

The intrinsic part consists of describing for a given subset of RN how many diUerent ways M may be

mapped into that subset, up to isotopy. This intrinsic part is intimately related to the mapping class group

of M , MCG(M). Since diUeomorphisms may be composed and inverted, the set of all diUeomorphisms of

M , Diff(M) has a natural group structure. We may introduce a natural equivalence relation on Diff(M)

by regarding two diUeomorphisms f and g as equivalent if and only if they are isotopic. Such an equiva-

lence relation is in perfect keeping with our present ambitions. Moreover, while diUeomorphism groups are

formidable objects, mapping class groups are far simpler and often quite tractable.

The mapping class group is deVned as the quotient of Diff(M) by this equivalence relation: MCG(M) ≡

Diff(M)/ ∼, where f ∼ g iU f and g are isotopic. An isotopy from f to g yields a smooth sequence of

diUeomorphisms connecting f to g, hence yields a path in Diff(M) from f to g. Thus, the equivalence relation

collapses path components, and the mapping class group enumerates the path components of Diff(M). We

therefore have the isomorphism4 MCG(M) ∼= π0(Diff(M)). As we shall see, it is often useful to determine

the mapping class group of a manifold before attempting to Vnd its representations.

Since the phase spaces we consider are oriented, and orientation reversal is never isotopic to the identity5,

4π0 is the 0-th homotopy group, which counts the path components of a space. It is not generally a group, though it is when the
original space is a group.

5A smooth change of orientation implies a smooth change in sign of the Jacobian determinant, which implies that it must pass through



53

we will often consider only those diUeomorphisms that preserve orientation. The subspace of orientation

preserving diUeomorphisms is often denoted Diff+(M) ⊂ Diff(M). The isotopy classes of orientation pre-

serving diUeomorphisms, Diff+(M)/ ∼, is in many contexts the group to which the termmapping class group

refers. In other contexts this group is referred to as the restricted mapping class group. We will follow the

former practice, so that mapping class group for us will refer to the isotopy classes of orientation preserving

diUeomorphisms. Orientation reversing diUeomorphisms will be handled separately.

On occasion we wish diUeomorphisms to leave a certain subset of M pointwise invariant. If X ⊂ M ,

then the subset of Diff(M) VxingX is written Diff(M ;X). This is sometimes denoted Diff(M fix X) in the

literature. The mapping class group ofM Vxing X is denote similarly by MCG(M ;X).

Finally, by replacing smooth with continuous we can discuss the homeomorphism group, Hom(M), and

the (continuous) mapping class group MCG(M) ∼= Hom(M)/ ∼. Clearly Diff(M) ⊂ Hom(M). In dimen-

sion at most two they have the same arc components, so that the two mapping class groups are identical. More

generally, these two groups always have the same homotopy type up to dimension two. This will simplify

the discussion in the following chapters. On the other hand, Diff(M) and Hom(M) generally have diUer-

ent homotopy types in higher dimensions. SpeciVcally, the smooth and continuous mapping class groups are

generally diUerent. This distinction will be important in Chap. 7.

zero. But then the mapping fails to be an immersion, and hence fails to be an embedding.
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Chapter 3: Representations of Genus One Systems

The simplest three dimensional systems are the genus one systems – those whose natural phase space is the

solid torus. Familiar examples of this class of systems includes periodically driven non-linear oscillators such

as the DuXng and van der Pol oscillators as well as autonomous dynamical systems such as the Rössler system.

We begin in Sec. 3.1 with an overview of results without justiVcation. We provide the justiVcation over the

next four sections; we work out the mapping class group in Sec. 3.2, and then determine the spectrum of

representations in three, four, and Vve dimensions in Secs. 3.3, 3.4, and 3.5 respectively. Finally, we conclude

in Sec. 3.6.

3.1 Overview of Results

A genus one system is a Wow inside of the solid torus, T = D2 × S1. Three labels are required to distinguish

inequivalent representations in R3. These are oriented knot type K, parity Z2, and global torsion Z. The knot

type of the representation is the knot type of the center-line or core circle of the torus. This core circle may

be obtained by simultaneously shrinking1 each disk D2 in T = D2 × S1 to their centers, yielding the circle

{0} × S1. This circle inherits an orientation determined by the direction of the original Wow. This core may

be thought of as describing the fundamental Wow direction of the dynamical system. This fundamental Wow

direction may be mapped onto any oriented knot inR3. We denote byK the set of all oriented knots. DiUerent

knots will determine diUerent (inequivalent) representations.

The parity of the representation is its handedness or orientation. The orientation reversing diUeomorphism

(x, y, z) 7→ (x, y,−z) of R3 changes the handedness of the representation. There are exactly two orientations

(Z2 = {±1}). DiUerent orientations determine diUerent representations.

Global torsion is more subtle [78]. A genus one system has a global Poincaré section consisting of a disk

D transverse to the Wow. Imagine cutting T open along this disk, rotating one side of the cut q turns, then

reconnecting. If the number of rotations is an integer, the Wow will always match up smoothly afterward. This

integer q ∈ Z is the global torsion. DiUerent global torsions determine diUerent representations.
1Technically, this is known as a deformation retraction and is a type of homotopy. The solid torus is homotopy equivalent to a circle.
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If an embedding with representation labels (K,Z2,Z) in R3 is mapped into R4, there are fewer obstruc-

tions to isotopy, hence fewer representation labels and fewer distinct representations. It is well known that

knots fall apart inR4: any two simple closed curves are isotopic. Since these curves represented the fundamen-

tal Wow direction for the dynamical system, any two choices are equivalent in R4, and knot type disappears

as a representation label. Parity also disappears. Global torsion is more complicated. Representations with

diUerent global torsions fall into two classes in R4 – all those with q even are equivalent to each other, all

those with q odd are equivalent to each other, and the Vrst class is inequivalent to the second. In short, the

global torsion reduces to an integer mod 2. This phenomenon is related to the Dirac belt and Feynman plate

tricks [16]. As a result, there is only a single label needed to distinguish representations in R4, and it has only

two values (Z2 = {0, 1}). There are exactly two distinct representations of a genus one system in R4.

Finally, in R5 the single remaining representation label from R4 is lost and all representations are equiv-

alent. There is an explicit isotopy taking the single remaining Dehn twist to the identity. The universal

representation lives in this dimension. This progressive diminution of the rich structure of inequivalent rep-

resentations with increasing dimension is summarized in Tab. 3.1.

Table 3.1: Representation labels for genus one systems. For parity Z2 = {±1}, while for global torsion
Z2 = {0, 1}. K denotes the set of oriented knots.

Representation Obstructions to Isotopy

Labels R3 R4 R5

Global Torsion Z Z2 -
Parity Z2 - -
Knot Type K - -

3.2 Mapping Class Group of the Solid Torus

The solid torus T = D2 × S1 is a three dimensional manifold whose boundary is the two dimensional torus,

∂T = S1×S1 = T 2. A Wow in T may be regarded as the the suspension of a map from the diskD2 to itself,

the Poincaré map. This manifold is to be considered abstractly and not as embedded in some Euclidean space.

Next we deVne some important simple closed curves in T . The core of T in represented by the curve

{0} × S1. Such a curve has no intrinsic dynamical meaning. If we denote the Poincaré map by φ, then the



56

Brouwer Fixed Point Theorem [7] guarantees that φ possesses a Vxed point. The suspension of this Vxed point

is a period one orbit of the Wow. If we so desired, we could deVne a dynamical core of the torus as this (or

some other) period one orbit, though this is not necessary.

A simple closed curve γ in any surface S is called essential if it is non-separating in S, i.e. removing γ from

S does not decompose the surface into two disjoint sub-surfaces. Ameridian γ ∈ T is an essential curve in the

boundary ∂T that bounds a disk D ⊂ T that is properly embedded in T , i.e. such that D ∩ ∂T = ∂D = γ.

This disk is called a meridional disk.

A longitude is a simple closed curve in ∂T that intersects some meridian transversely in a single point. A

longitude represents a generator of π1(T ) (and of H1) and therefore cannot2 bound a disk in T . Longitudes

and meridians are therefore distinct (See Fig. 3.1).

L
M

Figure 3.1: Longitude (L) and meridian (M ) on T 2.

Any diUeomorphism of T induces a diUeomorphism of its boundary. However, a diUeomorphism of the

boundary need not extend to all of T . A necessary and suXcient condition for it to extend is that it preserve

meridians (up to isotopy) [64]. Using this property, we will determine the mapping class group for T from the

mapping class group of the torus, T 2.

To describe the mapping class groups we introduce a particular diUeomorphism called a Dehn twist. Let

γ be a simple closed curve in an oriented surface S. A Dehn twist about γ is the isotopy class of a map

determined as follows. Cut the surface along γ, twist one side 2π to the right and then reconnect along γ

(see Fig. 3.2). This makes sense since S is assumed oriented. Note than a Dehn twist is obvious trivial if γ is

separating.

If S is the boundary of a 3-manifoldM and γ bounds a disk properly embedded inM (γ is homotopically

trivial), then a Dehn twist about γ may be extended to a diUeomorphism of M . Consider a cylindrical

2Deforming through such a disk would provide a homotopy to the constant path.
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γ

S

γ

S

Figure 3.2: Illustration of a Dehn twist on a surface.

neighborhood of such a disk (the disk times an interval) and parametrize it by (reiθ, s), with s ∈ [0, 1], where

the disk is the set (reiθ, 1/2). Then a Dehn twist about γ can be written as the map

(reiθ, s) 7→ (rei(θ+2πs), s). (3.1)

We are essentially foliating the solid cylinder D2 × [0, 1] with parallel hollow cylinders S1 × [0, 1] and

applying simultaneous Dehn twists to each leaf of the foliation. This map is continuous and smooth except

for the edges. It may easily be smoothed by suitably damping the rotation with a bump function, deVning a

diUeomorphism which is the identity outside of this set.

The mapping class group of the torus, MCG(T 2), is linear and isomorphic the matrix group GL(2,Z)

[64]. This group acts as matrices on the Vrst homology groupH1(T 2) ∼= Z⊕ Z with basis (L,M) consisting

of a longitude and a meridian, respectively. An arbitrary element of this group can be written as a product of

the three matrices

DL =




1 1

0 1


 , DM =




1 0

1 1


 , and S =




0 1

1 0


 , (3.2)

and their powers. The Vrst operationDL is a Dehn twist about L, which preserves L and mapsM →M +L.

The second operation DM is a Dehn twist aboutM , which preservesM and maps L → L + M . The third

operation S interchangesM and L, has determinant −1, and thus reverses orientation. Since S swaps L and

M , the Vrst two operations are conjugate: SDMS
−1 = DL. Thus DM and S may be taken as generators.

In order for one of these diUeomorphisms to extend to the solid torus, it must preserve a meridian. This

is equivalent to preserving the vector (0, 1) up to sign, since this homology element represents a meridional

curve. Restricting attention to orientation preserving maps, it is easy to show that such a matrix must have
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the form 

±1 0

c ±1


 =



±1 0

0 ±1







1 0

c 1


 =




1 0

c 1






±1 0

0 ±1


 , (3.3)

where c ∈ Z and the signs are coherent. We see that the resulting subgroup is commutative and isomorphic3 to

Z⊕Z2. The Vrst subgroup is generated by a Dehn twist aboutM , and the second is generated by an operation

that simultaneously reverses the orientation of bothM and L. Both operations preserve the orientation of T 2,

and thus of T (when extended).

The second generator we call an inversion and can be visualized as followed. Embed T the standard way

into R3 with rotational symmetry about the z-axis. Perform a π rotation about the x-axis taking T onto

itself. It is apparent that this preserves longitudes and meridians setwise, but reverses their orientation. Both

generators are illustrated in Fig. 3.3. Since a meridional disk represents a Poincaré section in T , this group has

the dynamical signiVcance of describing all of the inequivalent (non-isotopic) suspensions of a given Poincaré

map of D2.

→

(a) Dehn Twist

→

(b) Inversion

Figure 3.3: Generators of the torus mapping class group: Dehn twist (a) and inversion (b).

3.3 Three Dimensional Representations

Here we will describe in detail the spectrum of representations of genus one systems in dimension three. It is

useful to parametrize points in T ∼= D2 × S1 by (reiφ, s). For the disk, 0 ≤ r ≤ 1, 0 ≤ φ < 2π and φ = 0

is identiVed with φ = 2π, while for the circle 0 ≤ s < 2π and s = 0 is identiVed with s = 2π. The mapping

class group acts in this parameterization as follows:

Z Global Torsion (reiφ, s) → (rei(φ+ns), s)

Z2 Inversions (reiφ, s) → (re−iφ, 2π − s)
. (3.4)

3This same result was found in [86] through diUerent means.
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The global torsion n from the mapping class group represents one of the topological indices distinguishing

the inequivalent representations of Wows on a torus in R3. It is an invariant of embeddings into R3 since

it may be calculated as the Gauss linking number of the core (r = 0 in the parametrization above) of the

solid torus with a longitude in its boundary, and the linking number is invariant under ambient isotopy of the

curves. In practice, global torsion appears as a systematic change in linking numbers between pairs of periodic

orbits of an attractor [78, 65, 21].

It is clear that the operation of inversion is isotopic to the identity for the standardly embedded torus.

Indeed, we represented its action on T through an ambient isotopy of R3. However, it is not immediately

clear whether or not this operation is isotopic to the identity for an arbitrary embedding. Before describing

inversion further, we must Vrst describe the extrinsic embeddings.

There are two extrinsic indices that describe how the torus sits in R3 under the embedding. The Vrst is

knot-type, which arises as follows. The torus can be mapped into R3 so that its core follows any smooth

closed curve. Each diUerent knot in R3 provides a diUerent embedding of the torus in R3. Actually, each knot

provides two embeddings, which may or may not be equivalent. The argument is as follows. Position along a

knot can be described by a real scalar parameter d that is periodic: d and d+ 2πm describe the same point on

the knot (m ∈ Z). The torus can be mapped along any knot in two opposite senses, with s = d or s = 2π− d

(s here is the same as in Eq. (3.1)).

This degree of freedom is clearly related to the inversion degree of freedom (Z2) in the mapping class

group, since (2π − s = d) ↔ (s = 2π − d). When the two oriented knots obtained from an unoriented

one are isotopic, they are called inversion symmetric [13]. Inversion symmetric knots provide equivalent

representations of a torus in R3, while inversion asymmetric knots provide two inequivalent representations

of a torus in R3. It is somewhat challenging to demonstrate inversion asymmetric knots. The simplest, 817,

has eight crossings and is shown in Fig. 3.4 [13].

Oriented knot type provides the second topological index distinguishing inequivalent representations of

a torus in R3. Note the interaction between the intrinsic (inversion) and extrinsic (knot type) parts of the

problem, which leads to an absorption of the former into the latter. The intrinsic inversion index merges with

extrinsic knot type to produce oriented knot type. On the other hand, since Dehn twists are trivial on the core
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Figure 3.4: The simplest inversion asymmetric knot, 817.

knot, there is no interaction between twists and knot type. It is remarkable that the action of the mapping

class group splits so cleanly.

The third and Vnal index is parity, obtained under the isometry (x1, x2, x3) → (x1, x2,−x3) of R3.

Unlike the previous operations, this one reverses the handedness of the torus as the Jacobian determinant for

this diUeomorphism is negative. As was mentioned previously, this mapping cannot be isotopic to the identity,

since the identity preserves orientation.

We conclude that the complete set of representation labels required to distinguish inequivalent embeddings

into R3 are parity Z2, oriented knot type K, and global torsion Z. These labels represent the topological

obstructions to isotopy in dimension three. These results are summarized in Tab. 3.1.

3.4 Four Dimensional Representations

When we increase the embedding dimension to four, we expect the extra room available for isotopy to over-

come some of the obstructions to isotopy in dimension three. The result is fewer distinct representations.

First, we show that the three dimensional representations with diUerent parity or knot type are isotopic in

this larger space. Consequently, these indices are no longer obstructions to isotopy, and the corresponding

representations become equivalent in R4.

We change parity by lifting from R3 into R4, performing a rotational isotopy on the x3-x4 axes, then
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projecting back down into R3 using the Vrst three coordinates:




x1

x2

x3




Inject−→




x1

x2

x3

0




Isotopy−→




x1

x2

x3 cos θ

x3 sin θ




Project−→
θ=π




x1

x2

−x3



. (3.5)

This operation has reversed the orientation of the z-axis in R3 through a smooth deformation in R4. The

analogous operation for reversing the orientation of R2 in R3 is demonstrated in Fig. 3.5. The formula for this

analogous operation may be found by setting either x1 or x2 to zero in Eq. (3.5). Notice that the projection is

necessarily singular for some value of θ (π/2 in our parameterization).

→֒ →

Figure 3.5: Reversing the orientation of R2 via isotopy in R3.

Next we consider equivalence in R4 of representations with diUerent oriented knot type. It is well known

that knots “fall apart” in R4 [64]. An analogous result holds for thickened knots or solid tori. First consider

the knot deVned by the core of the solid torus. By perturbing the embedding [64] it is possible to ensure that

under planar projection π : R3 → R2, the image has only a Vnite number of double points, each representing a

single transverse intersection of the projected knot with itself. This result of transversality theory is sometimes

called general position. These double points are called crossings. Choose any one of these crossings. Above it

are two sections of the embedded solid torus (core), one above the other. We will show that the handedness of

the solid torus crossing can be changed by isotopy in R4.

In the neighborhood of this projected crossing, the embeddings in the upper (U) and lower (L) tubular

regions can be parametrized by

U : (x, y, z) = (s1, y1, z1 + g(s1))

L : (x, y, z) = (x2, s2, z2 − g(s2)).

(3.6)
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The variables s1 and s2 parametrize the Wow in the upper and lower tubes, respectively. The Wow in the upper

tubular region is in the x direction with y2
1 + z2

1 ≤ 1, and the core of this tube is deVned by y1 = z1 = 0. The

Wow in the lower tubular region is in the y direction with x2
2 + z2

2 ≤ 1 and the core of this tube is deVned by

x2 = z2 = 0. The cores cross in the projection into R2 at (x, y) = (0, 0). The two tubular regions miss by a

large margin because of the oUset in the z direction. The function g(s) is a bump function4 that is +2 in the

neighborhood of the crossing (at s1 = s2 = 0) and drops to 0 before other double points are reached. The use

of the bump function allows to localize the crossing to a small neighborhood while preserving the smoothness

of the embedding.

Next we embed into R4 (x, y, z, w) by

U : (s1, y1, z1 + g(s1) cos θ,+g(s1) sin θ)

L : (x2, s2, z2 − g(s2) cos θ,−g(s2) sin θ)

. (3.7)

This mapping is an isotopy in R4 and has the eUect of replacing right handed crossings in R3 (Vrst three

coordinates) by left handed crossings in R3 as θ varies from 0 to π as indicated in Fig. 3.6. One may think of

this parameterization and mapping as foliating the cylinders U and L by streamlines or arcs. Each pair of arcs

in U and in L deVnes a crossing in the sense of a knot, and each such crossing is swapped by rigidly moving

the two foliations rigidly around each other in R4. By swapping appropriate crossings through this process,

every embedded knotted torus can be isotoped in R4 to a torus that projects to the standard unknotted torus

in R3, which is inversion symmetric. This eliminates knot type as a representation label in four dimensions.

θ = 0

→

θ = π

Figure 3.6: Projection of the knot type isotopy into R3.

This leaves only global torsion as a possible index to distinguish inequivalent embeddings of T into R4.

We prove the rather surprising result that global torsion remains a partial invariant of embeddings into R4.

4Generally speaking, a bump function is any smooth, real valued function with compact support.
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SpeciVcally, we show that global torsion inR4 is deVned mod 2; a pair of Dehn twists is isotopic to the identity,

though a single Dehn twist is not. We do this by demonstrating a correspondence between the embeddings of

T into R4 and the fundamental group of the Lie group SO(3), which is isomorphic to Z2. We Vrst introduce

the technique by revisiting the global torsion in R3.

3.4.1 Global Torsion in R3 Revisited

Before discussing global torsion in four dimensions, we return to the situation in three dimensions in order

to introduce a useful technique. We previously detected global torsion in R3 by computing the Gauss linking

number of the core of T with a longitude in the boundary. This approach is diXcult to generalize. The

global torsion describes how many times the longitude in the boundary wraps around the core. Instead of

using linking theory, we will calculate this quantity utilizing group theory. While these two approaches are

essentially equivalent in R3, the latter permits a straightforward generalization to higher dimensions. We will

now describe this latter approach in detail.

Let T be a solid torus embedded in the standard way into R3 (centered at the origin with rotational

symmetry about the z-axis). Denote by γ the core of T and by δ the standard longitude in the boundary

deVned by the intersection of the xy-plane with T . Note that δ and γ do not link. If we apply a single Dehn

twist to T , the image of δ is still a longitude in the boundary, but now it rotates around the core, completing

one full rotation (see Fig. 3.7). If n Dehn twists are applied, the image of δ will make n full rotations. This n

represents the global torsion.

γ δ −→ γ

δ

Figure 3.7: Dehn twist on the standard embedding.

We nowmake this idea more precise and in the process cast it in a form that applies to general embeddings.

Again, start with the standard embedding of T with core γ and longitude δ in the boundary lying radially

outward from γ. Instead of considering the longitude directly, we construct a vector Veld along γ that indicates

how δ is twisting about γ. Begin with the unit vector Veld t that is tangent to γ at each point. Next, adjoin a

unit vector Veld u that points radially outward from γ to δ. Finally, add a third unit vector Veld v orthogonal
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to both t and u so that we have a positively oriented orthonormal basis of R3 at each point along γ (see

Fig. 3.8).

γ

δ

u
t

v

Figure 3.8: Orthonormal triad along γ.

Now consider an arbitrary embedding h of T into R3. Since an embedding is an immersion, it will carry

the triad (t, u, v) at each x ∈ γ onto a new triad (t̃, ũ, ṽ) at h(x) that is still linearly independent. However,

the new triad need not be orthonormal. This may be remedied by applying the Gram-Schmidt process to the

triad. First, normalize t̃ to obtain t′. This vector is still tangent to h(γ). Next, remove the projection of ũ onto

t′ and normalize to obtain u′. This only removes any shearing of ũ into t̃ and not any twisting of ũ about

t̃. Finally, v′ is obtained by removing the shearing of ṽ into u′ and t′ and normalizing. While this process is

abrupt as described, it is possible to smoothly deform5 the triad (t̃, ũ, ṽ) into (t′, u′, v′) [39].

Now we have three orthonormal vector Velds along h(γ) that describe the twisting of h(δ) about h(γ).

Notice that the vector Veld u′ need not “point” directly to h(δ) because of distortions induced by the embed-

ding. However, it does indicate the location of h(δ) in a more general sense which can be seen as follows. In

the original standard embedding of T one can connect γ to δ with a ribbon (annulus) so that the vector Velds

t and u are tangent to the ribbon and v is normal. The image of this ribbon under h is a ribbon connecting

h(γ) to h(δ) with tangents t′ and u′ and normal v′ along γ. Therefore, u′ describes the direction one would

start out on in the ribbon to reach h(δ). The twisting of h(δ) about h(γ) is equivalent to the twisting of this

attached ribbon.

We now desire a way to extract the global torsion from these vector Velds. This can be done by calculating

the total accumulated twisting in the Velds as one traverses h(γ). To do this, we need a way of comparing the

triads at diUerent points in a standard way. This is accomplished by parallel transport along h(γ), which is

a way to push vectors along h(γ) that keeps initially parallel vectors parallel and normal vectors normal, but

5SO(3) is a deformation retraction of GL+(3) and the two are homotopy equivalent.
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otherwise does not alter them. Parallel transport does not here mean with respect to the ambient Euclidean

space, but rather along the submanifold h(γ). Equivalently, this means parallel transporting tangent vectors

through the tangent bundle of h(γ) and normal vectors through through the normal bundle of h(γ) [17].

Of course, t′ is always tangent by construction so we need not consider it further. Now, let n be some

normal vector Veld along h(γ). It is parallel transported if it obeys the equation

ṅ− 〈ṅ, t′〉t′ = 0, (3.8)

where the dot indicates diUerentiation with respect to arc length and the angle brackets indicate the inner

product in the ambient Euclidean space. Essentially, to keep the vector Veld normal, one must remove any

tangential component during the translation. This construction makes sense in any dimension. For further

details see [17].

Now that we have a means of moving triads around h(γ), it is possible to compare the frames at diUerent

points by transporting them all to a common location. Choose a reference point x0 ∈ h(γ). Parallel translate

the triad at x0 along h(γ) to x. As mentioned above, the tangent vectors t′ always coincide. Thus we need

only compare the pair of vectors (u′, v′) in the space normal to t′, which is an isomorphic copy ofR2 (the Vber

of the normal bundle above x0). The transformation between a pair of orthonormal bases is an orthogonal

transformation, which is an element of SO(2). The transformation at x0 (sending the frame at x0 into itself) is

the identity, and the transformations to the frames at each x vary continuously with x. So, for each x ∈ h(γ),

an element of SO(2) is determined. All together, these elements determine a closed path in SO(2) starting

from and ending at the identity element.

We have succeeded in associating with an embedding h of T a loop through the identity in SO(2) that

encodes the global torsion. However, this path is not unique. We know that an embedding h1 isotopic to

h0 = h has the same global torsion, but this new embedding will determine a diUerent curve in SO(2). As

may be guessed, these two curves are related by homotopy. Denote by hs the isotopy from h0 to h1. Fix a

point p ∈ γ and let the image point xs = hs(p) under each embedding be the reference point for comparing

frames in each embedding hs. We thus obtain a family of loops in SO(2) through the identity that vary

continuously in s, but this just says the curves are homotopic. We see that isotopic embeddings determine
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homotopic loops in SO(2). We conclude that global torsion depends only on the homotopy class of the loop

in SO(2).

It is known that π1SO(2) ∼= Z. Assuming that each of these classes is realized by some embedding, we

have recovered the global torsion of Z in R3. To show that each class has some realization by an embedding,

it is suXcient to consider the standard embedding of T into R3 with n Dehn twists applied. The original triad

Veld on the untwisted T is given by (eφ, er, ez) and it is easy to see that these Velds are parallel transported

along γ. Thus the corresponding path in SO(2) is the constant path at the identity which represents the trivial

element 0 ∈ Z ∼= π1SO(2). If n Dehn twists are applied, the normal frame Velds may be written concisely

in complex notation by einφ(er, ez). We have chosen representatives frames that twist around the core at a

constant rate. The corresponding loop in SO(2) makes n full rotations and represents the element n ∈ Z. We

conclude that global torsion is represented by an integer (Z) in R3.

3.4.2 Global Torsion in R4

We now apply the method described in the previous section in order to determine the global torsion of em-

beddings in R4. Begin again with the standard T in R3 with core γ, standard longitude δ, and frame Velds

(t, u, v). Now let h be an arbitrary embedding of T into R4. This carries the orthonormal triad (t, u, v) onto

a non-orthonormal triad (t̃, ũ, ṽ), and the Gram-Schmidt process may be applied again to obtain an orthonor-

mal triad (t′, u′, v′). Now adjoin the unique unit vector Veld w′ which completes this triad to a positively

oriented orthonormal basis of R4 at every point along h(γ).

Choose a base point x0 ∈ h(γ), and parallel translate the frame at x0 to every other x ∈ h(γ) to compare

frames. As before, the tangents are always identical, so we need only compare the vectors (u′, v′, w′) in the

space orthogonal to t′, which is now a copy of R3. The transformations between triads is now an element

in SO(3), and by comparing the frames at every point along h(γ) we obtain a loop in SO(3) through the

identity.

As before, the homotopy class of this path is an invariant under isotopy. The fundamental group in this

case6 is π1SO(3) ∼= Z2, so that there are at most only two classes of global torsion in R4. It remains to

show that each is represented by some embedding. To this end it is suXcient to lift the standard T in R3

6This says that two rotations of 3-space is continuously deformable to no rotation. Fundamentally, this is the reason for the existence
of exactly two kinds of particle in physics – fermions and bosons.
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with n Dehn twists applied into R4. The frame Velds normal to t′ are now given by (einφ(er, ez), ew) and

the loops determined in SO(3) describe n full rotations about the w-axis, which determines the element n

mod 2 ∈ Z2. A homotopy deforming a loop traversing SO(3) “twice” to the constant loop is illustrated

explicitly in Fig. 3.9, utilizing the homeomorphism SO(3) ∼= RP 3, the latter represented as the cube with

identiVcations. We conclude that global torsion is represented by an integer mod 2 (Z2) in R4. Since we

already know that knot-type and parity are no longer obstructions to isotopy in R4 this shows that there are

exactly two representations in this dimension, and they diUer by a single Dehn twist.

(a)

−→

12

21
(b)

−→

(c)

−→

(d)

Figure 3.9: A loop traversing RP 3 twice is homotopic to the constant loop. It is suXcient to perform the
deformation in RP 2 ⊂ RP 3, represented as the square with identiVcations.

While the above proof was somewhat abstract, it is possible to see directly why two Dehn twists should be

isotopic to the identity. Embed T in the standard way into R3 ⊂ R4. The xz-plane intersects the embedding

along two disjoint disks, dividing T into two cylinders or handles. Cut open the embedding along these two

disks and insert two Dehn twists, one at each disk, and reattach (see Fig. 3.10). Now, spinning the whole

handle on one side of the xz-plane through one full turn converts the two Dehn twists into a writhe. Finally,

the writhe may be removed by passing one part of the handle through another in R4 (c.f. Fig. 3.6), which

results in the trivial embedding. This phenomenon is related to the well-known Dirac belt and Feynman plate

tricks, which demonstrate that two rotations about an axis in R3 are isotopic to the identity7 [16].

Figure 3.10: Isotopy of two Dehn twists to the identity in R4.

7It is also the reason for the existence of two types of particles in physics: Fermions and Bosons.
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One may wonder whether a single Dehn twist is isotopic to the identity, but the preceding proof demon-

strates that this is not the case. If two embeddings are isotopic, the curves determined in SO(3) are homotopic,

but the curves that correspond to zero and one Dehn twist belong to diUerent classes in the fundamental group,

so cannot be homotopic.

What makes this result so surprising is that γ and δ do not link inR4 when considered as just curves inR4.

The fact that they are actually embedded within T provides the additional structure necessary to have them

still “link” in a meaningful way. However, the triviality of the extrinsic embeddings does have an inWuence

since it allows any two twists to annihilate, leaving a global torsion that is only deVned mod 2. Incidentally,

this shows why the linking number would be diXcult to generalize. The linking number suggests an integer

valued invariant rather than an integer mod 2.

The extra dimension obtained in passing from R3 to R4 allows a tremendous amount of freedom that

overcomes almost every obstruction to isotopy existing in R3. Parity and knot-type are completely removed

as obstacles to isotopy, and all these once separate representations become uniVed. By the exchange of twist

and writhe, the triviality of knot-type allows for pairs of Dehn twists to become isotopic to the identity. The

only obstruction remaining to isotopy in R4 is a single Dehn twist. We conclude that there are only two

distinct representations in this dimension.

3.5 Five Dimensional Representations

There now only remains a one obstruction to isotopy - a single Dehn twist. However, the method utilized in

the previous sections to analyze global torsion essentially fails in R5. Everything applies verbatim through

the part when one arrives at the orthonormal frame (t′, u′, v′) along h(γ). At this point, there is no unique

way to complete this frame to a frame of R5 since there is a two dimensional subspace to span. The pair of

vectors may always be chosen so that the corresponding loop in SO(4) the frames determine is represented

by the trivial element in π1SO(4) ∼= Z2.

This seems to indicate that the global torsion in R5 is trivial. This is in fact the case as we now verify

directly. We construct an isotopy between representations that diUer by a Dehn twist. First, liftD2 × S1 into
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D4 × S1:



s

reiφ


 7→




s

reiφ

rei(φ+s)



. (3.9)

Now, deVne the isotopy by




1 0

0
cos θ sin θ

− sin θ cos θ







s

reiφ

rei(φ+s)



. (3.10)

This is in fact an isometry. This rotation eUectively interchanges the two complex factors between θ = 0 and

θ = π/2, so that the projection onto the Vrst two components goes from an untwisted to a twisted torus. We

see that global torsion is no longer an invariant in D4 × S1 and, by the natural embedding, in R5.

Every degree of freedom has now been exhausted, and we have arrived at a universal embedding in R5.

Every lower dimensional representation may be regarded as a non-singular projection of this universal at-

tractor into the appropriate Euclidean space, where these representations are distinguished by the appropriate

topological indices.

3.6 Résumé

We have worked out the program of representation theory for a restricted, but broad and important class of

three dimensional dynamical systems: those whose natural phase space is the solid torus. Three topological

indices are required to distinguish inequivalent embeddings into R3: parity, oriented knot type, and global

torsion. Parity and knot type are extrinsic indices, while global torsion is an intrinsic index. When embeddings

are lifted into R4, parity and knot type are no longer obstructions to isotopy, and the global torsion is reduced

from Z to Z2. When the embedding space is further enlarged to R5, global torsion is also no longer an

obstruction to isotopy. All embeddings into R5 are equivalent. This is the universal embedding. All distinct

representations in lower dimensions are shadows or projections of this universal embedding. These results are

summarized in Tab. 3.1.
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Chapter 4: Representations of Higher Genus Systems

In this chapter we extend the program of representation theory to include all three dimensional dynamical

systems. A dissipative three-dimensional dynamical system has a genus g handlebody as its natural phase

space, g 6= 2. The representation theory for higher genus systems g ≥ 3 consists in classifying the embeddings

of handlebodies dressed with Wows. As example of a higher genus system is the Lorenz system (with typical

control parameter values), which lives inside a genus three handlebody, shown in Fig. 4.1. The caricature

of this Wow, its Birman-Williams projection or template [3, 4, 84], is also shown. This handlebody may be

constructed as the union four trinions, two joining and two splitting. It is this decomposition of the genus

three handlebody into four trinions that is shown in Fig. 4.1.

(a) (b)

Figure 4.1: The Lorenz system: its genus three handlebody phase space (a) and template (b). The ×
denotes the central saddle.

As in the previous chapter, we begin with overview of results in Sec. 4.1, and then provide justiVcation in

Sec. 4.2. In Sec. 4.3 we use these results to make some observations on the links of periodic orbits. Sec. 4.4

is diXcult. In it we provide a prescription for determining the fundamental groups of the complement of an

embedded graph, which we then use to distinguish a few representations. We then make a few comments

concerning cover and image systems in Sec. 4.5 and then conclude in Sec. 4.6.

4.1 Overview of Results

We now enumerate the representations of genus g systems in R3. The Vrst representation label is oriented

knot type Kg , which is obtained as follows. A genus g handlebody has a core just as in the genus one case.
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First, recall that the handlebody has a decomposition into 2(g − 1) trinions. To obtain the core, shrink each

of the 2(g− 1) trinions onto a three legged graph or dreibein as illustrated in Fig. 4.2. Each leg of the dreibein

inherits a Wow direction or orientation from the Wow directions through the ports of the trinion. The dreibein

for a splitting (joining) trinion has 1 (2) inWowing leg and 2 (1) outWowing legs. The core of the handlebody

is the union of the dreibein along common edges. This object is a directed graph of genus g with 2(g − 1)

trivalent vertices and 3(g − 1) edges. This directed graph represents the fundamental Wow directions of the

dynamical system, just as the core circle did for genus one Wows. The only diUerence is that the tearing in the

system creates multiple Wow directions, whereas when only folding is present there is just one. The collection

of all oriented “knot types” Kg is the set of all embeddings of these directed genus g graphs into R3.

Figure 4.2: The core of a trinion (left) is a dreibein (right), obtained by collapsing the indicated disks onto
points. Arrows indicate the Wow directions. The pictured collapse is for a joining trinion. The collapse
for a splitting trinion is obtained by reversing all arrows.

The second label is again parity. A handlebody has an orientation, and the mapping (x, y, z) 7→ (x, y,−z)

reverses it. There are exactly two orientations Z2 = {±1}, just as in the genus one case.

The last representation label is the analogue of global torsion. A genus g handlebody is constructed by

gluing together g − 1 splitting and g − 1 joining trinions. All together, there are 3(g − 1) such gluings

(corresponding to the 3(g − 1) graph edges above). The Wow is always transverse to the port disks Di where

trinions are glued together. The union of these disks may be taken as a global Poincaré section for the Wow,

though for this purpose a smaller subset suXces [83]. The handlebody may be cut along any of these disks and

one side rotated qi ∈ Z turns before being reconnected. We thus obtain a spectrum of 3(g − 1) local torsions

(q1, . . . , q3(g−1)) ∈ Z3(g−1).

In three dimensions, in direct analogy with the genus one case, there is a triple of representation labels
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(Kg,Z2,Z3(g−1)): the oriented knot type, an orientation, and a spectrum of local torsions. We point out

that the problem of distinguishing two knotted circles in R3 is diXcult and still has no general solution. The

corresponding problem for higher genus knotted graphs is correspondingly more diXcult. Nevertheless, in

simple cases it may be reasonable to distinguish embedded graphs “by inspection”. Also, see Sec. 4.4 where

we develop the fundamental group of the graph complement and use it to distinguish two embeddings.

In R4 many of these distinct representations become equivalent as obstructions to isotopy are lifted. Since

graphs are essentially one dimensional objects, all of their embeddings in R4 are isotopic, just as all embedded

closed curves are isotopic. Knotted graphs become unknotted just as knotted circles do. Oriented knot type is

no longer a representation label. Parity also ceases to distinguish embeddings in the same way as before.

Once again, local torsion is more subtle. We anticipate that, in analogy with the genus one case, the local

torsions at each of the 3(g − 1) ports fall into two classes: qi even and qi odd. Thus the integer Z that

characterized the torsion at each port is reduced to Z2 = {0, 1}. But this is not all. On any trinion, a single

twist on any port can be translated into a pair of twists – one on each of the other two ports – at the expense

of introducing a writhe or twisting of the legs near those ports. However, this writhing is easily pulled apart

in R4 (see Fig. 4.3). This means that a single twist on any one port is fully interchangeable with a pair of

twists, one on each of the other two ports. In other words, out of the three twists on each of the three ports of

the trinion, only two are now independent. Instead of there being 3(g − 1) Z2 local torsions, there are only

2(g− 1). We conclude that in R4 there is only one representation label, a spectrum of 2(g− 1) local torsions,

(q1, . . . , q2(g−1)) ∈ Z2(g−1)
2 .

Figure 4.3: Conversion of a twist into two twists plus a writhe. The writhe is removed in R4 by an
isotopy.

Finally, in R5 all representations become equivalent. The remaining local torsions become isotopic to
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the identity exactly as in the genus one case. We arrive at a universal representation for genus g dynamical

systems in Vve dimensions, which is two dimensions lower than that guaranteed by Wu (2 · 3 + 1 = 7) [88].

The complete representation theory for genus g systems is summarized in Tab. 4.1.

Table 4.1: Representation labels for arbitrary genus systems. For parity Z2 = {±1}, while for local
torsion Z2 = {0, 1}. Kg denotes the set of oriented knotted graphs of genus g.

Representation Obstructions to Isotopy

Labels R3 R4 R5

Local Torsion Z3(g−1) Z2(g−1)
2 -

Parity Z2 - -
Knot Type Kg - -

4.2 The Details

4.2.1 Mapping Class Group

We begin our justiVcation of these results with a discussion of the mapping class group. The mapping class

group for an arbitrary genus handlebody has been worked out [86]. Though the group is Vnitely presented, the

list of deVning relations is quite complicated. However, our concern is for handlebodies dressed with Wows,

and in this case the full mapping class group is unnecessary. We may forgo the full mapping class group for

handlebodies by imposing the following dynamically natural constraint: we require that diUeomorphisms of

the handlebody preserve the trinion decomposition. This dynamical mapping class group may be computed

directly and is simple to describe. We Vrst describe it. A handlebody is obtained by gluing trinions along

distinguished disks, which are analogous to the meridional disk of T . Just as in the genus once case, Dehn

twists may be applied along each of these disks. There are three twists possible per trinion, but disks are

identiVed in pairs when constructing the handlebody. This leaves 3(g − 1) twists – one for every disk along

which two trinions are glued. Each of these twists is independent. We conclude that the dynamical mapping

class group of a handlebody of genus g, with a trinion decomposition, is Z3(g−1), the abelian group generated

by 3(g − 1) Dehn twists.

While this dynamical mapping class group could be computed from the full mapping class group, it is

easy to determine directly. The Vrst step is to determine the mapping class group of one of the trinion units.

Any diUeomorphism of the trinion must be Vxed on the three distinguished disks that connect trinions to
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each other. Hence we are to determine MCG(D3; ∂). Consider the surface S deVned as the boundary of the

trinion with the interiors of the three attaching disks removed. The boundary of S consists of the boundaries

∂i of the disks, i ∈ {1, 2, 3}. Any diUeomorphism of the trinion induces a diUeomorphism of S Vxed on the

boundaries ∂i. On the other hand, any diUeomorphism of S (and Vxed on the ∂i), extends to the entire trinion.

Moreover, since the mapping class group of a three-ball is trivial, this extension is unique (up to isotopy).

It therefore remains to determine the mapping class group of S, a sphere with n holes (Vxed on the

boundaries). This group is also known [86]. DeVne I = {1, 2, . . . , n}. Denote by di a Dehn twist about a

curve surrounding (only) the i-th hole and by dj,k a Dehn twist about a curve surrounding (only) holes j and

k. The generators of this group are di for i ∈ I and dj,k for j < k ∈ I . The twists dj,k generate the pure

braid group on n strands, considering the holes as braid strings.

We now specialize to the n = 3 case for writing down the relations satisVed by the generators. To simplify

our notation we denote conjugation by a ∗ b = aba−1 and commutation by [a, b] = aba−1b−1. In this case

we have generators di, i ∈ I = {1, 2, 3} and dj,k , for (j, k) ∈ {(1, 2), (2, 3), (1, 3)}. The relations are

[di, dj ] = 1, (4.1a)

[di, dj,k] = 1, (4.1b)

d−1
1,2 ∗ d2,3 = d1,3 ∗ d2,3, (4.1c)

d−1
1,2 ∗ d1,3 = (d1,3d2,3) ∗ d1,3, (4.1d)

∆2 = d1d2d3, (4.1e)

dk = dIk , (4.1f)

where Ik ≡ I − {k}.

Relations (4.1a) and (4.1b) just say that hole twists mutually commute and commute with the pure braid

generators. Relations (4.1c) and (4.1d) are the pure braid relations on three strings. In relation (4.1e), ∆2 ≡

d1,2d1,3d2,3 is one full rigid rotation of all braid strings and is the generator of the center of the pure braid

group. With this in mind, relation (4.1e) states that on S, the operation ∆2 is isotopic to the identity modulo

the twisting induced on each ∂i. Finally, notice that the curve ∂k is isotopic to the curve γk surrounding the
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k-th disk, which in turn is isotopic to the curve γIk surrounding the other two (see Fig. 4.4). We see then that

the two operations dk and dIk are both twists about this same curve. The only diUerence is which side of

the curve is rotated by 2π. Since the two choices are equivalent, the two twists are isotopic, which is relation

(4.1f).

1 2 3

γ1

1 2 3
γt

1 2 3

γ23

Figure 4.4: Isotopy of the curve γ1 to γ23.

We can use relation (4.1f) to eliminate the braid generators in favor of the boundary twists. This tremen-

dously simplifying relation is unique to the n = 3 case. One can check that all the remaining relations

(4.1b-4.1e) are then trivially satisVed. We conclude that the mapping class group of a trinion is Z3, the free

abelian group generated by Dehn twists about each of the three boundaries, ∂k .

Let us return to the handlebody decomposition. The 2(g − 1) trinions are put together by connecting “in”

and “out” ports between the them. Let ∂i and ∂′j be boundary curves on the ports of two distinct trinions.

If these ports are identiVed, then twists about the two matched boundary curves must obey the relation

d−1
i d′j = 1, since these two curves have been identiVed and are now the same curve. There are a total of

6(g − 1) ports which are identiVed in pairs, each imposing an identiVcation of twists. This leaves 3(g − 1)

generators. No additional constraints are imposed, and we conclude that the dynamical mapping class group

of a handlebody of genus g, which respects the trinion decomposition, is Z3(g−1). The independent twists

could be taken on either all of the “in” ports or on all of the “out” ports.

We conclude that the spectrum of embeddings that lie in the same subset of R3 as the standard embedding

are in one-to-one correspondence with Z3(g−1). In other words, the dynamical mapping class group acts

faithfully on the standard embedding. This gives us a spectrum of 3(g− 1) locals torsion indices, one for each

meridional disk between trinions.
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4.2.2 The Core of a Manifold

One of the key steps in Vnding the three dimensional embeddings was the idea of mapping the handlebody

along a graph or core. It is the purpose of this section to demonstrate how a core of a manifold may be used

to help classify embeddings of that manifold. This will justify the conclusions of Sec. 4.1. We deVne the core

N of a manifold M to be a subset (not necessarily a manifold) N ⊂ M into which M may be deformed

almost entirely through embeddings. More precisely, N is a core of M if there exists a smooth mapping

r : M × [0, 1]→M which satisVes the following properties (rt(x) ≡ r(x, t)):

1. r0 = id;

2. r1(M) = N ;

3. rt|N = id for every t;

4. rt(M −N) ∼= ∂M × (0, 1− t] for every t 6= 1.

We may summarize these properties by saying that r is a smooth strong deformation retraction ofM into N

that deformsM through embeddings for every t 6= 1.

The primary example is one we have already seen, viz. the core circle N = {0} × S1 of the torus

M = D2 × S1 (see Fig. 4.5). The retraction can be deVned to be linear on each disk. If y ∈ D2 then the

retraction on each disk is y → (1 − t)y. For coordinates x = (y, θ) on M = D2 × S1, the retraction is

(y, θ) 7→ ((1− t)y, θ). We readily see that r0 = id, r1(x) = (0, θ) ∈ N , and rt|N = id. For the last property,

when t 6= 1 the mapping takesD2 diUeomorphically onto a disk of radius 1− t. ButN intersects each disk at

0, and the image ofD2−{0} is the punctured disk of radius 1− t, which we write as ∂D2× (0, 1− t]. Since

∂M = ∂D2 × S1 we have rt(M −N) = ∂M × (0, 1− t].

N

M

D2

rt

Figure 4.5: Core N = {0} × S1 ofM = D2 × S1.
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Cores are not unique. It is helpful to choose a core that is as simple or minimal as possible. For the

handlebodies considered here, N is a graph. There are many inequivalent graphs that could serve as a core,

though they all have the same homotopy type. A unique graph is chosen by demanding that all vertices be

trivalent.

Suppose that fi : (M,N) → (Mi, Ni) ⊂ Rn, i = 1, 2, are two embeddings of the pair (M,N) into Rn.

We say that f1 and f2 are isotopic modulo MCG(M) if there exists a diUeomorphism g ofM such that f2 is

isotopic to f1◦g. The embeddings f1 and f2 thus determine the same subsets ofRn up to isotopy, but diUerent

permutations of the points of M within that subset unless g is isotopic to the identity. In other words, the

same extrinsic embedding type.

We want to show that f1 and f2 are isotopic modulo MCG(M) if and only if N1 and N2 are isotopic. In

other words, we wish to show that the extrinsic embedding type of f is determined by its restriction of the

core, N . We will assume that the dimension of M is equal to n, the dimension of the Euclidean space into

which it is being embedded.

First suppose that f1 and f2 are isotopic modulo MCG(M). Then the imagesN1 andN2 ofN are isotopic.

SpeciVcally, N and g(N) are isotopic, thus f1(N) and f2(N) = f1 ◦ g(N) are isotopic.

On the other hand, given the two embeddings fi ofM suppose that N1 and N2 are isotopic. Remove N

fromM to obtain embeddings ofM −N ∼= ∂M × [0, 1). We now “blow up” the hole where N used to be as

follows. DeVne the smooth vector VeldX = (0, h(t)∂t) on ∂M×[0, 1) where h(t) is a smooth bump function

that is zero for t = 0 and one for t = 1. Denote by Xi the image of X in Rn under fi. Now deform the

embeddings of ∂M × [0, 1) by Wowing alongXi for time one. This process results in new embeddings which

are isotopic to the original ones, respectively. Taking the closure of these embeddings yields embeddings of

∂M × [0, 1].

SinceM has codimension zero in Rn, fi(∂M × {1}) may be regarded as the boundary of the blown up

region. But then the sets fi(∂M × [0, 1]) are collars of this boundary. The uniqueness of collars theorem (see

e.g. Theorem 3.3 of [39]) states that there is an isotopy taking f1(∂M × [0, 1]) onto f2(∂M × [0, 1]) setwise,

so that f1 and f2 agree up to an element of the mapping class group.
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4.2.3 Local Torsion in R4

As in the genus one case, the Dehn twists generating the mapping class group are not all distinct in R4. We

now examine this phenomenon in detail. Consider a trinion with boundary curves ∂1, ∂2, and ∂3 about the

distinguished disks, and consider the twist d1 about ∂1. As was shown in Fig. 4.3, an isotopy in R3 can undo

this twist at the expense of braiding neighborhoods of the other two ports and inducing twists on them, and

this braid may be undone by an isotopy in R4. The eUect of this isotopy on the trinion mapping class group

Eq. (4.1) is to modify the deVning relation to the set

d1 = d2d3, (4.2a)

d2 = d3d1, (4.2b)

d3 = d1d2. (4.2c)

We may therefore eliminate d3 in favor of d1 and d2, whereupon the other two relations become equivalent

to d2
1 = d2

2 = 1. Therefore, the mapping class group of a trinion is reduced from Z3 to Z2
2. Not only are the

twists reduced mod 2, one entire twist is lost.

Since this isotopy Vxes all ports, it readily extends to the whole handlebody. Each trinion has two ports of

like type (both input or both output). Choose the independent twists to be about these two ports. Handlebodies

are constructed by connecting trinions of alternating type: the output a splitting trinion goes to the input of

a joining trinion, and vice versa. Since the independent twists were chosen on ports of like type, if the Wow

is from a joining trinion to a splitting trinion, neither identiVed port has a twist, and there are no relations

imposed. On the other hand, if the Wow is from a splitting trinion to a joining trinion, each of the identiVed

ports has a twist. Only one is independent, and the total number of independent twists is reduced by half.

There is therefore only one independent twist per trinion, and thus 2(g − 1) independent twists in all. The

embeddings into R4 are in one-to-one correspondence with the group Z2(g−1)
2 .
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4.3 Observations on Linking Theory in R3

Consider a handlebody with a trinion decomposition embedded into R3 in the standard way (cf. Fig. 4.6).

Applying Dehn twists about the various meridional disks changes the linking numbers of various pairs of

periodic orbits (simple closed curves). We can label periodic orbits by the sequence of meridional disks it

passes through, in order. For example, consider the orbit aba, which circles hole 1, and aedfaba, which circles

all holes, then hole 1. Both orbits move “clockwise.” Dehn twists about a or b will alter the linking numbers

of these two periodic orbits.

1 2 3a b c d

e

f

Figure 4.6: Genus three handlebody with holes labeled 1 through 3 and boundary curves deVning Dehn
twists labeled a through f .

The number of Dehn twists along disks a, b, c, and d can be determined uniquely by comparing the linking

numbers of certain pairs of orbits. Curiously, this is not the case for the twists along e and f . For every time

a periodic orbit passes through e it must also pass through f . This is because the union of e and f disconnect

the handlebody, and each is a one-way door from one side to the other. As a result, linking numbers between

orbits can only determine the sum of the twists along e and f , not each separately. Nevertheless, twists

about e or f change the link type of certain pairs of periodic orbits in distinct ways, even if this cannot be

measured by diUerences in linking numbers. Figure 4.7 shows the change of link type for a pair of orbits under

a twist about e. If it were possible, within the handlebody, to move the twist to f , then by a π rotation of the

entire handlebody this is equivalent to keeping twist at e, but having the orbit γ1 that traverses the rightmost

hole traversing the leftmost hold instead. The latter is not possible, since these two curves represent distinct

elements of H1. Note, moreover, that the curve γ1, while an unknot in R3, is not trivial when conVned to the

handlebody. It is not isotopic to γ2.
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γ1

γ2

γ1

γ2

Figure 4.7: The change of the link type of two curves by a twist through e.

4.4 The Fundamental Group of a Graph Complement

For a knot K : S1 → R3, the fundamental group of the complement, π1(R3 − K), or knot group is a

invariant of knot type. Given any knot, there is a standard algorithm providing a representation of the group,

theWirtinger presentation [64]. We slightly augment this algorithm so that it applies to any embedded graph.

Here is a brief summary of the result. Start by looking down upon a planar projection of the embedded

graph and choose the base point to be the observation point (your eye). We then decompose the projected

graph into a series of arcs (see Fig. 4.8). At each crossing, the lower arc is cut in two where the upper arc

crosses it. The upper arc is not cut. At each trivalent vertex, all three arcs are cut at the vertex point. We

may deVne non-trivial loops from the base point that “circle around” each of these arcs. These loops generate

the fundamental group. At crossings and vertices there are certain obvious relations that hold among these

generators (see Fig. 4.9). These relations are complete.

α3

α2

α1

α4

α6α8

α5

α7

α9

(a)

ǫ

α8 α1α5

(b)

ǫ

α1

α2

α3

(c)

Figure 4.8: Graph embedding for π1: planar projection (a) and the behavior in the neighborhood of
vertices (b) and crossings (c).

We now proceed to justify this result. Denote the embedded graph of genus g by K , and construct a

planar representation of it. This may be accomplished by projection into a generic plane, just as for knots.

Decompose the planar graph into a series of n oriented arcs αi, whose end points are determined by every
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crossing and trivalent vertex. We can restore the crossings (and therefore an embedding) by connecting the

appropriate arcs with line segments that dip down a distance ε below the plane (see Fig. 4.8). In much the

same way we restore the trivalent vertices by adjoining line segments that meet at the vertex point, which is

now placed as −ε as well. Note that the arcs on each side of a crossing and the three arcs about a vertex have

distinct labels (in general).

To be deVnite, let ∗ = (0, 0, 1) be the base point. We can construct loops based at ∗ that run around each

arc αi as follows. Draw an arrow xi passing from right to left beneath αi (i.e. so that the crossing (αi, xi) is

positive. See Fig. 4.9). The loop is the straight line segment from ∗ to the tail of xi, then along xi, and Vnally

from the head of xi straight back to ∗. We will use the same symbol xi to denote the loop as denotes the

arrow.

Each crossing yields an obvious relation among these loops. This relation takes one of two forms depending

on the sign of the crossing. Suppose the upper arc is labeled αk and the lower arc (which has been divided

into two) is given by αi on one side and αj on the other (see Fig. 4.9). If the crossing is positive we have the

relation

xixk = xkxj , (4.3)

and if it is negative we have the relation

xkxi = xjxk. (4.4)

Finally, if arcs αi, αj and αk meet at a vertex we have the relation (see Fig. 4.9)

xjxk = xi, (4.5)

or something similar, depending on the directions of the arcs at the intersection.

We wish to prove that this set of generators and relations is complete. In order to do this we will decompose

the graph complement into simpler pieces. The tool which allows us to relate the fundamental groups of the

simpler pieces to the whole is van Kampen’s theorem [64]:

Theorem 4.1 (van Kampen). Suppose that a spaceX may be written as the unionX = X1 ∪X2, and further
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αk

αi αj

xk

xjxi

xk

(a) xixk = xkxj

αk

αi αj

xk

xjxi

xk

(b) xkxi = xjxk

αk

αi αj

xk

xjxi

(c) xjxk = xi

Figure 4.9: Arrows representing basic loops and the relations for positive crossings (a), for negative
crossings (b), and for vertices (c).

suppose that X1, X2, and X0 = X1 ∩ X2 are each non-empty and path connected. Then, if we have the

presentations

π1(X1) = (x1, . . . ; r1, . . .) (4.6)

π1(X2) = (y1, . . . ; s1, . . .) (4.7)

π1(X0) = (z1, . . . ; t1, . . .), (4.8)

then π1(X) has the presentation

π1(X) = (x1, . . . , y1, . . . ; r1, . . . , s1 . . . , ι1#(z1) = ι2#(z1), . . .), (4.9)

where ιj : X0 ↪→ Xj are the inclusions. In other words, one combines the presentations for π1(X1) and

π1(X2) and adds relations stating that the images of each generator of π1(X0) in π1(X1) and π1(X2) are

equal.

Now we may state and prove our

Theorem 4.2. The fundamental group of R3−K , G(K) is generated by the loops x1, . . . xn, one for each arc

in the planar projection, and for each incidence of arcs one of the three relations 4.3, 4.4, or 4.5 depending on

whether it is a positive crossing, negative crossing, or trivalent vertex, respectively.

Proof. To begin, deVne the decomposition of R3 −K as A ∪ B1 ∪ · · · ∪ Bn ∪ C as follows. Recall that the
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graph K lies in the region {0 ≥ z ≥ −ε}. Let A = {z ≥ −ε} − K . The lower boundary of A is the

plane z = −ε with m line segments β1, . . . , βm deVning the under crossings and 2(g − 1) points deVning

the trivalent vertices removed. Construct a solid rectangular box beneath each arc βi and vertex point whose

top coincides with the bottom of A. Since the number of crossings and vertices are Vnite, the boxes can be

chosen small enough to be disjoint. DeVne Bi as the union of this box with a straight line segment from the

top of the box to ∗ which misses K , (see Fig. 4.10). Finally, deVne C to be the closure of the complement of

A ∪B1 ∪ · · · ∪Bn, along with an arc running to ∗ (and missingK).

∗

Bi

Bi ∩A

y

Figure 4.10: The sets Bi. The path y generates π1(Bi ∩A).

Now, A is an inVnite slab with n arcs removed, each of whose endpoints are in the ∂A. There are also

segments removed from ∂A associated with crossings. The interiors of these segments may be added back

in, preserving the homotopy type of A. In the same way, the triples of arcs meeting at vertex points may

be perturbed so that the arcs now meet in three distinct points in ∂A. Thus, we may replace A with a

homotopically equivalent set consisting of an inVnite slab with n arcs removed, where each arc has distinct

end point in ∂A. By construction, none of these arcs knot any others. We may now deform (homotopy)A into

a Vnite slab with n straight line segments removed, running from one boundary component to the opposite

one. This slab may be retracted onto an n-punctured plane and Vnally to an n-petaled rose. It is thus apparent

that π1(A) = Fn, the free group with n generators. These generators can be taken to be x1, . . . , xn, the

curves that run about each arc. This sequence of alternations is presented in Fig. 4.11.

Figure 4.11: Sequence of homotopies to more easily compute π1(A).
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Each Bi is simply connected. In the case of a crossing, the set Bi ∩ A is a planar rectangle missing the

segment βi with the line segment to ∗ attached. This intersection is homotopy equivalent to a circle, so that

π1(Bi ∩A) is inVnite cyclic with generator y (see Fig. 4.10). The case of a vertex is similar: Bi ∩A is a planar

rectangle missing a point with a line segment to ∗ attached. Again we see that Bi ∩ A ' S1 and π1 is cyclic

with generator y. By van Kampen’s theorem π1(A ∪ Bi) has generators x1, . . . , xn and the single relation

expressing y in terms of the xi, which is one of relations previously considered. Each Bi may be adjoined in

the same way. Finally, the sets C and C ∩ (A ∪ B1 ∪ · · · ∪ Bn) are simply connected, so adjoining C does

not change π1.

As an example, consider the following three graphs representing genus three embeddings (Fig. 4.12). Ap-

plying the above theorem toK1 we obtain the presentation

(x1, . . . , x6 | x1 = x2x6, x1 = x3x2, x6 = x4x5, x2 = x4x5). (4.10)

Using the relations, the generators x1, x2, and x6 may be eliminated. The remaining relations become trivial

and we have

G(K1) ∼= (x3, x4, x5; ) ∼= F3, (4.11)

where Fk denotes the free group on k generators.

α1α3α5

α2

α4

α6

(a)K1

α3

α2

α1

α4

α6α8

α5

α7

α9

(b)K2

α3

α2

α4

α1

α5

α10

α6

α9

α11

α7

α8

(c)K3

Figure 4.12: Three genus three embeddings diUering by knot type. K1 (a) is the standard embedding,
K2 (b) has a trefoil in one branch, andK3 (c) has a trefoil and two braided branches.

In fact, we can easily generalize this to arbitrary genus:

Theorem 4.3. If K is the standard embedding of genus g graph, then G(K) ∼= Fg , the free group on g

generators.
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Proof. We proceed by induction. For the standard genus one embedding, or standard unknot, G ∼= Z ∼= F1

[64]. Now suppose we have the standard embedding of genus g − 1, and we turn this into the standard

embedding for genus g by adding a line segment (see Fig. 4.13). We can describe the group in the genus g

case as Fg−1 together with the new generators x2, x3, and x4, as well as the two relations x3 = x4x1 and

x2 = x4x1. Thus x2 and x3 may be eliminated, and we are left with Fg−1 ∗F1
∼= Fg (the free product of free

groups is free).

· · ·α1 −→ · · ·α1 α4

α3

α2

Figure 4.13: Induction step for Thm. 4.3.

Now considerK2. From Fig. 4.12 we obtain the presentation

(x1, . . . , x9; x3x1 = x1x2, x1x2 = x2x3, x2x3 = x3x4,

x4 = x6x5, x1 = x6x9, x5 = x8x7, x9 = x8x7).

(4.12)

We may use the last four relations to eliminate x4, x5, x6, and x9. This results in

(x1, x2, x3, x7, x8; x3x1 = x1x2, x1x2 = x2x3, x2x3 = x3x1). (4.13)

Eliminating x3 leaves the presentation

(x1, x2, x7, x8; x1x2x1 = x2x1x2), (4.14)

which is isomorphic to the free product of the group of the trefoil [64] and F2: π1(K2) ∼= G(trefoil) ∗ F2.

By deVning a = x1x3 and b = x1x3x1, the trefoil group can be written in the perhaps more familiar form

G(trefoil) ∼= (a, b; a3 = b2).
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Finally, considerK3. From Fig. 4.12 we obtain the presentation

(x1, . . . , x11; x4x1 = x1x2, x1x2 = x2x3, x2x3 = x3x5, x8x3 = x3x7, x4x8 = x8x3,

x5 = x7x6, x1 = x8x11, x6 = x10x9, x11 = x10x9).

(4.15)

Using the last four relations to eliminate x5, x6, x8, and x11 yields

(x1, x2, x3, x4, x7, x9, x10; x4x1 = x1x2 = x2x3 = x3x7x10x9,

x3x7 = x1x
−1
9 x−1

10 x3 = x4x1x
−1
9 x−1

10 ).

(4.16)

The relations in the Vrst row may be used to eliminate x2 and x4, while the relations in the bottom row may

be used to eliminate x7. This results in

(x1, x3, x9, x10; x1x
−1
9 x−1

10 x3x10x9 = x−1
9 x−1

10 x3x10x9x3). (4.17)

We may use this relation to isolate and eliminate x1, yielding the free group on three generators,G(K3) ∼= F3.

We conclude that G(K1) ∼= G(K3) ∼= F3 and that G(K2) ∼= G(trefoil) ∗ F2. Now, the factors of a free

product are subgroups of the product and by the Nielsen-Schreier theorem [69] any subgroup of a free group is

free. SinceG(trefoil) is not free, the groupsG(trefoil) ∗F2 and F3 are not isomorphic, and we may conclude

that the graphsK1 andK3 are distinct fromK2.

On the other hand, since K1 and K3 have the same groups, we cannot yet decide whether or not they

are equivalent. In this case, the groups come out equivalent because the graph embeddings are homotopy

equivalent. A sequence of homotopies taking K3 into K1 is demonstrated in Fig. 4.14. Notice that this

sequence of homotopies involves sliding one branch along another. This homotopy is not an isotopy since

the sliding operation does not preserve vertex number or valences. The two graphs are in fact inequivalent,

since periodic orbits that pass through the branch with the trefoil generally have non-trivial knot types. In

particular, the periodic orbit following the outer cycle of the graph is itself a trefoil.

We have given in Thm.4.2 a presentation for the fundamental group of a graph complement by generalizing

the Wirtinger presentation for knot groups. As we have seen, computing and comparing the fundamental
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α

β

p

q

(a)

−→

α

β

p

q

(b)

−→ αβ

(c)

Figure 4.14: Sequence of homotopies from K3 to K1. From (a) to (b) the end of the knotted branch α
is slid along branch β from point p to point q. From (b) to (c) the loop α above point q is rotated about
point q (back to front), α is then slid back from q to p along β, and then everything is straightened out.

groups of graphs is a non-trivial process. One may suggest passing to the abelianization, H1. However, this

invariant is not much use as it is sensitive only to the genus of the graph, and not at all to its knot type. First,

extend R3 to S3 by adding a point at inVnity1 We then have

H1(S3 −K) ∼= H1(K) ∼= Zg. (4.18)

The Vrst isomorphism is known as Alexander duality [7]. The second isomorphism follows at once from the

Mayer-Vietoris sequence, noting that a genus g graph has the homotopy type of a one point union of g circles.

4.5 Covers and Images

In this section we make a few comments concerning cover and image systems. Let (X,φ) and (Y, ψ) be two

manifolds with Wows. A (topological) conjugacy between X and Y is a diUeomorphism f : X → Y that

commutes the Wows, ψ(f(x), t) = f(φ(x), t) for all points x ∈ X and times t ∈ R. If we drop injectivity,

then f is a semi-conjugacy. Since the mapping f is surjective, it may be thought of as a covering map. If the

covering is even, that is, if card f−1(p) is independent of p ∈ Y , we will refer to f : X → Y as a cover-image

relation between X and Y . X is the cover, Y the image, and f the covering map. An important instance of

this relation is when X is equivariant2 under some symmetry group G, f is a symmetry modding map, and

the image system Y possess less or even no symmetry. In such cases f is necessarily non-injective since f

1The is called the one-point compactiVcation.
2A dynamical system is equivariant if the vector Veld possesses a symmetry. Such systems are studied more extensively in Chaps. 5

and 6.
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reduces the degree of symmetry by identifying symmetry related domains.

A simple, but important, example is provided by the Lorenz and proto-Lorenz systems (see Fig. 4.15).

The cover is the Lorenz system, which has a two-fold rotational symmetry. The image is the proto-Lorenz

system, which is obtained by identifying the two symmetry related domains in the cover. Since the cover has

rotational symmetry, the image system is obtained by applying the local diUeomorphism [26]

u1 = x2 − y2

u2 = 2xy

u3 = z,

(4.19)

to the cover system. Equivalently, an image without symmetry is obtained by a diUerential embedding based

on a symmetry-invariant observation function, such as z (see Chap. 5).

(a) (b)

Figure 4.15: The Lorenz system (a) with a two-fold rotation symmetry, and the proto-Lorenz system (b)
without symmetry.

Conversely, an image Y may be lifted to a coverX , often with symmetry, through a local diUeomorphism

g. Given a covering map f : X → Y , g is constructed from the local inverses of f . Of course, g cannot be a

mapping, since if f is n → 1, then g must be 1 → n. It is perhaps better to think of using f to pull back the

dynamical system on Y to X .

In three dimensions, cover and image systems will often possess phase spaces of diUerent genus. Recall

that a handlebody of genus g may be constructed as the connected sum of g solid tori. We expect an n → 1

image map f to identify n of these tori summands to one in the image. However, this is not the only behavior

possible. More generally, some tori may be identiVed with themselves in an n → 1 fashion. Thus, the image

handlebody need not have genus g/n if the cover has genus g.
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For example, the Lorenz dynamical system is contained in a bounding torus of genus g = 3. The central

hole is centered at the origin, which belongs to the Vxed point set of the equivariance group. Equation 4.19

provides a 2 → 1 covering map from the genus three Lorenz system to the genus one proto-Lorenz system,

modding out the symmetry. The outer two solid tori of the Lorenz system are symmetry related, so become

identiVed in the image. The central torus is symmetry related to itself, so becomes identiVed with itself in

a 2 → 1 manner. This suggests the image should have genus two, although no dynamical system lives in

a genus two handlebody (see Chap. 1). In fact, the Wow does not go “around” this torus at all. This hole is

spurious and may be “sewn up”, resulting in an image system with genus one. This is most apparent at the

level of the branched manifolds [26].

The relation that exists between the phase spaces of cover-image systems suggests an investigation from

the point of view of representation theory. Let (X,φ) and (Y, ψ) be two handlebodies with Wows, denote by

hX and hY diUeomorphisms of X and Y respectively, and let φ′ and ψ′ be the image Wows. Then consider

the diagram

(X,φ)
hX−−−−→ (X ′, φ′)

f1

y f2

y

(Y, ψ)
hY−−−−→ (Y ′, ψ′)

, (4.20)

where f1 and f2 are two covering maps. A fundamental question is: given any three maps in Eq. (4.20), can

the fourth be found so as to complete the diagram?

The simplest case is when all maps except one of the covering maps are given, which we take to be

f2. In this case, we may simply take f2 = hY f1h
−1
X . This works since hX and hY are diUeomorphisms

preserving Wows and f1 is an image map. This says that given a cover-image relation f1 : X → Y , arbitrary

diUeomorphic copies X ′ of X and Y ′ of Y also possess a cover-image relation. In particular, X ′ and Y ′ may

be representations that are not equivalent to X and Y , that is, hX and hY need not be trivially isotopic.

However, even if f1 : X → Y is a symmetry reducing cover, it does not follows that f2 is as well. This is

because (geometrical) symmetry is not a diUeomorphism invariant and need not be preserved by hX . Consider

again the Lorenz system. We can create new representations by applying Dehn twists along any of the six

curves in Fig. 4.6. However, in order for symmetry to be maintained, we must apply twists simultaneously

along symmetry related curves, e.g. e and f . So, if (X,φ) is equivariant under a group G, equivariance is
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preserved by applying simultaneous Dehn twists to symmetry related ports between trinions. If Dehn twists

are added asymmetrically, then (X,φ′) will not generally be equivariant at all, so there is no symmetry for f2

to mod out.

Suppose now that both covering maps fi are given, so that we have two distinct cover-image pairs, and

one of hX or hY . An immediate necessary condition is that f1 and f2 must both be n→ 1 with the same n.

However, this is not suXcient. The group G ∼= Z2 can act in many ways on three dimensional systems. One

is through π rotations in the xy-plane; another is reWection about this plane. A dynamical system equivariant

under the Vrst action, such as the Lorenz system, is connected, whereas it is clear that a system equivariant

under the second is disconnected (the xy-plane is an invariant set that disconnects the phase space). Systems

of both types can be obtained from lifts of the proto-Lorenz system, but are obviously not diUeomorphic

because of their diUerent connectedness properties [26].

However, it is not necessary for X and X ′ to be equivariant under the same representation of the same

group. For instance, take X to be the rotationally equivariant Lorenz system, and take X ′ to be the parity

equivariant induced Lorenz system. We saw in Chap. 5 that while the induced system is not even a represen-

tation in three dimensions, it is in four dimensions, and is in fact isotopic to the inclusion of the Lorenz system

there. Hence, though f1 and f2 mod diUerent symmetries, the two systems are diUeomorphic, in fact isotopic.

Two diUerent lifts of the same image are locally diUeomorphic to each other. Consider two lifts X1 and

X2 of the same image Y . We obtain the diagram

X1
oo loc. diff. //
OO

diff.

��

X2OO

diff.

��

Y

G1

``AAAAAAAA G2

==||||||||
OO

diff.

��

Y
G1

~~}}
}}

}}
}

G2

  
BB

BB
BB

BB

X ′1 oo
loc. diff. // X ′2.

(4.21)

Here, the arrows from Y to X1 and X2 represents lifts with symmetries G1 and G2, respectively. The

vertical arrows are diUeomorphisms giving changes in representation, and the horizontal arrows are local
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diUeomorphisms.

4.6 Résumé

We have successfully extended representation theory from the three dimensional dynamical systems of genus

one considered in the previous chapter to systems of arbitrary genus g ≥ 3. For three-dimensional embed-

dings, three topological indices are required to distinguish inequivalent representations. Two of these indices

are extrinsic: parity and oriented knot type, and one is intrinsic: a spectrum of 3(g− 1) local torsions. In four

dimensions, the two extrinsic indices fall away as the extra dimension allows suXcient room for isotopy. The

intrinsic index is also aUected, suUering a reduction Z→ Z2. The number of independent local torsions is also

reduced 3(g−1)→ 2(g−1). All labels fall away in Vve dimensions. There is therefore a universal embedding

in R5 for every three dimensional dynamical system of any genus, and all lower dimensional representations

are projections of this universal embedding. These results are summarized in Tab. 4.1.

We conclude that some of the information obtained by analyzing any three-dimensional embedding of a

three dimensional dynamical system depends on the embedding (knot type, parity, and global/local torsion),

while the rest is embedding independent. However, since the universal embedding exists in R5 (or higher),

any information extracted from a Vve-dimensional embedding must be intrinsic – it depends on the dynamics

alone and not at all on the embedding.
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Chapter 5: The Lorenz system - A Case Study

Ideally an embedding of an N -dimensional dynamical system is N -dimensional. Ideally, an embedding of a

dynamical system with symmetry is symmetric. Ideally, the symmetry of the embedding is the same as the

symmetry of the original system. DiUerential embeddings of the Lorenz system, which possesses a two-fold

rotation symmetry, are not ideal. The presence of symmetry poses a signiVcant constraint on the embed-

ding problem for dynamical systems. In this chapter we examine the Lorenz system in detail. Some of the

conclusions of this chapter will be generalized in the following chapter.

The motivation for a detailed study of this system is as follows. In Chap. 4 we identiVed all inequivalent

representations of the Lorenz system in R3. The standard diUerential embedding of the Lorenz attractor

based on the x (the “induced” Lorenz system) or y coordinate produces a system not included in this list of

inequivalent representations. SpeciVcally, there is no embedding of the Lorenz phase space into R3 whose

attracting set is homeomorphic to the attracting set of the induced system. We sought to determine how this

could be possible. This is a non-trivial question. The answer to this question and more is provided below.

In general, reconstructions of dynamical systems with symmetry pose a special problem. According to

Takens’ theorem it is necessary to use a generic observation function for a reconstruction. However, generic

functions are not symmetric, and an embedding made using a non-symmetric observable also lacks symmetry.

Worse, King and Stewart [38] showed that while an observable with some symmetry can be used for an

embedding, the embedding typically does not possess the same symmetry as the original dynamical system.

This was shown explicitly by Letellier and his colleagues [43] for the Lorenz dynamical system. In particular,

they showed that using an observation function that is odd under the two-fold rotation symmetry of the

Lorenz attractor will result in a dynamical system with inversion rather than rotation symmetry.

In Sec. 5.1 we introduce the Lorenz (L) and induced Lorenz (Li) systems. In Sec. 5.2 we examine in detail

the diUerential mappings constructed from the x-coordinate of L and decide when they furnish embeddings.

Singularities found to be present in these mappings are analyzed in Sec. 5.3 where they are shown to be

consequences of the diUerent symmetries of L and Li. This shows that a three-dimensional reconstruction
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of the Lorenz system with parity symmetry is never an embedding. In Sec. 5.4 we show that L and Li are

related by a “local reWection” of R3 and are in fact isotopic in R4. We extend this analysis in Sec. 5.5 to the

bounding tori and branched manifolds of the two systems. In Sec. 5.6 we generalize the observation in [43]

that equivariant embeddings of the Lorenz system are parity symmetric to arbitrary dynamical systems with

a two-fold symmetry. We also demonstrate how reconstructions with arbitrary two-fold symmetry may be

recovered from a generic observation function. Finally, we state our conclusions in Sec. 5.7.

5.1 The Lorenz and Induced Lorenz Systems

The Lorenz dynamical system L is a Wow on R3 deVned by the equations

ẋ = σ(y − x) (5.1a)

ẏ = Rx− y − xz (5.1b)

ż = −bz + xy, (5.1c)

where σ, R, and b are control parameters. We make no assumptions on the values of these parameters other

than σ 6= 0. A dynamical system ẋ = v(x) is said to be equivariant under a linear transformationM ifMẋ =

v(Mx). The Lorenz system is equivariant under the transformation Rz(π) : (x, y, z) 7→ (−x,−y, z), which

is a π rotation about the z-axis. We say that L possesses rotation symmetry or is rotationally equivariant.

The Lorenz branched manifold [3, 4, 43] is shown in Fig. 5.1. It too is rotationally symmetric. This template is

obtained from the standard “mask” by rotating each of the two lobes of the mask through 90 degrees in opposite

directions, and then viewing the attractor from above. This template transformation procedure preserves

the topological organization of the periodic orbits and the symmetry of the system. This transformation is

described in more detail in [26, 42].

A diUerential embedding of the Lorenz system based on the x-coordinate constructs the so-called “induced

Lorenz system”, Li. Unlike the original system L, the induced system is equivariant under the transformation

P : (X,Y, Z) 7→ (−X,−Y,−Z), which is an inversion. We say that Li possesses parity symmetry or is

parity equivariant. The induced Lorenz branched manifold [43], which is also parity symmetric, is shown in

Fig. 5.2. The explicit equations describing this embedding are given in the next section.
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Figure 5.1: Template for the Lorenz system L with rotation symmetry, Rz(π). The “×” denotes the
central saddle Vxed point. The x and y directions are in the page, horizontal and vertical respectively.
The z direction is out of the page.

Figure 5.2: Template for the induced Lorenz system Li with parity symmetry, P . The “×” denotes the
central saddle Vxed point. The coordinate axes are the same as Fig. 5.1.

The induced system passes the usual embedding tests and is regarded as an embedding of the original

dynamical system into R3 [67]. While this is essentially true on the attracting set, we claim that the mapping

giving rise to this “embedding” is in fact not an embedding on any open subset containing the attractor and

therefore does not truly represent the entire original Wow. We prove this claim in the next section. The

attracting sets of both the Lorenz and the induced Lorenz system are shown in Fig. 5.3.

5.2 DiUerential Mappings

Recall that ifM is an m-dimensional manifold with Wow ϕt, and if f : M → R is a real-valued observation

function onM , then Takens’ theorem (Thm. 1.40) states that generically the mapM → R2m+1 given by

x 7→
(
f(x),

d

dt

∣∣∣∣
0

f(ϕt(x)), . . . ,
d2m

dt2m

∣∣∣∣
0

f(ϕt(x))

)
, (5.2)
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(a) Lorenz, xy-projection. (b) Induced Lorenz, xy-projection.

(c) Lorenz, xz-projection. (d) Induced Lorenz, xz-projection.

Figure 5.3: Projections of the Lorenz and induced Lorenz attractors. The Vrst row shows that both
attractors possess (x, y) → −(x, y) symmetry. The bottom row shows that the Lorenz system has no z
symmetry while the induced system has (x, z)→ −(x, z) symmetry.

is an embedding. This theorem all but guarantees that the diUerential embedding of L constructed from x and

its Vrst six derivatives is an embedding into R7. This leaves open the question of whether an embedding may

be found in lower dimensions, which ought to be the case since L was originally deVned in R3.

Consider L with observation function f(x) = x and deVne the series of diUerential mappings

Fn(x) =

(
x,
dx

dt
, . . . ,

dn−1x

dtn−1

)
, (5.3)

for each n ≥ 3. The mapping F3, which gives rise to the system Li in R3, is explicitly given by




X

Y

Z




=




x

σ(y − x)

σ(R+ σ − z)x− σ(1 + σ)y.



. (5.4)
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Note that F3 is antisymmetric under Rz(π) : F3(−x,−y, z) = −F3(x, y, z). The Jacobian of the transfor-

mation is

J3 =




1 0 0

−σ σ 0

σ(R+ σ − z) −σ(1 + σ) −σx



. (5.5)

The Jacobian determinant is −σ2x, so the mapping is singular on the entire yz-plane. By setting x = 0 in

F3 one sees that the mapping collapses lines of constant y onto points in the yz-plane, and this is the only set

where F3 fails to be injective. This demonstrates that F3 is not a diUeomorphism on any open set intersecting

the yz-plane (x = 0). Since the attractor cuts this plane, we conclude that F3 fails to be a diUeomorphism on

any neighborhood containing the attractor.

The existence of these singularities has been known [43, 44, 45]. In these references, the singularities are

interpreted as obstructions to an observation function well-sampling an attractor, a property called observ-

ability. However, since the set of singularities has measure zero it has been tacitly assumed that that they do

not aUect whether or not one actually obtains an embedding of the phase space. In other words, obtaining

an embedding of the attractor is distinct from and less restrictive than obtaining an embedding of the entire

phase space. A three-dimensional diUerential embedding of the Lorenz system based on the x coordinate

accomplishes the former task, but not the latter. This is why the induced Lorenz system does not appear on

the list of inequivalent representations of the Lorenz system – in R3 it is not a representation at all.

It is straightforward to derive the equations describing the image Wow under F3 expressed in the new

variables (X,Y, Z). We include them for completeness. They are

Ẋ = Y (5.6a)

Ẏ = Z (5.6b)

Ż = bσ(R− 1)X − b(1 + σ)Y − (1 + b+ σ)Z (5.6c)

−X2Y − σX3 +
Y

X
(Z + (1 + σ)Y ) ,

and the parity symmetry is apparent [28, 29]. Notice the 1/X behavior in the Ż equation. The behavior of
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the vector Veld as X → 0 is direction dependent. In particular, if Z = −(1 + σ)Y then the last term in Ż

vanishes for every X . Notice that according to Eq. (5.4) X = 0 exactly when x = 0, but then Y = σy and

Z = −σ(1 + σ)y, or equivalently Z = −(1 + σ)Y , which is precisely the condition that the image vector

Veld be well behaved (cf. Eq. (5.6c)).

Before moving on we give the LU-decomposition of J3 = L3U3 which will be useful in the sequel. We

have

U3 =




1 0 0

0 σ 0

0 0 −σx




and L3 =




1 0 0

−σ 1 0

σ(R+ σ − z) −1− σ 1



. (5.7)

In this case singularities in U3 (when x = 0) correspond to singularities in J3.

Now consider the diUerential mapping F4 into R4. We will show that this mapping does provide an

embedding of L. To simplify formulas we introduce the abbreviationsA = 1+b+2σ,B = σ(R+σ+1)+1,

and C = R+ 2Rσ+σ2, which are constants depending only on the control parameters. The map F4 is given

by 


X

Y

Z

W




=




x

σ(y − x)

σ(R+ σ − z)x− σ(1 + σ)y

σz(Ax− σy) + σy(B − x2)− σCx.




, (5.8)

where the Vrst three coordinate are of course the same as F3, given in Eq. (5.4).

The top 3 × 3 sub-matrix of the Jacobian J4 is J3, so that in the LU-decomposition J4 = L4U4, U4 has

main diagonal1 equal to that of U3 and the top-left 3× 3 block of L4 is L3. In full, we have

U4 =




1 0 0 0

0 σ 0 0

0 0 −σx 0




and L4 =




1 0 0 0

−σ 1 0 0

σ(R+ σ − z) −1− σ 1 0

σAz − σ(2xy + C) B − σz − x2 σ
y

x
−A 1




. (5.9)

It is apparent that U4 can fail to have maximal rank only if x = 0. However, L4 contains a term propor-
1The main diagonal of a non-rectangular matrix is the diagonal starting from the upper left entry.



98

tional to 1/x, and so the rank of U4 does not indicate the rank of J4 in this limit. If one Vrst sets x = 0 in J4,

in the new LU-decomposition L′4U
′
4 we obtain

U ′4 =




1 0 0 0

0 σ 0 0

0 0 −σ2y 0




and L′4 =




1 0 0 0

−σ 1 0 0

σAz − σC B − σz 1 0

σ(R+ σ − z) −(1 + σ) 0 1




. (5.10)

The matrix U ′4 has maximal rank unless y = 0, and L′4 is regular for all (x, y, z). We conclude that F4 is

singular only along the z-axis, which is disjoint from the Lorenz Wow (it is the stable manifold of the central

Vxed point). We conclude that F4 provides an embedding of L into R4. In fact, F4 provides an embedding of

L onto a three dimensional submanifoldM of R4. This manifold is disjoint from origin in R4, which is the

image of the z-axis under F4. This situation is described further in Sec. 5.4.

The diUerential mappings Fn for n > 4 may be analyzed analogously. They all share a similar LU-

decomposition such that Un has the same main diagonal as U3 and Ln possesses a 1/x singularity. Setting

x = 0 in Jn gives a U ′n with main diagonal diag(1, σ,−σ2y), the same as U ′4, and an L′n which is regular

on R3, so that the singular set consists of exactly the z-axis in each case. We conclude that the diUerential

mapping Fn is an embedding into Rn for n ≥ 4.

5.3 Symmetry

In this section we show that the singular sets of the mappings Fn are symmetry-induced, that is, they exist

because of the symmetry properties of the original Wow and of the chosen observation function.

We have seen that the Lorenz system is equivariant under the diUeomorphism Rz(π) : (x, y, z) 7→

(−x,−y, z). On the other hand, each mapping Fn is antisymmetric under Rz(π) : Fn(−x,−y, z) =

−Fn(x, y, z). We then have the commutative diagram

(x, y, z)
Fn−−−−→ (X1, . . . , Xn)

Rz(π)

y
yP

(−x,−y, z) Fn−−−−→ −(X1, . . . , Xn),

(5.11)
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where the map P is inversion. It follows that each induced Wow in Rn is parity or P equivariant. In particular

this holds forLi inR3. This change of symmetry is a result of the original system and the observation function

together with its derivatives transforming diUerently under the equivariance group.

The diUerence of symmetry between the Lorenz Wow and the induced Wows forces the existence of the sin-

gularities in the mappings Fn, independent of the particular details of how the mappings are constructed. Note

that the z-axis is pointwise invariant under Rz(π) while its image is inverted under P . Eq. (5.11) demands

that Fn(0, 0, z) = −Fn(0, 0, z), which is only satisVed if the z-axis is mapped to the origin. However, since

the z-axis is disjoint from the Lorenz Wow this singularity poses no obstruction to obtaining an embedding.

More can be said when n = 3. We will assume that the z-axis is the only singularity of F3 and show

that this leads to a contradiction. Under this assumption F3 is a diUeomorphism on R3 − {z-axis}. Now the

rotation Rz(π) is isotopic (isotopy will be deVned in the next section) to the identity through rotations Rz(θ)

for 0 ≤ θ ≤ π. It follows that the composition F3 ◦Rz(θ) ◦F−1
3 is an isotopy from the map P to the identity.

However, P is orientation reversing in R3 and cannot be isotopic to the identity. Therefore F3 must have

additional singularities. The mildest form this singularity can take is the collapsing of some plane containing

the z-axis onto a line (which is parity symmetric).

The preceding argument is no restriction on Fn for n > 3 since embeddings of R3 with diUerent orienta-

tion are isotopic in this case (see Chap. 3). In both of these arguments the essential feature is that the original

system is equivariant under an order two symmetry which the observation function is antisymmetric under.

This forces the image system to have a diUerent order two symmetry than the original which in turn forces

the existence of singularities. This theme is taken up again in Sec. 5.6.

5.4 L, Li, and Local ReWections

This section speciVes how the systems L and Li are related in R3 and in R4. The mappings F3 and F4 seem

rather complicated, but their complexity is almost entirely superVcial. By allowing smooth deformations the

mappings may be brought into simpler forms. SpeciVcally, in R3 the two systems diUer by a simple mapping

called a “local reWection,” which we deVne below, while in R4 the two systems are in fact identical.

The coordinate reWection of R3, (x, y, z) 7→ (x, y,−z) cannot be smoothly deformed in to the identity

in R3 because it reverses orientation. However, such a smooth deformation is possible in R4. If we consider
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R3 ⊂ R4 as the subspace spanned by the Vrst three coordinates, (x, y, z) 7→ (x, y, z, 0), a deformation

(parametrized by s) is given by

(x, y, z, 0)→ (x, y,−z sin s, z cos s)→ (x, y,−z, 0), (5.12)

by rotating from s = −π/2 to π/2. Notice that this rotation leaves the xy-plane (z = 0) pointwise invariant.

From this deformation we can obtain a twisted embedding of R3 into R4 by allowing the rotation to

depend on coordinates of R3. Setting s = arctanx, the explicit form of this embedding is then

F : (x, y, z) 7→
(
x, y,

−xz√
1 + x2

,
z√

1 + x2

)
. (5.13)

The projection of this embedding back into R3 is singular: it sends the yz-plane onto the y-axis. We call this

mapping a local reWection since it reWects only half of R3. Fig. 5.4 illustrates this phenomenon by demonstrat-

ing a twisted embedding of R2 into R3. This lower dimensional example may be obtained from Eq. (5.13) by

ignoring the y coordinate. Any projection of this twisted embedding back into R2 results in a singularity.

The denominators in the last two coordinates of Eq. (5.13) normalize them so that the embedding ap-

proaches inclusion as x→ ±∞ (that is, for |x| large, F (x, y, z) ≈ (x, y,−z sgnx, 0), which is the inclusion

R3 ↪→ R4, at least up to a coordinate reWection).

Through a sequence of deformations, one can show2 that the mapping F3 is equivalent to a local reWection.

This relation will be explored further in the following section. In a similar manner one can show that F4 is

equivalent to the standard inclusion R3 ↪→ R4. Thus in R4 the two systems L and Li are the same - one can

be smoothly deformed into the other. The systems provide identical representations of the Lorenz dynamical

system in R4. We remark that since the two systems possess diUerent symmetry, the smooth deformation

between them cannot be done in a symmetry preserving fashion.

Moreover, we may regard the induced system as providing a three dimensional embedding contained in

a three dimensional submanifold M ⊂ R4. The manifold M is not R3. Since F4 is a diUeomorphism away

from the z-axis,M is diUeomorphic to R3 − {z−axis}.
2See Appendix B.
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X

Z

W

Figure 5.4: Twisted embedding of R2 in R3 and projection onto a local reWection. This is equivalent to
the mapping F in Eq. (5.13) by ignoring y.

5.5 L, Li, and Branched Manifolds

In the previous section we explored the relationship between the Lorenz and induced Lorenz systems at the

level of the diUerential equations. In this section we consider how the conclusions of that section apply to

the branched manifolds of the two systems, Figs. 5.1 and 5.2. Both the Lorenz and induced Lorenz systems

possess branched manifolds constructed from two joining and two splitting charts. Both systems live inside a

genus three handlebody built up from four trinions. The handlebody together with its trinion decomposition

is shown in Fig. 5.5.

A visual inspection of the branched manifolds for L (Fig. 5.1) and Li (Fig. 5.2) shows that, though they are

similar, they diUer in two important respects. Both of these diUerences are in the “bottom” branches that Wow

from the bottom right trinion to the bottom left one. First, in the Lorenz system this branch twists counter

clockwise with respect to the Wow direction (cf. Fig. 5.1), while in the induced system it twists clockwise (cf.
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Figure 5.5: Genus three handlebody with trinion decomposition. Arrows indicate Wow direction between
trinions. The branched manifolds of the Lorenz and induced Lorenz systems may be naturally embedded
within this handlebody.

Fig. 5.2). Second, in the Lorenz system this branch attaches from below while in the induced system it attaches

from above. Both of these diUerences are demanded by the diUerent symmetries of the two systems. The two

distinct joining trinions diUering in attaching order are shown in Fig. 5.6.

Figure 5.6: The two types of joining trinion related by a reWection in the z-direction (out of the page).
The top exit branch is a subset of the xy-plane, which is invariant under reWections

In Sec. 5.4 we saw that up to isotopy L and Li diUer by a local reWection of R3. The local reWection

collapses vertical lines in the yz-plane to points along the y-axis. The handlebody carrying L intersects the

yz-plane twice, once on each side of the z-axis. Each intersection is a disk whose image under the local

reWection is a line segment (the disk is collapsed onto a diameter). Therefore each of these two branches of the

handlebody is “pinched ” by the local reWection as they pass through the yz-plane. We conclude that in R3

the natural handlebody containing Li is not the image of the handlebody containing L. This is a reWection

of the fact established in Sec. 5.2 that F3 is not a diUeomorphism on any neighborhood of the attractor and

therefore does not represent the entire Lorenz Wow. The image handlebody is however well deVned in R4 but

has a singular projection in R3.
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Next, consider the eUect of the local reWection on the Lorenz branched manifold. The two horizontal

branches that run through the horizontal tubes of the handlebody each cut the yz-plane in a horizontal line

segment. However, this line segment is invariant under the action of the local reWection; no two points are

identiVed. Recall that the local reWection preserves the orientation of R3 on one side of the singular set and

reverses it on the other by sending z → −z. The eUect of this reversal on half of the branched manifold

is shown in Fig. 5.7 [26]. This is precisely the operation that takes the Lorenz branched manifold onto the

induced Lorenz branched manifold.

Figure 5.7: EUect of the change of orientation z → −z (out of the page) induced by the local reWection
on half of the Lorenz branched manifold. Arrows indicate the Wow direction.

In general, if a dynamical system and its image under some mapping into R3 have branched manifolds

that are the same except for a pair of joining charts that are of opposite type the mapping cannot be a dif-

feomorphism of the Wow. The two joining charts are related by a reWection, but the other charts are related

without reWection, so a local reWection is required somewhere for the corresponding handlebody and trinions

to match up correctly. Since a local reWection is the singular projected image into R3 of a smooth embedding

into R4, there is no distinction between the two joining trinions in R4.

Finally, that the two branched manifolds are diUeomorphic can also be seen by considering the map-

ping F3. Recall that the singularity along the yz-plane collapses the lines y = const. By applying the

Birman-Williams projection on the Lorenz Wow one obtains a branched two-manifold that cuts the yz-plane

transversely in the form of a graph over y (see Fig. 5.8). Therefore, no two points of the branched manifolds

are identiVed by F3 and the Birman-Williams projection commutes with this mapping and the two branched

manifolds are diUeomorphic.

In [24] it was found that, neglecting knot type, inequivalent representations of attractors diUer by local

rotation and local reWection operations. A local rotation is equivalent to a Dehn twist at glued trinion ports.
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Figure 5.8: Intersection of the Lorenz Wow with the yz-plane. The fuzziness of this intersection is in
the stable direction of the Wow. Since the Birman-Williams projection collapses orbits along the stable
direction the fuzziness disappears, resulting in a set describable as a graph over y.

A local reWection has the form shown in Fig. 5.7. There are g − 1 regions in the decomposition of a genus-g

handlebody that can be subjected to local reWections. The foregoing discussion clariVes that local reWections

are the result of projections of local rotations from higher dimensional embeddings. In three dimensions,

local reWections describe embeddings of the branched manifold, not the Wow whose projection is the branched

manifold. In order to construct embeddings for the Wow, the mapping must be into one higher dimension.

5.6 Rz(π) Equivariant Embeddings

It has been observed [43] that one cannot obtain a rotationally equivariant embedding of the Lorenz system

from a diUerential embedding based on a single observable. It is the purpose of this section to demonstrate

this explicitly. More generally, we show that if a diUerential embedding of a dynamical system with an

order two symmetry possesses symmetry, it is necessarily parity symmetry. Of course, embeddings with the

original symmetry do exist (e.g. the identity map), therefore such embeddings cannot be constructed through

successive derivatives of any single observation function, that is, they are not diUerential embeddings in the
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usual sense.

Suppose that a dynamical system ẋ = v(x) is equivariant under a mapping (group operation) g, so that

v(gx) = gv(x). Let f be an eigenfunction of g satisfying f(gx) = ±f(x). This is equivalent to saying that f

has deVnite parity (either even or odd) under g. We show that if f is an eigenfunction then d/dt|0 f(ϕt(x))

is an eigenfunction of the same parity, where ϕt is the Wow associated to v.

By deVnition of derivative

d

dt

∣∣∣∣
0

f(ϕt(x)) = lim
t=0

f(ϕt(x))− f(x)

t

= lim
t=0

f(x+ tvx)− f(x)

t
.

(5.14)

Now by transforming x 7→ gx we have

d

dt

∣∣∣∣
0

f(ϕt(gx)) = lim
t=0

f(gx+ tvgx)− f(gx)

t

= lim
t=0

f(g(x+ tvx))− f(gx)

t

=
d

dt

∣∣∣∣
0

f(g(ϕt(x))),

(5.15)

where in the second line we used the assumption of equivariance. It is now apparent that this expression is

an eigenfunction of the same parity as f under g. By induction the higher derivatives are eigenfunctions of

the same parity. Now a diUerential mapping Fn constructed from f is given by Fn = (f1, f2, . . . , fn). Here

f1 ≡ f and for i > 1 fi is the time derivative of fi−1. It follows that when f has deVnite parity that Fn has

the same deVnite parity.

Therefore if f is odd under g then the corresponding diUerential mapping Fn will be odd and the image

system will be parity equivariant. If on the other hand f is even then the diUerential mapping Fn will be

even and thus necessarily two-to-one since Fn(x) = Fn(gx). The image is therefore trivially equivariant or

invariant. For example, z is even, and a diUerential mapping based on z yields a two-to-one mapping onto the

proto-Lorenz system. Explicit equations may be found in [29].

Now let f be any observation function and make an eigen-decomposition of f as f = f+ + f−, where

f± are the even (+) and odd (−) parts of f under g. Since the derivative is linear, the components fi of
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the diUerential mapping Fn split into even and odd parts f±i , which are just the even and odd parts of i-th

derivative of f .

Now suppose that g = Rz(π). We show that equivariance of the image under g leads to a contradiction.

In order for the image to be g equivariant F3 must be g equivariant. Suppose Vrst that the principal directions

of g align with the components of F3. Since up to a permutation of the axes g = diag(−1,−1, 1), every

component function fi must be an eigenfunction, two with eigenvalue −1 (odd) and one with eigenvalue

+1 (even). In any case the component f1 = f is an eigenfunction, but we have seen that its derivatives are

necessarily eigenfunctions of the same parity which yields a contradiction. Thus F3 cannot be equivariant

under g.

More generally, suppose that yi are equivariant coordinates linearly related to the fj by yi = M j
i fj .

Assume without loss of generality that y1 is even. Then we must have M j
1 f
−
j = 0, which says that the

f−j are linearly dependent. In the same way y2 and y3 being odd force the f+
j to be linearly dependent.

Therefore all fj are linearly dependent, but then F3 cannot be an embedding. We therefore conclude that

no diUerential embedding of a Rz(π) equivariant dynamical system can be Rz(π) equivariant, the Lorenz

system in particular.

The general case follows at once. The generator of any order two symmetry acting in Rn is given in the

appropriate basis by g = diag(±1,±1, . . . ,±1), where the signs are incoherent, and we have g2 = In. The

previous considerations show a diUerential embedding will not be equivariant under g, but rather In or −In.

In the Vrst case the image is invariant, and in the second case it is parity equivariant. However, as we have

seen, it is possible for a system and its parity equivariant image to be diUeomorphic, even isotopic. Finally, we

note that in the spirit of [38], a pair of observation functions, one even under g and the other odd, may be used

to reconstruct any order two symmetry. In particular, the projection of a generic (non-symmetric) observation

function onto the even and odd eigen-directions suXces.

5.7 Résumé

We have analyzed diUerential mappings of the rotationally equivariant Lorenz dynamical system L in some

detail. While the mapping constructed from the x coordinate and its Vrst two derivatives is one-to-one on

the attractor of L, it does not provide a diUeomorphism of the Wow. The induced Lorenz system Li is not
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diUeomorphic to the Lorenz system in R3. This is consistent with our Vndings from representation theory.

However, the diUerential mappings of L into Rn for n ≥ 4 do yield embeddings. We saw that the failure

to achieve an embedding in R3 was related to the diUerent symmetry properties of L and Li: the former is

rotationally equivariant and the latter is parity equivariant. We then showed that the two systems are actually

isotopic in R4 and showed how their associated bounding tori and branched manifolds are related. Finally,

we worked out the details of the observation made in [43] that no diUerential mapping of the Lorenz system is

rotationally equivariant; any equivariant image of such a system is either invariant, possessing no non-trivial

symmetry, or else is parity equivariant with a two-fold symmetry. We then generalized this result to show

that an equivariant reconstruction of any system with a two-fold symmetry is parity symmetric. Finally, we

showed how to recover an arbitrary two-fold symmetry from a generic observation function.

While it is not possible to obtain a diUerentiable embedding of the Lorenz system in the three dimensional

manifold R3, it is possible to embed it into a three dimensional twisted submanifoldM of R4. The projection

of this manifold into R3 possesses singularities. In particular, the projection induces a local reWection. This

solves the mystery revealed by representation theory. The standard “diUerentiable embedding” of the Lorenz

system into R3 is not an embedding at all. It fails to be a representation.
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Chapter 6: Equivariant Dynamical Systems

The analysis of the previous chapter was prompted by a speciVc problem – why is the induced Lorenz system

not in the list of representations indicated by representation theory. The answer is that this system is not

actually a representation. It was seen that the symmetry of the Lorenz system was responsible for the peculiar

behavior of its diUerential mappings and embeddings. This suggests a more general analysis of equivariant

systems. This analysis is presented here.

Symmetry is an important property enjoyed by many equations describing physical phenomena. Common

examples include the Lorenz [47], Burke and Shaw [41, 72], Kremliovsky [40], and Thomas [81] dynamical

systems. We are interested in determining what constraints the symmetry of a non-linear dynamical system

imposes on this reconstruction process. SpeciVcally, the questions this chapter addresses are the following:

for a diUerential embedding constructed from a single observation function, 1) is the reconstructed dynamics

equivariant; 2) if yes, under which group is it equivariant; and 3) under which representation of that group?

In short, equivariance provides an extremely tight constraint on the embedding problem. SpeciVcally, we

shall show that only two possibilities exist when attempting to reconstruct an equivariant dynamics, either 1)

the reconstruction has no symmetry; or 2) the reconstruction is equivariant under the parity representation

of Z2, the cyclic group of order two. In other words, regardless of the symmetry of the original system, the

construction possesses at most a two-fold symmetry. It most cases this precludes the possibility of an actual

embedding since the loss of symmetry prevents the reconstruction from being one-to-one. That is not to say

that embeddings do not exist; they just cannot preserve symmetry.

In Sec. 6.1 we provide background material and motivation. In Sec. 6.2 we review the structure theory

for equivariant dynamical systems, while in Sec. 6.3 we introduce a structure theory for diUerential mappings

(dynamical system reconstructions). We work out the structure of equivariant reconstructions in Secs. 6.4 and

6.5. We provide the implications of this theory for the embedding problem in Sec. 6.6. Finally, we state our

conclusions in Sec. 6.7.
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6.1 Dynamics, Groups, and Representations

Consider a dynamical system v on Rn, v : Rn → Rn, with Wow ϕt. A group G may act on Rn as a set of

linear transformations. Such an action is through a representation Γ of G. A dynamical system ẋ = v(x) is

said to be symmetric or equivariant underG if there exists a faithful representation Γ ofG acting on Rn such

that the following diagram commutes for every g ∈ G

Rn v−−−−→ Rn

Γ(g)

y
yΓ(g)

Rn v−−−−→ Rn.

(6.1)

This relation states the the vector Veld “looks the same” when viewed from a point x as is does from any

symmetry related point Γ(g)(x). The representation is required to be faithful to eliminate trivial equivariance,

which is simply invariance.

The Lorenz and Kremliovsky dynamical systems are both equivariant under Z2, the cyclic group of order

two. The Lorenz system is given by the equations

ẋ = σ(y − x)

ẏ = Rx− y − xz

ż = −bz + xy,

(6.2)

which are equivariant under the transformation Rz(π) : (x, y, z) 7→ (−x,−y, z), equivalent to a π rotation

about the z-axis. We say that the Lorenz system is rotationally equivariant. The Lorenz attractor, which is

also rotationally equivariant, was shown in Fig. 5.3. The Kremliovsky system is given by the equations

ẋ = −y − z

ẏ = x+ ay

ż = bx+ z(x2 − c),

(6.3)

which are equivariant under the transformation P : (x, y, z) 7→ (−x,−y,−z), which is a spatial inversion.

We say that the Kremliovsky system is parity equivariant. The Kremliovsky attractor, which is also parity
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equivariant, is shown in Fig. 6.1. The representations Rz(π) and P are inequivalent in R3. The two systems

therefore possess distinct symmetries even though they are both equivariant under faithful representations of

the same group, Z2.

(a) xy-projection. (b) xz-projection.

Figure 6.1: The Kremliovsky attractor.

The structure of equivariant dynamical systems and their diUerential embeddings depends on the structure

of the underlying equivariance group, G. We will assume that G is a Vnite group. Let Γ be a representation

of G acting on the linear space V . Then Γ is said to be reducible if there exists a proper subspace U ⊂ V that

is invariant under Γ, that is Γ(g)(u) ∈ U for every u ∈ U . If V has no proper invariant subspaces then Γ is

said to be irreducible. Thus, the only subspaces of V invariant under Γ in an irreducible representation are ∅

and V .

A representation Γ is said to be fully reducible if whenever U is a proper invariant subspace, there exists

a complementary subspace which is also invariant. This means that in the proper basis the matrices Γ(g) are

simultaneously block diagonal. It is a fundamental fact that representations of Vnite groups are always fully

reducible [32]. In this case every representation is a direct sum of irreducibles.

When speaking of irreducibility it is important to specify the Veld. A representation that is irreducible

over R may be reducible over C. Examples are provided by the representations of the cyclic groups Zp for

p > 2 as planar rotations through angle 2π/p (this is discussed further in Sec. 6.2). As we are concerned

with real representations on real vector spaces (Rn), irreducibility will be understood over R unless otherwise

noted.

Two more fundamental results that are instrumental to the following analysis are Schur’s lemmas, which
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describe the structure of homomorphisms between irreducible representations. Though applicable in more

general settings, in the context of group representations they take the following form [32].

Lemma 6.1 (Schur’s First). Suppose that Γ is an irreducible representation of a group G acting on a vector

space V . If there exists a linear mapM : V → V that commutes with Γ for every g ∈ G,

V
M−−−−→ V

Γ(g)

y
yΓ(g)

V
M−−−−→ V,

(6.4)

thenM is a multiple of the identity,M = λI .

Lemma 6.2 (Schur’s Second). Suppose that Γ1 is an irreducible representation of a group G acting on a

vector space V 1 and that Γ2 is an irreducible representation of G acting on V 2. If there exists a linear map

M : V 1 → V 2 that commutes with Γi for every g ∈ G,

V 1 M−−−−→ V 2

Γ1(g)

y
yΓ2(g)

V 1 M−−−−→ V 2,

(6.5)

then eitherM is zero or an isomorphism. In the latter case the two representations Γ1 and Γ2 are equivalent.

6.2 The Structure of Equivariant Dynamical Systems

This section reviews the structure theory of equivariant dynamical systems [26]. Let the representation ΓD

deVne an action of the groupG onRn. Then ΓD acts on the coordinate functions xi ofRn. Denote byR[x] the

set of all polynomials in variables x1, . . . , xn. This set is a ring under the operations of polynomial addition

and multiplication. The action of ΓD on the monomials xi induces an action on all of R[x] in a natural way.

This representation is denoted by ΓR.

Let p ∈ R[x] be a polynomial. If p is invariant under Γ, p(Γx) = p(x), then p is said to be an invariant

polynomial. Otherwise p is said to be covariant. Since ΓR is fully reducible, each polynomial p can be decom-

posed into components, each belonging to an invariant subspace transforming under a particular irreducible

representation. The invariant polynomials all belong to the same subspace, which transforms under the trivial
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representation Γ(g) = In. The sets of invariant and covariant polynomials each possess a basis set of polyno-

mials from which all others may be constructed through the ring operations [12]. They are called an integrity

basis and a ring basis, respectively.

An arbitrary function f on Rn may be decomposed with respect to the action ΓD of G on Rn into a

sum of an invariant and a covariant function. The invariant part may be written as h0(p), where h0 is a

(not necessarily polynomial) function of the integrity basis polynomials, p. The covariant part may be further

decomposed as
∑
r hr(p)q

r , where r ≥ 1, the qr are polynomials in the ring basis, and the hr are functions

of the invariant polynomials. If we deVne q0 ≡ 1 as a ring basis polynomial representing the invariant

irreducible subspace, an arbitrary function f may be written as f = hr(p)q
r , where r ≥ 0 and summation is

implicit over the repeated index.

Now consider a dynamical system ẋi = vi equivariant under the representation ΓD ofG. Each component

of the vector Veld may be expanded in the ring basis as vi = hir(p)q
r . The behavior of the dynamical system

under the group operation g is determined by

gvi = ghir(p)q
r

gvi = hir(p)gq
r

ΓD(g−1)ijv
j = hir(p)Γ

R(g−1)rsq
s

ΓD(g−1)ijh
j
sq
s = hir(p)Γ

R(g−1)rsq
s,

(6.6)

where in the second line we used invariance of the hir , in the third the deVnitions of the representations ΓD

and ΓR, and in the last the expansion of vj in the ring basis.

The last line must hold for each basis element qs in the ring basis separately. The resulting equation may

be expressed as the commutative diagram

R[x]
h−−−−→ Rn

ΓR(g)

y
yΓD(g)

R[x]
h−−−−→ Rn,

(6.7)

demonstrating that h intertwines the two representations ΓD and ΓR. We may regard Rn as a subspace
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of R[x] spanned by the monomials xi. Since both ΓD and ΓR are fully reducible, Schur’s Vrst lemma may

be applied to the restriction of h to the irreducible subspaces. The conclusion is that h is multiplication by

a constant (that is, an invariant polynomial) between equivalent representations and zero otherwise. This

severely restricts the structure of the functions hij that deVne an equivariant dynamical system.

For example, consider the representation ΓD = Rz(π) of Z2, the equivariance group of the Lorenz system.

The invariant polynomials z, x2, xy, and y2 span an integrity basis. The ring basis polynomials x and y each

transform under the non-trivial one dimensional representation Z2 → {1,−1}. The most general form of a

three dimensional dynamical system equivariant under ΓD = Rz(π) is given by

d

dt




x

y

z




=




0 h1
2 h1

3

0 h2
2 h2

3

h3
1 0 0







1

x

y



, (6.8)

where each hij is an arbitrary function of the invariant polynomials. The Lorenz system is deVned by the

choices h1
3 = −h1

2 = σ, h2
2 = R− z, h2

3 = −1, and h3
1 = −bz + xy.

6.3 The Structure of DiUerential Mappings

This section describes two properties of diUerential mappings that restrict the structure of equivariant embed-

dings of dynamical systems. These are 1) the canonical form of the image dynamical equations; and 2) the

preservation of transformation properties under diUerentiation.

DiUerential mappings were introduced in Sec. 1.3.4. A diUerential mapping F is constructed from the

consecutive derivatives of a single observation function f . When the image dynamical system is well deVned

(for example, when the mapping is an embedding) the new vector Veld V at F (x) is given by

V i =
∂F i

∂xj
vj

=
d

dt

∣∣∣∣
0

F i(ϕt(x))

(6.9)
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It is immediate from the deVnition that V 1 = F 2. For V 2 we have

d

dt

∣∣∣∣
0

F 2(ϕt(x)) =
d

dt

∣∣∣∣
0

d

ds

∣∣∣∣
0

f(ϕs(ϕt(x)))

=
d

dt

∣∣∣∣
0

d

ds

∣∣∣∣
0

f(ϕs+t(x))

=
d

dt

∣∣∣∣
0

d

ds′

∣∣∣∣
t

f(ϕs′(x))

=
d2

dt2

∣∣∣∣
0

f(ϕt(x))

= F 3(x),

(6.10)

where s′ = s+ t. By induction we have the general rule that V i = F i+1 for i < m.

Therefore the image dynamical system always has the canonical form

Ḟ 1 = F 2

Ḟ 2 = F 3

...

Ḟm−1 = Fm

Ḟm = h(F 1, . . . , Fm),

(6.11)

for some function h. We can express this canonical form by Ḟ i = M i
j F

j + δimh(F ), where above the last

rowM is an upper shift matrix (unit super-diagonal) and the bottom row is zero,

M =




0 1 0 . . .

0 0 1 . . .

...
...

...
. . .

0




. (6.12)

Next we consider how the derivatives of the observation function f transform under a group operation g.
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By repeating the calculation in Eq. 5.15 we see that

d

dt

∣∣∣∣
0

f(ϕt(gx)) =
d

dt

∣∣∣∣
0

f(g(ϕt(x))). (6.13)

It follows that if f is invariant under g then so is its time derivative since f ◦ g = f . Suppose f = qi is a ring

basis polynomial. In this case

d

dt

∣∣∣∣
0

qi(gϕt(x)) = Γij(g)
d

dt

∣∣∣∣
0

qj(ϕt(x)), (6.14)

which just says the derivative of qi transforms under the same representation as qi. In the general case of a

linear combination of covariant polynomials multiplied by arbitrary invariant polynomials, the derivative of

f transforms the same as f , that is, it is composed of the same representations. This follows at once from the

linearity of the derivative, the chain rule, and the special cases already considered.

Consider again the Lorenz system with observation function x, which transforms under the parity repre-

sentation of Z2. The diUerential mapping F (x, y, z) = (X,Y, Z) of the Lorenz system into R3 constructed

using x is given by

X = x

Y = σ(y − x)

Z = σ(R+ σ − z)x− σ(1 + σ)y,

(6.15)

and it is apparent that the coordinate functions (X,Y, Z) transform under the P representation of Z2. The

canonical equations of motion are satisVed with h given by [28, 29]

bσ(R− 1)X − b(1 + σ)Y − (1 + b+ σ)Z

−X2Y − σX3 +
Y

X
(Z + (1 + σ)Y ) .

(6.16)

The canonical equations are also equivariant under P .
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6.4 The Structure of Equivariant Representations

This section applies the structure built up in the past two sections to constrain the symmetry of equivari-

ant dynamical systems under diUerential mappings. First, we demonstrate that equivariance requires that

an observation function be composed of polynomials transforming under a single representation. Next, we

demonstrate that this representation is necessarily abelian, in fact cyclic. Finally, we show that this repre-

sentation is one dimensional. We conclude that if the image of an equivariant dynamical system is itself

equivariant, the equivariance group representation is necessarily one dimensional.

Suppose that f = F 1 is an observation function and that F = (F 1, . . . , Fm) is the corresponding

diUerential mapping. Since the original dynamical system is equivariant, the image system will be equivariant

under G if the following diagram commutes

Rn F−−−−→ Rm

ΓD(g)

y
yΓD′ (g)

Rn F−−−−→ Rm.

(6.17)

Recall that the deVnition of equivariance requires that ΓD
′
be faithful. As we shall see, Eq. (6.17) is often

satisVed by an unfaithful representation ΓD
′
. In this case ΓD

′
provides a faithful representation of some

group G′ homomorphic to G. SpeciVcally, if ρ : G→ ΓD
′
is the homomorphism deVning the representation,

then G′ ∼= G/ kerφ. We say that the image system is equivariant under G′ rather than G.

For instance, the Lorenz system is equivariant under Z2 acting as π rotations around the z-axis. The

coordinate function z is invariant under this action and a diUerential mapping constructed using this function

results in a dynamical system without symmetry. It is equivariant under the identity representation ρ : Z2 →

I3. We will return to this example in Sec. 6.5.

As in Sec. 6.2 we expand each component F i in the ring basis of Rn as F i = hij(p)q
j . By essentially the

same reasoning that led to Eq. (6.7) we obtain the diagram

R[x]
h−−−−→ Rm

ΓR(g)

y
yΓD′ (g)

R[x]
h−−−−→ Rm,

(6.18)
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showing that h intertwines ΓR and ΓD
′
, that is hΓR = ΓD

′
h.

Using full reducibility, decompose ΓR and ΓD
′
into a direct sum of irreducible representations, ΓR =

diag
(
Γ(l1), . . . ,Γ(ls)

)
, and ΓD

′
= diag

(
Γ(k1), . . . ,Γ(kr)

)
. Similarly decompose R[x] and Rm into the

corresponding invariant subspaces on which the irreducible representations act, R[x] = U1 ⊕ · · · ⊕ Us and

Rm = V1 ⊕ · · · ⊕ Vr . Let the indices of hij refer now to invariant subspaces rather than matrix elements

so that hij : Uj → Vi is a linear map for each i, j. Schur’s second lemma requires that each hij be an

isomorphism when non-zero, in particular Uj and Vi have the same dimension. We obtain the commutative

diagram

Uj
hi

j−−−−→ Vi

Γ(lj)

y
yΓ(ki)

Uj
hi

j−−−−→ Vi,

(6.19)

for each pair of indices (i, j).

Using the decompositions given by the previous paragraph, Eq. (6.18) can be written in the block form




h1
1Γ(l1) h1

2Γ(l2) · · ·

h2
1Γ(l1) h2

2Γ(l2) · · ·
...

...
. . .




=




Γ(k1)h1
1 Γ(k1)h1

2 · · ·

Γ(k2)h2
1 Γ(k2)h2

2 · · ·
...

...
. . .



. (6.20)

The components of F are built from covariant polynomials. Suppose that f = F 1 contains a polynomial qr

transforming under some representation, which we assume to be Γ(l1) without loss of generality. Then some

hi1 is non-zero and therefore an isomorphism. Assume without loss of generality that i = 1. We then have

h1
1Γ(l1) = Γ(k1)h1

1, which shows that Γ(l1) and Γ(k1) are isomorphic and therefore the same representation.

Now, by the results of Sec. 6.2 every component of F must contain a covariant polynomial transforming

under the same representation Γ(l1). This in turn requires that hi1 is non-zero (and therefore an isomorphism)

for every value of i. The Vrst column of Eq. (6.20) then yields the equation hi1Γ(l1) = Γ(ki)hi1 for every

i, which shows that every irreducible representation Γ(ki) appearing in ΓD
′
is the same and equal to the

representation Γ(l1). In the same way, comparing the remaining columns shows that every representation

of ΓR is equal to Γ(l1) as well. A very strong result follows: each component of F must be composed of
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polynomials transforming under a single irreducible representation.

It turns out that this representation cannot be arbitrary; it is necessarily abelian as we now show. Recall the

canonical form Ḟ i = M i
j F

j + δimh(F ) of the image diUerential equations, whereM is given by Eq. (6.12).

Equivariance under Γ yields the equation

(
ΓijM

j
k −M i

j Γjk

)
F k = δimh(ΓF )− Γimh(F ). (6.21)

The LHS is manifestly linear in F and the RHS must be linear in F as well. When i 6= m the delta vanishes

and we must have Γimh(F ) be linear in F . Since h is always non-linear in cases of interest (we are studying

non-linear dynamical systems) we see that Γim = 0 and therefore ΓijM
j
k = M i

j Γjk when i 6= m. By

writingM i
j = δi+1

j , it follows immediately that Γij = Γi+1
j+1, which says that Γ is Toeplitz in the basis

spanned by the F i.

That every matrix in Γ is simultaneously Toeplitz implies that Γ is an abelian representation. The compo-

nents of an n× n Toeplitz matrix A are completely determined by the values along the anti-diagonal, which

can be considered as a vector of length 2n − 1. In index notation we may write Aij = ai−j+n, in terms of

the vector a. Similarly let Bij = bi−j+n. If A and B belong to Γ then both products AB and BA belong to

Γ and must be Toeplitz.

Now the components AB and BA are given in terms of the vectors a and b by

(AB)ij =

n∑

k=1

an+i−kbn−j+k

(BA)ij =

n∑

l=1

bn+i−lan−j+l.

(6.22)

In the expression for BA, the sum over l may be rewritten as a sum over k by setting l = n + 1 − k. A

term from this sum is now given by a2n+1−k−jbk+i−1. The anti-diagonal of a matrix is speciVed by the

index condition i + j = n + 1. This relation can be used to swap i and j in the terms giving BA, yielding

a2n+1−k−jbk+i−1 → an+i−kbn−j+k , which is exactly the form of the terms giving AB. Thus the two

matrices have identical anti-diagonals. But since the anti-diagonal determines the entire matrix, the two

matrices are identical. We conclude that A and B commute.
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Thus the representation Γ is necessarily abelian for any equivariance group G. In particular, if a dynam-

ical system is equivariant under a non-abelian group G, the largest equivariance group of any image system

constructed by a diUerential mapping is the abelianization G̃ = G/G(1), which is the quotient of the group

by its commutator subgroup G(1) = [G,G]. This is because if G′ = G/N is any abelian quotient of G then

G(1) ≤ N . In other words, G̃ is the largest abelian homomorphic image of G. It follows that a diUeren-

tial mapping for a non-abelian G cannot provide an embedding equivariant under G since group elements

representing non-trivial commutators are mapped to the identity.

For example, the alternating groupA4 (the group of all even permutations on four objects) is a non-abelian

group of order twelve. The commutator subgroup is isomorphic to the vierergruppe V4 and the abelianization

is Ã4
∼= A4/V4

∼= Z3, the cyclic group of order three [70]. Therefore a diUerential mapping of a dynamical

system equivariant under A4 will have at most a three-fold symmetry. For n ≥ 5 An is non-abelian and

simple [70]. Since An is non-abelian, A(1)
n is not trivial. Since An is simple A(1)

n must then be equal to all of

An, and the abelianization Ãn ∼= An/An is trivial. A diUerential mapping of a dynamical system equivariant

under An for n ≥ 5 never has symmetry. Remarkably, we will see that diUerential mappings for A4 and

A3
∼= Z3 equivariant dynamical systems never have symmetry either.

Finally, we show that Γ must be one dimensional. To this end we momentarily extend to the complex

plane. Schur’s Vrst lemma implies that every irreducible representation of an abelian group is one dimensional

over C. There are thus two possibilities for Γ. Either the representation is one dimensional over R and

therefore irreducible overC, or two dimensional overR and expressible as the direct sum of a one dimensional

complex representation and its complex conjugate, Γ = Γ(i) ⊕ Γ̄(i).

We now suppose that Γ is two dimensional. In the decomposition Γ = Γ(j)⊕Γ̄(j), the complex irreducible

representation Γ(j) is one dimensional and unitary and therefore a complex number of modulus one, which

can be written Γ(j)(g) = exp iφ(j, g). It follows that Γ is similar to a real 2× 2 rotation matrix

Γ =




exp iφ 0

0 exp−iφ


 '




cosφ sinφ

− sinφ cosφ


 . (6.23)

Note that every 2×2 rotation matrix is manifestly Toeplitz. We may think of Γ as providing a homomorphism
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of G onto a Vnite subgroup of SO(2). Such a subgroup is not only abelian, it is necessarily cyclic.

All of the irreducible representations of cyclic groups are known [32]. If we let g denote the generator

of the cyclic group of order p then there are exactly p inequivalent irreducible representations of Zp over C.

They are given by

Γ(q)(gm) = εmq, (6.24)

where ε is a primitive p-th root of unity and 0 ≤ q < p. The representation q = 0 is always the identity.

Setting z = x + iy, the invariant basis polynomials for Γ(0) are z̄z, zp, and z̄p. The covariant polynomials

for Γ(j), j > 1, are zj and z̄p−j . Since real representations are formed by the direct sum of a complex

representation and its complex conjugate, q and p − q, the real basis polynomials are the real and imaginary

parts of the corresponding complex polynomials.

In the deVning representation on R2, the x and y coordinates transform under the Γ = Γ(1) ⊕ Γ̄(1) rep-

resentation. The only other polynomials that transform under this representation are the real and imaginary

parts of z̄p−1. If a dynamical system is equivariant under Γ then in a two dimensional subspace on which

Γ acts the equations of motion have the complex form ż = ξz + ζz̄p−1, with ξ and ζ functions of invariant

polynomials. In terms of the real variables we have

d

dt



x

y


 =



ξ1 ξ2

−ξ2 ξ1






x

y


+



ζ1 ζ2

−ζ2 ζ1






<(z̄p−1)

=(z̄p−1)


 . (6.25)

Notice that the real an imaginary parts of z̄p−1 are non-linear in x and y when p > 2.

Now if the image of a dynamical system under a diUerential mapping is equivariant under Γ, then as

was shown in Sec. 6.4 the image phase space Rm must decompose as Rm = R2 ⊕ · · · ⊕ R2 with the same

representation Γ of Zp acting on each factor R2. In each subspace the equations of motion must have the form

of Eq. (6.25). This is a second canonical form for the equations of motion (Eq. (6.11) being the Vrst).

Denote by Y the coordinates deVning this decomposition so that (Y 2k−1, Y 2k) spans the k-th subspace.

These coordinates are related to the canonical coordinates F by some invertible linear transformation, Y i =

P ij F
j . We wish to show that the two canonical forms of the equations are consistent only when h is linear.
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The diUerential equations in the Y coordinates are given by

Ẏ i = P ij Ḟ
j

= P ijM
j
kF

k + P im h(F )

= P ijM
j
k (P−1)kl Y

l + P im h(P−1Y )

= N i
j Y

j + Cih̃(Y ),

(6.26)

whereN i
j andC

i are constants and h̃ = h◦P−1 is a non-linear function of Y . For simplicity in the following

we will drop the tilde and write h for h̃.

The function h may be uniquely written as h = hr(p)q
r in terms of invariant and covariant polynomials.

If we identify (Y 2i−1, Y 2i) = (x, y) for any i, then the most general form of h consistent with Eq. (6.25) is

h = h1x+ h2y + h3<(z̄p−1) + h4=(z̄p−1), (6.27)

where the hi are functions of invariant polynomials. Using this decomposition of h, Eq. (6.26) becomes in the

(Y 2i−1, Y 2i) = (x, y) subspace

d

dt



x

y


 =



N11 + C1h1 N12 + C1h2

N21 + C2h1 N22 + C2h2






x

y




+



C1h3 C1h4

C2h3 C2h4






<(z̄p−1)

=(z̄p−1)


 .

(6.28)

Comparing this to Eq. (6.25) leads to the equations ζ1 = C1h3 = C2h4 and ζ2 = C1h4 = −C2h3. These

equations require that C2
1 = −C2

2 , or C1 = C2 = 0, which in turn implies that ζ1 = ζ2 = 0. We

conclude that this equation is satisVed only if h is linear. But if h is linear then the image dynamical system is

linear and uninteresting. We therefore conclude that for non-linear systems the representation Γ must be one

dimensional.

For completeness, we note that in the linear case two dimensional equivariant embeddings do exist. Con-
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sider the simple two dimensional dynamical system

ẋ = y

ẏ = −x,
(6.29)

which is equivariant under SO(2) and therefore every Zp acting as rotations through angle 2π/p. For p > 2

the complex representation Γ1 = {1, ε, ε2, . . . , εp−1} is faithful. The complex basis polynomial is z = x+ iy,

and the monomials x and y form a basis for the two dimensional real representation. Suppose that x is chosen

as the observation function. Then since ẋ = y the diUerential mapping is F = (x, y) which is just the identity.

The image system is in this case identical to the original system and manifestly equivariant under the same

representation of the same symmetry group.

As an application of the results of this section, consider the Thomas system [81], which is deVned by the

diUerential equations

ẋ = −bx+ ay − y3

ẏ = −by + az − z3

ż = −bz + ax− x3.

(6.30)

These equations have a six-fold symmetry. They are equivariant under the parity representation P of Z2 with

generator g2 = −I3 as well as the C3 = Ru(2π/3) representation of Z3, where u = (1, 1, 1). The generator

of C3 is the cyclic permutation matrix

g3 =




0 1 0

0 0 1

1 0 0



. (6.31)

Since the Thomas system is equivariant under both Z2 and Z3 it is equivariant under their direct product

Z6 ' Z2 ⊗ Z3 with generator g6 ≡ g2g3 = g3g2. This generator can also be described by a 2π/6 rotation

about u followed by a reWection in the plane perpendicular to u. The generators of the two subgroups are

recovered as C3 = g2
6 and P = g3

6 . Projections of the Thomas attractor are shown in Fig. 6.2.

A more convenient representation of the system is given by transforming to new variables deVned by the
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(a) xy-projection. (b) xz-projection. (c)XY -projection.

Figure 6.2: The Thomas attractor. The six-fold symmetry is evident in the XY -projection of the new
coordinates, Eq. 6.32 (c).

linear transformation [26] 


X

Y

Z




=




−
√

3
2

√
3

2 0

− 1
2 − 1

2 1

1 1 1







x

y

z



, (6.32)

which makes Z the new rotation axis so that projection onto the XY -plane exhibits the six-fold symmetry.

Basis polynomials for both subgroups can be constructed and have degree at most three. Each basis polynomial

has deVnite transformation properties under the two generators C3 and P . The transformation properties of

these polynomials and the equivariance properties of the images constructed from them are summarized in

Table 6.1.

Table 6.1: Transformation properties for basis polynomials of degree at most two for the symmetries of
the Thomas system, P and C3. Cov and Inv denote covariance and invariance respectively. The Vnal
column gives the symmetry of the image system using the corresponding basis polynomial as observation
function. An I denotes the identity representation or invariance.

Polynomial P C3 Image

X,Y Cov Cov P
Z Cov Inv P

X2 + Y 2 Inv Inv I
X2 − Y 2, 2XY Inv Cov I

All four combinations of invariance and covariance between the two subgroups exist. The coordinate

functions X and Y are covariant polynomials of both symmetries and are therefore covariant polynomials

of the complete symmetry group Z6. However, in accordance with the results of this section, no diUerential

mapping constructed from any of these functions can possess more than the Z2 symmetry. A direct calculation

shows that diUerential mappings constructed fromX or Y have parity symmetry, and visual inspection shows
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no apparent rotational symmetry.

6.5 The Structure of One Dimensional Representations

The previous section demonstrated that the only non-trivial equivariance group representations for diUerential

mappings are one dimensional. In this case every basis polynomial must be an eigenvector with eigenvalue

λ = ±1. Since all components of the mapping F transform under the same representation, each component

is a simultaneous eigenvector with the same eigenvalue. If λ = 1 then the image is equivariant under the

trivial representation Γ(g) = Im for every g. The image system is no longer equivariant under G, but

rather invariant. We say that F has modded out the symmetry of the dynamical system. In this case, the

nicest possible behavior for F is providing a |G| → 1 local diUeomorphism [26]. We noted in Sec. 6.4 that

constructing a diUerential mapping of the Lorenz system using the z coordinate results in an image without

symmetry. This mapping is in fact a 2→ 1 local diUeomorphism [26].

On the other hand if λ = −1 then the image coordinates transform under a representation satisfying

Γ(g) = ±In and Γ(g2) = In for every g. In this case Γ furnishes the parity representation ofG ∼= Z2 in Rm.

This representation deVnes a group homomorphism G→ Z2.

The necessary and suXcient condition for the existence of such a homomorphism is the existence of a

normal subgroup N / G with |N | = |G|/2, since by Lagrange’s Theorem we have |G/N ||N | = |G| and

Z2 is the unique group of order two. We see immediately that when the order of G is odd that no such

homomorphism can exist. In particular, if a dynamical system is equivariant under Zp, p odd, its image under

any diUerential mapping cannot be equivariant.

When |G| is even such a homomorphism may or may not exist, depending on the group. For example the

alternating group A4 has order twelve but has no subgroup of order six [70], so possesses no homomorphism

onto Z2. One could also note that the abelianization is Ã4
∼= Z3, which possesses no homomorphism onto

Z2. Since there is no homomorphism of A4 onto Z2, the image of an A4 equivariant dynamical system under

any diUerential mapping cannot have symmetry.

Notice that A4 is non-abelian. Abelian groups of even order always possess a normal subgroup of half the

group order, which we now show. By the fundamental theorem of Vnite abelian groups we can write G as a

direct product of cyclic groups. Since the order of a direct product is the product of the orders, at least one
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summand Zr must have even order. If the generator of this subgroup is h, then h2 generates a cyclic subgroup

of order r/2. But every subgroup of an abelian group is normal, which establishes the claim.

Consider again the Lorenz system, equivariant under the representation Γ = Rz(π) of Z2. The basis set

of invariant polynomials is given by z, x2, xy, and y2, while the basis set of covariant polynomials, which

transform under P , is given by x and y. Constructing a diUerential mapping using an invariant polynomial

results in an image without symmetry. For instance, using z results in a 2 → 1 local diUeomorphism onto

the proto-Lorenz system [26]. On the other hand, using a covariant function such as x results in a parity

equivariant image, the induced Lorenz system. In no case is it possible to construct an image transforming

under the same representation as the original Lorenz system, Rz(π). This agrees with the results of the

previous chapter, obtained using diUerent techniques. Similar remarks would hold for any Rz(π) equivariant

dynamical system, such as the Burke and Shaw system.

It is worth stressing this last observation. If one constructs a diUerential mapping of any equivariant

dynamical system and the image system is equivariant, it is necessarily parity equivariant, regardless of the

original symmetry. This is congruent with the results of the Thomas system in Sec. 6.4. In particular this

means that a diUerential embedding of a system equivariant under a group of order greater than two cannot

be equivariant under a faithful representation of the symmetry group. In general, symmetries are not preserved

by diUerential embeddings constructed from a single observation function.

6.6 Implications for Embeddings

An important consequence of the foregoing analysis is that in almost all cases equivariant diUerential map-

pings of equivariant systems are not embeddings. This is immediate if the symmetry of the original system

has order |G| > 2. SpeciVcally, the action of G partitions the original phase space into |G| symmetry related

domains. Since the image system has only two symmetry related domains, the original domains are mapped

onto the image domains in a |G|/2→ 1 fashion. If the image system is invariant, these domains are mapped

in a |G| → 1 fashion.

Even when |G| = 2 one may fail to obtain an embedding when the original representation of Z2 is

not the parity representation. Every representation of Z2 acting in Rn is given in the appropriate basis by

Γ = diag(1, · · · , 1,−1, · · · ,−1). Representations are distinguished by their signature, that is, the number



126

of + signs in this matrix. Since the coordinate directions corresponding to the + signs are left invariant (and

those corresponding to the − signs covariant), representations are distinguished by the dimension of their

invariant subspace. The parity representation leaves only the origin (zero dimensional subspace) invariant.

A diUerential mapping must map the symmetry invariant set (not to be confused with the dynamical

invariant set) of the original system onto that of the image system. When the original invariant set has non-

zero dimension, this identiVcation obviously precludes an embedding. However, in many cases this invariant

set may be considered disjoint from the Wow. In the case of the Lorenz system, the z-axis is the stable manifold

of the central Vxed point and is generally ignored (excised) when discussing embeddings.

Even with this understanding trouble still arises. Let z = (x, y), where x and y the invariant and covariant

coordinates, respectively, so that Γ(x, y) = (x,−y). Let F be the diUerential mapping between spaces of the

same dimension which satisVes F (Γz) = −F (z). Note that Γ2 = I and that by the chain rule we have

∂F (Γz)

∂z
=
∂F

∂z

∣∣∣∣
Γz

Γ. (6.33)

Thus the Jacobian at Γz is

JF (Γz) =
∂F

∂z

∣∣∣∣
Γz

=
∂F (Γz)

∂z
Γ

= −∂F (z)

∂z
Γ

= −JF (z)Γ,

(6.34)

and the Jacobian determinants are related by

|JF (Γz)| = | − JF (z)||Γ| = (−1)n|JF (z)| · (−1)#y, (6.35)

where n is the total number of coordinates and #y denotes the number of covariant coordinates. Since

n = #x+ #y, we have

|JF (Γz)| = (−1)#x|JF (z)|. (6.36)
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We see that if #x is odd, the Jacobian determinants at (x, y) and at Γ(x, y) have opposite sign, and so the

Jacobian must become degenerate somewhere along any curve connecting these two points. This presents

an obstruction to obtaining an embedding into a space of the same dimension as the original system. We

note, however, that this condition on the Jacobian is not an obstruction to Vnding an embedding in higher

dimensions.

For example, the Lorenz system has the z-axis as a one-dimensional invariant subspace. Therefore no

equivariant diUerential mapping of Lorenz into R3 can be an embedding. This is true for any Rz(π) equiv-

ariant dynamical system. However, for the Lorenz system, a diUerential mapping constructed from the x

coordinate does provide an embedding into R4 and higher dimensions. This was worked out explicitly in the

previous chapter.

The general theory presented here provides the following implications for the four dynamical systems

listed in the introduction: an equivariant embedding of the Kremliovsky system Eq. (6.3) is possible that

preserves the parity symmetry; an equivariant embedding of the Lorenz system Eq. (6.2) or the Burke and Shaw

system is possible, but the symmetry necessarily changes from rotation to parity; an equivariant embedding

of the Thomas system Eq. (6.30) is not possible.

Finally, we note that while diUerential mappings typically destroy symmetry, it is sometimes possible to

recover the lost symmetry. If one has an invariant (non-equivariant) image it is possible to construct a lift

of the image system to a covering system with any prescribed symmetry. If the original symmetry group

and representation are known, then a lift to a system equivariant under this symmetry is possible. This two

part process of generating an invariant image and lifting to an equivariant system yields an embedding of the

original system which preserves symmetry. For details of this construction, see [42, 23, 26].

6.7 Résumé

This chapter has considered the embedding problem for equivariant dynamical systems. Equivariant dy-

namical systems possess a rather rigid structure that constrains this problem. We have shown that for any

dynamical system equivariant under any representation of any discrete equivariance group, there are only two

possibilities when attempting to construct equivariant images under diUerential mappings: either 1) the image

is invariant; or 2) the image is equivariant under the parity representation of Z2. An immediate corollary is
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that the only symmetry that can be preserved under a diUerential mapping is parity symmetry.

It follows that in almost all cases diUerential mappings are not embeddings. This is always the case if the

original symmetry has order |G| > 2, since symmetry related domains in the original system are mapped onto

symmetry domains in the image in a |G| → 2 or |G| → 1 fashion. Even if |G| = 2, an equivariant diUerential

mapping of an n-dimensional system into Rn will fail to be an embedding if the dimension of the symmetry

invariant subspace is odd. Embeddings in the same dimension are only possible when the symmetry invariant

subspace has even dimension, such as when the original system is already parity equivariant. The symmetry

of an equivariant dynamical system typically cannot be preserved under diUerential embedding.
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Chapter 7: Towards Higher Dimensional Systems

The theory developed in the preceding chapters may be regarded as a capstone on the well developed and

essentially completed topological classiVcation of three dimensional chaotic dynamical systems. On the other

hand, precious little is known about the topological structure of chaotic dynamical systems in dimensions

greater than three. At the very least, the embeddings of three dimensional systems into three dimensional

submanifolds of higher dimensional Euclidean spaces studied in previous chapters is a starting point. This,

of course, does not address systems that are inherently higher dimensional. Nevertheless, the program of

representation theory can be carried out in isolated cases and introduces a fresh perspective from which to

study the problem.

While the general structure of dynamical phase spaces in higher dimensions is not yet well understood,

there is an easily deVned and important class of systems in every dimension. This class generalizes the genus

one dynamical systems in three dimensions. Recall that in three dimensions a genus one system has as its

phase space the three dimensional solid torusD2×S1. Systems of this type are readily created by periodically

driving (S1) a two dimensional oscillator (D2). Equivalently, they are suspensions of two dimensional maps.

In direct analogy, one may periodically drive or suspend an oscillator on Dn for any n ≥ 3, obtaining a Wow

with phase space Dn × S1. We will refer to such a system as a toral system and the phase space as a solid

n-torus. Note that the solid n-torus is n+ 1 dimensional.

We begin in Sec. 7.1 by determining the mapping class group of T n, since this is how we began with the

three dimensional systems considered earlier. However, we ignore smoothness and compute this group in the

topological category, obtaining a straightforward generalization of the result obtained forD2×S1. The result

is MCG(Dn × S1) ∼= Z2 ⊕ π1SO(n). The factor π1SO(n) has to do with the twisting available in Dn and

gives the usual Z for n = 2. The methods used to obtain this result break down in the smooth case. We spend

some time in Sec. 7.2 to attempt to understand the nature and extent of this failure. This failures prevents use

from computing the smooth mapping class group. However, we bypass this diXculty in Sec. 7.3 by computing

the spectrum of embeddings directly. This happy occurrence is possible due to the Vber bundle structure of
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T n. The results are summarized in Tab. 7.1. Finally, we conclude in Sec. 7.4.

Table 7.1: Representation labels for solid torus systems, Dn × S1. For parity Z2 = {±1}, while for
global torsion Z2 = {0, 1}.

Representation Obstructions to Isotopy

Labels Rn+1 Rn+2 Rn+3

Global Torsion Z2 Z2 -
Parity Z2 - -
Knot Type - - -

7.1 Mapping Class Groups of Solid Tori

The n-torus is the n-fold Cartesian product of S1 with itself, Tn = S1 × · · · × S1, while the solid n-torus is

T n = Dn × S1. Topologically, this is the same as “Vlling in” the Vrst n − 1 factors of S1 to D2 and taking

the product. However, this does not immediately yield a smooth manifold, but rather a manifold with corners.

The boundary of T n is the manifold ∂T n = ∂Dn × S1 ∼= Sn−1 × S1, and is not an n-torus except when

n = 2.

We wish to determine the mapping class group of T n, the group of diUeomorphisms of T n modulo

(smooth) isotopy. However, for the present we will work in the topological category, meaning we replace

smooth by continuous. Thus MCG(T n) will denote the group of orientation preserving homeomorphisms

modulo (continuous) isotopy. In analogy with with usual solid torusD2×S1, we wish to deVne a meridional

disk as a properly embedded ball Dn → T whose removal does not disconnect T . Proper means that the

embedding take boundaries into boundaries, ∂Dn → ∂T . For the removal of the disk to not disconnect T

requires that the image of the boundary Sn−1 not be contractible in ∂T , that is, does not represent the trivial

element in πn−1(∂T ).

However, this is not quite enough. We require the embedded ball and boundary sphere to be embedded

“nicely”. In a classic paper, Alexander [2, 64] constructed a topological two sphere embedded so badly in

S3 that the complement was not simply connected on either side. In particular, the embedding could not be

extended to the three ball (which is simply connected). Due to the details of its construction it is known as

Alexander’s horned sphere. A caricature of its appearance in R3 is given in Fig. 7.1.
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Figure 7.1: First few iterations in the construction of Alexander’s horned sphere, which is an inVnite
construction. As presented, this solid object is homeomorphic to D3 but its exterior is not simply con-
nected. Thus, to obtain obtain an embedding of S2 that does not extend to D3 one simply turns this
object “inside-out”.

In order to rule out such pathological meridians a niceness condition is required. Requiring the embedding

to be smooth would suXce, however that would be inappropriate in the topological category. An appropriate

condition is that the embedding be bicollared. An embedding f : M → N of a topological space is said to

be bicollared if it extends to an embedding F : M × [−1, 1] → N with F |M×{0} = f . In other words, this

guarantees thatM has a nice collar neighborhood in N . IfM has codimension one in N , the bicollar is just

a tubular neighborhood. This condition is suXcient to eliminate pathologies such as the horned sphere [8]:

Theorem 7.1 (Generalized SchönWies). A bicollared (n−1)-sphere in Rn bounds a ball. More speciVcally, the

closure of the bounded complementary domain is homeomorphic with Dn.

We may now deVne a meridional disk of T as a bicollared, properly embeddedDn such that the image of

the boundary Sn−1 is not contractible in ∂T . The image of the boundary sphere is called a meridian. Thus
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a meridian is a bicollared sphere Sn−1 embedded in but not contractible in ∂T . A standard or prototype

meridional disk is Dn × {p} ⊂ T , where p ∈ S1, and the corresponding meridian is its boundary. We now

establish that meridians and meridional disks are essentially unique.

Lemma 7.2. Meridians and meridional disks are unique up to isotopy.

Proof. Let f : Dn → D ⊂ STn be a meridional disk with meridian S = ∂D. It suXces to bring D to a

standard form. SinceDn is contractible, f lifts to an embedding f̃ into the covering spaceDn×R ofDn×S1.

Since Dn is compact, the lift f̃ descends to an embedding into the two-point compactiVcation C ∼= Dn+1

of Dn × R. As a subset of ∂C ∼= Sn, S is bicollared and hence bounds disks on both sides. There is thus

a homeomorphism of S to the standard Sn−1 ↪→ Sn which extends over Sn (it extends over each bounded

disk by Lemma 7.3). Let D1 be one of the two disks. Since the union D ∪D1 is a collared sphere in Dn+1 it

bounds a ball, thus there is an isotopy taking D to D1 by pushing across the ball.

Note that this uniqueness is up to orientation, depending on whether the map sending S to the standard

sphere preserves or reverses orientation.

The following two lemmas as each referred to as the Alexander trick. The Vrst lemma was used in the

preceding proof. The second lemma will be essential in the sequel. It says that any two homeomorphisms

between disks Dn that agree on their boundaries are isotopic.

Lemma 7.3. A homeomorphism f of ∂Dn extends over Dn.

Proof. By applying a homeomorphism we may assumeDn is the unit disk inRn, so that a point inDn may be

written as xt where x ∈ Sn−1, the unit sphere, and t ∈ [0, 1]. DeVne the extension f̃ by f̃(tx) = tf(x).

Lemma 7.4. MCG(Dn; ∂Dn) ∼= 0.

Proof. Let f : Dn → Dn be a homeomorphism satisfying f |∂Dn = id and let x ∈ Dn. DeVne the isotopy

from the identity to f by

ht(x) =





tf(x/t) 0 ≤ ||x|| < t

x t ≤ ||x|| ≤ 1

.
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There is a standard embedding of the solid n-torus T n into Rn+1 analogous to the embedding of D2 ×

S1 into R3 as a solid of revolution (see Fig. 7.2). Embed the disk Dn into the hyperplane {0} × Rn as

the unit disk but with the origin translated to x2 = 2 so that the disk is disjoint from the x3 · · ·xn+1-

hyperplane complementary to the x1x2-hyperplane. Then revolve this disk in a circle through the x1x2-plane.

By construction T has a rotational symmetry in the x1x2-plane, but it also possesses a reWection symmetry in

every coordinate.

x1

x2

x3, . . . , xn+1

Dn

Figure 7.2: Illustration of the embedding T n → Rn+1 as a “solid” of revolution.

Consider a π rotation of Rn+1 in the x1x3-plane (or any coordinate plane other than the rotational sym-

metry plane). This rotation maps xi → ±xi, where the sign is − for i = 1, 3 and + otherwise. By the

reWection symmetry of T n, this operation maps the solid torus to itself, so its restriction to T n deVnes a map

we call the inversion map zπ (see Fig. 7.3). This map preserves orientation of T n, but reverses the orientation

of each factor (since it reverses one coordinate function belonging to each factor – x1 of S1 and x3 of Dn).

zπ

Figure 7.3: The inversion map zπ : T n → T n. The arrowheads indicate orientations in the tangent
spaces to the two factors S1 and Dn. Both tangent spaces change orientation under zπ , thus T n retains
its orientation.

We can now state and prove the main result of this section,

Theorem 7.5. MCG(T n) ∼= Z2 ⊕ π1SO(n), where the Vrst factor is generated by the inversion map zπ and

the second by a “twist” along a meridional disk.
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Proof. (Consult Fig. 7.4.) Let D be a meridional disk with ∂D = S, and let f : T n → T n be an orientation

preserving homeomorphism. It follows from Lemma 7.2 that either f or zπ ◦ f is isotopic to the identity

on D. Assume that it is f . By applying an isotopy we may assume that f Vxes D. We can then cut T n

open along D to obtain a homeomorphism on the “cylinder” T n −D ∼= Dn × [0, 1], which is Vxed on the

“ends” Dn × {0, 1}. From this we obtain a homeomorphism f ′ by restricting to the “rim” of the cylinder

N ≡ ∂Dn × [0, 1] ∼= Sn−1 × [0, 1]. The mapping f ′ is Vxed on boundary of N , ∂N = Sn−1 × {0, 1}.

Fix a point p ∈ Sn−1 and let γ = {p} × [0, 1] be a simple curve in N (think of γ as a seam). Suppose

Vrst that f ′ Vxes γ up to isotopy. Isotope f ′ to a new map Vxing γ. We may then cut N open along γ

and obtain a new homeomorphism on (Sn−1 × [0, 1])− γ ∼= Dn−1 × [0, 1] ∼= Dn (unroll the “cylinder” by

removing the seam). This homeomorphism is Vxed on the boundary. Thus, by the Alexander trick (Lem. 7.4),

this homeomorphism is isotopic to the identity on all of (Sn−1 × [0, 1])− γ and thus on all of N . Now, the

boundary of our “cylinder” is ∂(T n −D) ∼= N ∪Dn × {0, 1}. We already had f Vxed on the ends, and we

have just shown that it is Vxed on N , so f is Vxed on all the boundary. So, by Alexander, f is isotopic to the

identity on all of T n −D. But it is then isotopic to the identity on all of T n.

It remains to consider the case that γ′ = f ′(γ) is not isotopic to γ. Since γ is compact, so is γ′. Using

compactness, the curve γ′ may be isotoped until it has the form of a graph. That is, if we write (s, t) ∈

Sn−1 × [0, 1], then γ′ will have the form (s′(t′), t′)). If we compose γ′ with the projection π : N → Sn−1,

we obtain a loop in Sn−1. The point πγ′(t) may be obtained from the initial point πγ′(0) by a rotation of

the sphere. By choosing this rotation to vary continuously with t, we obtain a loop in π1SO(n). This loop

depends only on the isotopy class of γ′. This fundamental group element can be represented by a power of a

Dehn twist. By composing f ′ with the inverse of these twists, the image of γ′ determines the trivial loop in

π1SO(n), and is therefore isotopic to γ. We then proceed as in the previous paragraph.

We see that the only non-trivial operations are the inversion zπ and powers of Dehn twists coming from

π1SO(n). Finally, zπ and the generator of π1SO(n) commute.

The fundamental group of every special orthogonal group is known. Since π1SO(2) ∼= Z this reproduces

the earlier result that MCG(D2 × S1) ∼= Z2 ⊕ Z. On the other hand, we have π1SO(n) ∼= Z2 when n > 2.

Thus obtain the following
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D

(a)

−→ DS γ

N

(b)

−→ Dn−1

γ

γ

(c)

Figure 7.4: Illustration of the steps in the proof of Thm. 7.5. The initial solid torus (a) is cut along
meridional disk D to produce the “cylinder” (b). N is the outer boundary of this cylinder (not including
the ends). The cylinder is cut open along the seam γ to produce a disk (c).

Corollary 7.6. For n > 2, MCG(T n) ∼= Z2 ⊕ Z2.

7.2 The Smooth Case

One would like to substitute “smooth” for “continuous” in Thm. 7.5 and have the proof go through mutatis

mutandis, but this will not work. The main problem is that the Alexander trick, which the proof invokes

repeatedly, is a continuous and not a smooth construction. In the proof of the lemma, the mapping f is

“squeezed” down to the origin. For every t 6= 0 we have

∂

∂x

∣∣∣∣
0

tf(x/t) = f ′(0),

whereas as t = 0 the derivative is the identity. The germ of f changes abruptly at zero and the isotopy is not

immediately smoothable.

It turns out that there is no smooth analogue of the Alexander trick in general. In particular, in certain

dimensions there are diUeomorphisms of the disk that are not isotopic to the identity modulo the boundary.

Similarly, there are diUeomorphisms of the sphere which do not extend to the disk. The remainder of this

section is a detailed account of this failure and may be regarded as cultural information. We consider the

extension problem Vrst.

First, we require a result that basically says that embeddings of disks are nice [52].

Theorem 7.7 (Disk Theorem). Let f and g be two embeddings ofDk into the interior of a (connected) manifold

Mn. If k = n, then assume that f and g are equioriented. Then f is isotopic to g. If f and g agree on some

Dm ⊂ Dk , the isotopy may be assumed stationary on Dm.
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Consider two orientation preserving diUeomorphisms f and g of Sn−1. By the disk theorem, f is isotopic to a

map Vxed on the northern hemisphere (a disk) and g is isotopic to one Vxed on the southern hemisphere. De-

note these maps by f ′ and g′ respectively. The commutator [f, g] ≡ fgf−1g−1 is isotopic to the commutator

[f ′, g′], but this latter commutator vanishes by the construction of f ′ and g′. It follows that the commutator

of any two orientation preserving diUeomorphisms is isotopic to the identity, hence the commutator sub-

group of Diff(Sn−1) is contained in Diff0(Sn−1), the subgroup of diUeomorphisms isotopic to the identity.

Any subgroup containing the commutator subgroup is normal and its quotient is abelian. This implies that

MCG(Sn) = Diff(Sn−1)/Diff0(Sn−1) is an abelian group.

Now consider those diUeomorphisms of Sn−1 that extend over Dn. This may be thought of as the image

of Diff(Dn) under the restriction to the boundary, ∂ : Diff(Dn) → Diff(Sn−1). Since any diUeomorphism

of the sphere which is isotopic to the identity extends over the disk (since the identity extends) we have

Diff0 S
n−1 ⊂ Diff(Dn), hence the latter contains the commutator subgroup of Diff(Sn−1) and is normal.

We then have

Proposition 7.8. The group Γn ≡ Diff(Sn−1)/∂Diff(Dn) of diUeomorphisms of Sn−1 modulo those that

extend over Dn is an abelian group.

Thus Γn measures the failure of diUeomorphisms of Sn−1 to extend overDn. Triviality of Γn is thus equiva-

lent to the extension form of the Alexander trick (Lem. 7.3).

A twisted sphere is the manifold that results from gluing two disks together along their common boundary

by some diUeomorphism, Σ(h) = Dn ∪hDn, where h : Sn−1 → Sn−1 an orientation preserving diUeomor-

phism. This procedure does not immediately yield a smooth manifold. A smooth pasting procedure can be

deVned as follows (see Fig. 7.5). Start with two copies of Rn and identify the interiors Rn − {0} by means of

the diUeomorphism

x→ 1

||x||h
(

x

||x||

)
, (7.1)

where ||x|| is the usual Euclidean norm. Considering Dn ⊂ Rn as the unit disk this procedure glues the two

unit disks by h on the boundary. This procedure yields a smooth manifold since by construction we have two

charts with transition function given by Eq. 7.1 which is smooth in the overlap Rn − {0}. This is directly
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analogous to smoothing the connected sum.

Sn−1 Sn−1

x

x

||x||2∼

x ∼ x

||x||2

Sn−1

Sn

Figure 7.5: Constructed of twisted sphere. Here, h = id for illustration. Each copy of Rn gets wrapped
over the resulting topological sphere Sn, the “left” copy ofRn missing only the “right” pole of Sn and the
“right” copy of Rn missing only the “left” pole. The unit spheres Sn−1 in each copy of Rn are identiVed
yielding the “equator” of Sn.

Since h is a diUeomorphism it is in particular a homeomorphism, and thus it extends to the disk by

Lem. 7.3, and it follows that Σ is homeomorphic to Sn. However, though h is a diUeomorphism, Σ is not

necessarily diUeomorphic to Sn. In particular we have the following [39]

Proposition 7.9. Σ(h) is diUeomorphic to Sn if and only if h extends over Dn.

This remarkable result relates Γn to smooth structures on spheres. In fact, Smale has shown [39, 77] in his proof

of the generalized Poincaré conjecture that for n ≥ 5, not only is every homotopy sphere1 homeomorphic to

Sn, each is actually diUeomorphic to a twisted sphere! Thus we have the following

Proposition 7.10. For n ≥ 5 there is an isomorphism Γn ∼= An, where An is the group of smooth structures

on the topological n-sphere.

Therefore the extension version of the Alexander trick fails if there exist manifolds homeomorphic but

not diUeomorphic to the standard sphere, i.e. if exotic spheres exist. The Vrst result of this type was given

by Milnor [48] who showed that Γ7
∼= Z28. Seven is in fact the Vrst value of n for which Γn is non-trivial.

1A homotopy sphere is any n-manifold that is homotopy equivalent to Sn.
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Showing that Γ1
∼= 0 is trivial, and showing that Γ2

∼= 0 is straight-forward. That Γ3
∼= 1 was proved by

Smale [76] and Munkres [51] and that Γ4
∼= 1 was proved in a lengthy paper of Cerf [10]. For n ≤ 3 it is

known that An is trivial2, so we have Γn ∼= An in these cases as well. Essentially nothing is known about

the group A4 (this is perhaps related to the fact that R4 admits 2ℵ0 smooth structures). The order3 of the Vrst

eighteen groups An, which appear to be rather erratic, are indicated in Tab. 7.2.

Table 7.2: Order of the group An (= |Γn|, n 6= 4) of smooth structures on the n-sphere for n from one
to eighteen. This information is taken from integer sequence A001676 in [73].

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

|An| 1 1 1 ? 1 1 28 2 8 6 992 1 3 2 16256 2 16 16

We know turn our attention to the mapping class version of the Alexander trick. It is known [85] that

Diff(Sn) has the homotopy type of SO(n + 1) × Diff(Dn; ∂Dn) from which if follows immediately that

MCG(Dn; ∂Dn) ∼= MCG(Sn), since the special orthogonal groups are connected (π0 is trivial). However, it

is not diXcult to prove this fact directly.

Proposition 7.11. MCG(Dn; ∂Dn) ∼= MCG(Sn).

Proof. First consider a diUeomorphism f of Sn Vxing the north pole N . By the disk theorem, f is isotopic to

a map f ′ Vxing the northern hemisphere DN , which is diUeomorphic to Dn. But the southern hemisphere

DS is also diUeomorphic to Dn, and the restriction f ′|DS
yields a diUeomorphism of Dn which is Vxed on

the boundary. This diUeomorphism is well-deVned up to isotopy so yields an element of MCG(Dn; ∂Dn).

If however f does not VxN there is an arc in Sn connectingN and f(N) and an isotopy of f taking f(N)

back toN . Thus we may in fact assume that f VxesN and we obtain a map MCG(Sn)→ MCG(Dn; ∂Dn).

This mapping is in fact a group homomorphism. To see this let f1 and f2 be two diUeomorphisms of Sn. There

are isotopies hi, i = 1, 2, taking fi to f ′i Vxed on DN . We need to show that f2f1 is isotopic to f ′2f
′
1. But the

latter map is given in terms of the isotopies by h2(h1(x, 1), 1), which suggests the mapping h2(h1(x, t), t) as

a possible isotopy. This mapping is smooth, is a diUeomorphism for each Vxed t, and when t = 0 it is equal to

f2f1, thus it is the isotopy we sought.

2That A3
∼= 0 follows from Perelman’s proof [55, 56, 57] of the Poincaré conjecture in dimension three.

3The order of a group is the number of elements or its cardinality as a set.
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Finally, it is clear that the kernel of this homomorphism is trivial. For if f 7→ g and g is isotopic to the

identity on Dn then thinking of Dn as DS this isotopy extends to an isotopy of f on Sn to the identity by

deVning it to be the identity on DN .

Now a failure of the Alexander trick will follow from the failure of a diUeomorphism of the sphere to be

isotopic to the identity. Recall the construction of Σ(f) (see Pg. 136). One can show [39] that if f and g are

isotopic, then Σ(f) and Σ(g) are diUeomorphic. If f is isotopic to the identity, then Σ(f) ∼= Σ(id) ∼= Sn.

For n ≥ 5, going back to Smale, every exotic sphere is diUeomorphic to Σ(f) for some f . Thus if Σ(f) has a

non-standard diUerentiable structure, then f cannot be isotopic to the identity.

This concludes our diversion into some very interesting arcana of diUerential topology. Not only does the

Alexander trick fail in many higher dimensions, the extent of the failure is very diUerent from one dimension

to the next. In some it actually holds. One the face of things, one may be led to expect that the number of

distinct embeddings of solid tori into various Euclidean spaces would be similarly erratic. As we shall see in

the next section, this is not the case.

7.3 Embeddings of Solid Tori

While there are isolated cases where Γn is trivial and Thm. 7.5 could be extended, in the majority of cases

trouble remains. We seek a more systematic approach. In the case of solid tori we may actually bypass the

mapping class group and determine the set of all embeddings into various Rm directly. This happy occurrence

is somewhat peculiar to solid tori and rests on their bundle structure. Remarkably, the results are consonant

with the continuous mapping class group (Thm. 7.5).

For any submanifoldM ⊂ N , a tubular neighborhood T ofM is any codimension zero submanifold ofN

that has the structure of a vector bundle overM , π : T →M , withM identiVed with the zero section of the

bundle. If T has a (closed) disk bundle structure instead of a vector bundle structure (open disk) it is called a

closed tubular neighborhood. The solid torus Dn × S1 is a trivial disk bundle over S1, and we may identify

S1 with the zero section {0} × S1.

A vector bundle, as a smooth manifold, may always be equipped with a Riemannian metric (by stitching

together local metrics with a partition of unity). This allows the structure group of the bundle to be reduced
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from GL(n) to O(n). With respect to this metric a disk bundle may be considered as the unit disk sub-

bundle (the set of all vectors with length ≤ 1 with respect to the Riemannian metric). In particular, the disk

bundle inherits the O(n) structure group and it makes sense to consider orthogonal maps on Vbers since these

preserve vector length and thus map the unit disk to itself.

Vector bundle neighborhoods are essentially unique according to the following theorem [39]

Theorem 7.12. Let M be a closed submanifold of N with F0 a vector bundle of any dimension over M and

F1 a tubular neighborhood ofM . Then there exists an isotopy of the inclusion F0 ↪→ N , Vxed onM , to a map

taking F0 → F1, which has maximal rank on each Vber.

We are however interested in closed tubular neighborhoods of compact manifolds. In this case the isotopy

extension theorem [39] guarantees that the isotopy in the previous theorem can be taken to be ambient.

First consider the codimension zero case where F0 and F1 are both tubular neighborhoods of S1 in any

manifold N . That is, we are considering each Fi as embeddings of Dn × S1 → N , where dimN = n + 1.

Suppose for the moment that there exists an isotopy taking F0|S1 → F1|S1 pointwise. Then there is an

ambient isotopy taking F0 → F1 and which has full rank on each Vber. This means that the diUerence

between F0 and F1 is characterized by a smooth map f : S1 → O(n) giving the linear map on each Vber.

If we assume that F0 and F1 share the same orientation then we have γ : S1 → SO(n). The embeddings

F0 and F1 are now isotopic precisely when f is homotopic to the identity in SO(n). This is because by

considering F0 Vxed, the path γ determines how rotated each Vber of F1 is with respect to F0. A homotopy

of γ alters this rotation in a continuous fashion. If γ is null homotopic, then the rotation on each Vber can be

continuously brought to the identity, aligning F0 with F1. We conclude that the isotopy classes of orientation

preserving embeddings of Dn × S1 → N are in bijective correspondence with π1SO(n).

In the n = 2 case (D2 × S1) this reproduces our previously stated results. When the two knots (images of

S1) are isotopic, classifying the embeddings reduces to an element of π1SO(2) ∼= Z and can be understood as

the number of Dehn twists. Now, when n > 2 any two embeddings of S1 are automatically isotopic in Rn+1.

Thus we have

Theorem 7.13 (Codimension zero). For n ≥ 3 the embeddings of the solid torus Dn × S1 into Rn+1 are in

bijective correspondence with Z2 ⊕ π1SO(n) ∼= Z2 ⊕ Z2. The Vrst factor of Z2 is orientation or parity.
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This theorem may be understood much as in the classical D2 × S1 case. We can deVne a Dehn twist for

Dn × S1 as follows. Cut open Dn × S1 about a meridional disk D ∼= Dn. Rotate one side 2π in some Vxed

plane and then reattach the two sides of the disk4 (see Fig. 7.6). The connectivity properties of SO(n) show

that this procedure deVnes a homotopically non-trivial loop whose class is independent of the rotation plane

chosen. Furthermore, applying a second Dehn twist results in a contractible loop resulting in an embedding

indistinguishable from one with no applied Dehn twists.

Figure 7.6: Application of a “Dehn twist” to T n.

We now consider embeddings ofDn × S1 into Rm+1 with codimension k = m− n = 1. The immediate

diXculty is that the image F1 of T n is no longer a tubular neighborhood, though of course it is still a disk-

bundle neighborhood of S1. If F0 is a tubular neighborhood of S1, Thm. 7.12 yields an ambient isotopy

taking F1 to a linear sub-bundle of F0 of codimension 1. Let ξ1 denote a one dimensional complementary

bundle (which may be chosen uniquely using the Riemannian structure on the tubular neighborhood) so that

F1 ⊕ ξ1 = F0.

Now, embeddings of F0 are characterized by π1(SO(n + 1)). We now show that this information is

contained in the sub-bundle F1. That is, any pair of one dimensional bundles ξ are isotopic when n ≥ 2.

Since ξ is a one-dimensional sub-bundle of F0, it is fully speciVed by a choice of unit vector at every point

along S1. In other words, it is equivalent to a section σ of the unit normal bundle UN(S1) in Rm+1, which

is a product bundle S1 × Sm. Letting π denote projection onto the second factor we have the diagram

S1 σ //

$$I
IIIIIIII S1 × Sm

π

��

Sm

(7.2)

The projection π sends the section σ to a closed path π ◦ σ in Sm. Since Sm is simply connected form ≥ 2,

there is a homotopy ht of π ◦σ to a constant path. Since product spaces possess the homotopy lifting property
4This procedure may be done smoothly by damping out he rotation using a smooth bump function.
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[7], there is a lifted homotopy Ht of σ such that π ◦ Ht = ht. Thus σ is isotopic to a constant section. But

any two constant sections are isotopic by an obvious simultaneous rotation of each Sm factor. We have thus

proven that

Theorem 7.14 (Codimension one). For n ≥ 2, the embeddings of the solid torus Dn × S1 into Rn+2 are in

bijective correspondence with π1SO(n+ 1) ∼= Z2.

We next consider codimension k = m − n = 2. In Sec. 3.5 we constructed an explicit isotopy from a

single Dehn twist to the identity, showing that codimension two realizes the universal embedding type for the

solid torus. The idea was to embed both the twisted and untwisted versions simultaneously, and the isotopy

transitioned from projecting one embedding to projecting the other. The analogous procedure for a general

solid torus Dn × S1 seems to require dimension 2n+ 1, or codimension (2n+ 1)− (n+ 1) = n. However,

recall that the Dehn twist in the general case involves only a single two dimensional subspace of the VberDn.

This suggests the same isotopy may work by singling out this two dimensional subspace where the rotation

takes places, since this will only require codimension two.

To this end we write x ∈ Dn in the polar form x = ru, where r ∈ [0, 1] and u ∈ Sn−1 = ∂Dn. We then

introduce hyperspherical coordinates [35] on the sphere Sn−1 by

u1 = cosφ1 (7.3)

u2 = sinφ1 cosφ2 (7.4)

... (7.5)

uk = sinφ1 · · · sinφk−1 cosφk (7.6)

... (7.7)

un−1 = sinφ1 · · · sinφn−2 cos θ (7.8)

un = sinφ1 · · · sinφn−2 sin θ, (7.9)

where φk ∈ [0, π] are polar angles and θ ∈ [0, 2π) is the azimuthal angle. The Vnal two coordinates, which
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include the azimuthal angle, may be conveniently expressed in the complex form

z = un−1 + iun = sinφ1 · · · sinφn−2e
iθ. (7.10)

If we parametrize S1 by s ∈ [0, 2π), then using these coordinates a Dehn twist may be written without loss

of generality as

z → zeis, (7.11)

and is constant on all other coordinates. By an abuse of notation we let u refer only to the coordinate

u1, . . . , un−2, or all coordinates on the sphere except the last two, which are covered by z. In direct analogy

with Sec. 3.5 we deVne the embedding




s

ru

rz



7→




s

ru

rz

rzeis




, (7.12)

and the isotopy




1 0

0
cos θ sin θ

− sin θ cos θ







s

ru

rz

rzeis




, (7.13)

which exchanges the two complex factors between θ = 0 and θ = π/2. Thus we have established that

Theorem 7.15 (Codimension two). For n ≥ 2, the embeddings of the solid torus Dn × S1 into Rn+3 are all

isotopic.

Finally, since the same trick works for higher codimension, we have the following

Theorem 7.16 (Universality). Any two embeddings ofDn × S1 into Rn+1+k for k ≥ 2 are isotopic, i.e. there

exists a universal embedding of solid tori in codimension at least two.
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7.4 Résumé

While a there exists a well understood theory for three dimensional dynamical systems, much less is known in

higher dimensions. The present chapter uses the perspective of representation theory to gain some insight into

their structure. In particular, the spectrum of embeddings for dynamical systems that live in T n ∼= Dn × S1

has been completely worked out for every n. The n > 2 case is quite unlike the n = 2 case in that the

“extrinsic” part of the problem is quite trivial. There are no non-trivial knot types to consider since T n is

just a thickened circle, and embeddings of this circle will always have codimension at least three. For T n in

codimension zero and one there are two distinct representations, which are quite analogous to the two classes

obtained for the n = 2 case in R4. The universal embeddings is obtained in codimension two. These results

are summarized in Tab. 7.1.

The results of the present chapter highlight some of the problems involved in working with higher dimen-

sional systems. There are many pathologies one encounters, and more advanced techniques and imagination

are required to make progress than were necessary in dimension three. Nevertheless, progress indeed has been

made. While a complete understanding of higher dimensional systems remains elusive, and might forever re-

main so, we are still one step closer than we were previously.
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Chapter 8: Conclusions and Outlook

We have taken the Vrst steps in creating a representation theory for dynamical systems. On the theoretical

level, these steps have been motivated by and guided to some extent by an analogy with the representation

theory of groups. On the practical level, these steps have been motivated by recognizing the non-uniqueness

of the reconstruction phase of any data analysis. Representations are embeddings (reconstructions) of an n-

dimensional dynamical system into Rk , k ≥ n. Equivalence of representations is by isotopy. We have carried

this program out for (almost) all three dimensional dynamical systems and for a restricted class of systems in

arbitrary dimension.

The general program is as follows. Identify all the labels necessary to distinguish among inequivalent

representations of the n-dimensional dynamical system when mapped into Rk for k = n. These labels

are obstructions to isotopy. When inequivalent representations are mapped into a Euclidean space of one

higher dimension, some may become equivalent because there is more room to “move around” and so avoid

certain obstructions. As a result, some representation labels are no longer necessary. This process continues

until all representations are isotopic and all obstructions have vanished. Then there is only one “universal”

representation. According to a result of Wu, this universal representation deVnitely exists in R2n+1. For all

systems considered presently, the universal representation always exists in codimension two: Vve for three-

dimensional systems, and more generally in dimension n+ 2 for n dimensional systems.

We developed the representation theory for three dimensional dynamical systems in two stages. The Vrst

stage was the representation theory of dynamical systems of “genus one” type. Such systems have the solid

torus T as phase space, and their chaotic dynamics is generated by “stretching and folding” only. There are

three representations labels in R3: knot type, parity, and global torsion; one in R4: global torsion (mod 2); and

none in R5. The universal representation exists in Rk , k ≥ 5. This information is summarized in Tab. 3.1.

The second stage was extending this analysis to all “genus-g dynamical systems,” g ≥ 3. These systems

have genus-g handlebodies as phase space and their chaotic dynamics are generated by “tearing and squeez-

ing”. There are three representations labels in R3: knot type, parity, and a spectrum of local torsions; one in
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R4: a reduced spectrum of local torsions (mod 2); and none in R5. The universal representation exists in Rk ,

k ≥ 5. This information is summarized in Tab. 4.1.

Next we took a break from representation theory proper to consider in some detail the embeddings of

the Lorenz dynamical system, which has genus three. We sought to understand how the standard diUerential

mapping could yield an embedding not on our list of representations. We found that, in fact, this embedding

was not an embedding at all, and thus not a true representation. In particular, this mapping is the singular

projection into three-space of an embedding into four-space. This phenomenon is known as local reWection.

We then generalized those results for the Lorenz system concerning its symmetry to arbitrary equivariant

dynamical systems. We were able to show that diUerential mappings are unable to retain more than a two-fold

symmetry. This implies that such mappings are rarely embeddings.

Finally, we returned to our main theme and worked out the representation theory for toral systems of arbi-

trary dimension. These systems generalize the three dimensional genus one systems. We demonstrated many

of the pitfalls that exist in higher dimensions which frustrate a straight-forward and intuitive understanding.

Nevertheless, we were able to make progress and complete the theory for these systems.

We have considered representation theory at the level of phase spaces. We saw in Chap. 5 that the stan-

dard diUerential embedding of the Lorenz system is not actually a phase space embedding since it fails to

be injective. However, it is essentially injective on the attracting set. More speciVcally, it is injective on the

branched two-manifold. This suggests an extension of representation theory from phase spaces to templates

for three dimensional dynamical systems. In general, local reWections of phase spaces lead to new and distinct

representations for templates. It is unknown whether or not this is the only new way to create new represen-

tations. Since the reconstruction of a template rather than a full phase space is more natural when working

with experimental data, it is worthwhile to consider and work out this extension.

The theory worked out in this thesis is in some sense the pinnacle of the topological theory for three

dimensional systems, while it is only the beginning of the topological theory for higher dimensional systems.

We hope that this fresh perspective will allow new insights into the structure of these systems. Ideally, this

will eventually lead to a satisfying topological theory in higher dimensions.

The current impediments to such a theory are the want of an extension of the Birman-Williams theorem
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and, more seriously, the want of appropriate topological invariants. We discussed the Vrst in Chap. 1. We

discuss the second here. For three-dimensional representations, the main calculational tool was the linking

number (and more generally the link-type) of periodic orbits in the Wow. Since copies of the circle never

non-trivially link in dimensions beyond three, this tool is no longer available. Nevertheless, we have seen that

there are non-trivial representations of three-dimensional systems in four dimensions. While the orbits do not

link considered as curves in four-space, there is some non-trivial relation among them within the embedded

phase space. While we have only detected this relationship at the level of the whole phase space embedding,

there may be some way to extract this information more directly. Success on this point may lead to Vnding

appropriate topological invariants for general higher-dimensional systems.

Having appropriate invariants at our disposal will lead to a better understanding of the structure of these

systems and the mechanisms that generate chaos. This is precisely our goal: an understanding of the phase

space mechanisms that underlie any physical system. This will lead to a better understanding of the data

generated by these systems, then to a better understanding of the systems themselves, and ultimately to a

better understanding of the physics they describe.
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Appendix A: Homology of Connected Sums

It is the purpose of this appendix to calculate the homology groups and Euler characteristic of a connected sum

of manifolds. Suppose thatM and N are compact, closed, and oriented n-manifolds with homology groups

Hp(M) and Hp(N), respectively. We wish to calculate the homology groups Hp(M#N). The result is

Theorem A.1. The homology groups of the connected sum of two compact, closed, and oriented n-manifolds

M and N is the direct sum of the homology groups Hp(M#N) = Hp(M) ⊕Hp(N) for every p 6= 0, n. In

the last two cases, Hp(M#N) ∼= Z.

The rest of this appendix presents a proof of this fact.

Since homology groups are homeomorphism invariants, it suXces to use the topological deVnition of

connected sum. Thus, we take embeddingsD andD′ ofDn intoM andN respectively, remove the interiors,

and then identify the boundaries, which are copies of Sn−1. We may therefore writeM#N = (M −D) ∪

(N −D′) with (M −D) ∩ (N −D′) ∼= Sn−1.

We must Vrst determine the homology ofM −D and N −D′. This is the hardest computation, though

the result is quite simple. The arguments are typical of algebraic topology.

Lemma A.2. For an embedding D : Dn →M of an n-disk into a manifold, Hn(M −D) ∼= 0 and Hp(M −

D) ∼= Hp(N) for p 6= n.

Proof. BecauseDn is contractible, the embeddingD is homotopic to a constant map. By homotopy invariance

we have Hp(M −D) ∼= Hp(M − x), where x ∈M is a point. Consider the pair of spaces (M,M − x) and

the corresponding long exact sequence (see Eq. 1.13)

· · · → Hp(M − x)→ Hp(M)→ Hp(M,M − x)→ Hp−1(M − x)→ · · · . (A.1)

SinceM is a manifold, x has a neighborhood U homeomorphic to Rn. We may assume the homeomorphism

takes x to the origin. If we remove the complement U c of U fromM , then by the excision property [7], we
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obtain homeomorphisms

Hp(M,x) ∼= Hp(M − U c, (M − x)− U c) ∼= Hp(U,U − x) ∼= Hp(Rn,Rn − 0), (A.2)

where the Vrst homeomorphism is excision, the second is just the deVnition of the spaces, and the third is

induced by homeomorphism.

Now, for the new pair (Rn,Rn − 0) we have the long exact sequence

· · · → Hp(Rn − 0)→ Hp(Rn)→ Hp(Rn,Rn − 0)→ Hp−1(Rn − 0)→ · · · . (A.3)

Since Rn is contractible, its only non-zero homology group is H0
∼= Z. Putting in these trivial groups, for

p > 1 we obtain the sequences

0→ Hp(Rn,Rn − 0)→ Hp−1(Rn − 0)→ 0, (A.4)

which implies that the middle map as an isomorphism. Now, consider H0(Rn,Rn − 0). A relative 0-cycle is

just a Vnite linear combination of points of Rn with integer coeXcients. Let x ∈ Rn. Choose a path γ such

that γ(1) = x and γ(0) 6= 0. Then x = ∂γ mod Rn − 0, hence x is a relative boundary. We conclude that

H0(Rn,Rn − 0) ∼= 0. Since Rn − 0 is connected,H0(Rn − 0) ∼= Z. Thus, for p = 1 we obtain the sequence

0→ H1(Rn,Rn − 0)→ Z→ Z→ 0. (A.5)

By exactness, the homomorphism Z→ Z is surjective, hence an isomorphism. This implies thatH1(Rn,Rn−

0) ∼= 0.

Now, the space Rn − 0 is homotopic to Sn−1, which has non-trivial homology groups H0
∼= Hn−1

∼= Z.

We conclude that the pair (Rn,Rn − 0) has only one non-trivial homology group: Hn
∼= Z. By Eq. (A.2), the

same is true for the homology groups of the pair (M,M − x). By placing these zero groups into Eq. (A.1) we
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immediately obtain, for p < n− 1, isomorphisms

Hp(M − x) ∼= Hp(M). (A.6)

For the top two dimensions we have the sequence

0→ Hn(M − x)→ Hn(M)
f→ Hn(M,M − x) ∼= Z→ Hn−1(M − x)→ Hn−1(M)→ 0. (A.7)

Since we have assumedM to be compact, closed, and oriented, Hn(M) ∼= Z and is generated byM . ButM

also generates Hn(M,M − q), hence the map f above is an isomorphism. This forces the map into Hn(M)

and the map out of Hn(M,M − q) to both be zero. It immediately follows that Hn(M − q) ∼= 0 and

Hn−1(M − q) ∼= Hn−1(M). We conclude that Hp(M −D) ∼= Hp(M) for p 6= n and that Hn(M −D) ∼=

0.

We now have the homology groups ofM −D and ofN −D′ in terms of those ofM andN respectively.

We have written the connected sum as the union of these two subspaces. Whenever a spaceX may be written

as a union X = A ∪ B, the homology of X , A, B, and of A ∩ B Vt into a long exact sequence called the

Mayer-Vietoris sequence [7]:

· · · → Hp(A ∩B)→ Hp(A)⊕Hp(B)→ Hp(X)→ Hp−1(A ∩B)→ · · · , (A.8)

which in the present case is

· · · → Hp(S
n−1)→ Hp(M −D)⊕Hp(N −D′)→ Hp(M#N)→ Hp−1(Sn−1)→ · · · . (A.9)

SinceHp(S
n−1) is trivial unless p = 0, n−1, we immediately obtain isomorphismsHp(M#N) ∼= Hp(M)⊕

Hp(N) for p = 2, . . . , n− 2. Since all spaces are connected, every H0
∼= Z, and we obtain the isomorphism

H1(M#N) ∼= H1(M)⊕H1(N).
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In the top two dimensions we have the sequence

0→ Hn(M#N)→ Z→ Hn−1(M)⊕Hn−1(N)→ Hn−1(M#N)→ 0. (A.10)

Since M and N are compact, closed, and oriented, so is M#N . Thus Hn(M#N) ∼= Z, the map from

this group to Z is an isomorphism, and thus the map out of Z is zero. We therefore obtain an isomorphism

Hn−1(M#N) ∼= Hn−1(M)⊕Hn−1(N). Putting this together we have

Hp(M#N) ∼=





Z, p = 0, n

Hp(M)⊕Hp(N), otherwise

(A.11)

Finally, we compare the Euler characteristic. If we write bi = rankHi for the Betti numbers, then

for i 6= 0, n we have bi(M#N) = bi(M) + bi(N). When i = 0, n we may write bi(M#N) = 1 =

bi(M) + bi(N)− 1. We therefore have

χ(M#N) =

n∑

i=0

(−1)ibi(M#N)

=
(
b0(M) + b0(N)− 1

)
−
(
b1(M) + b1(N)

)
+ · · ·+ (−1)n

(
bn(M) + bn(N)− 1

)

= χ(M) + χ(M)− (1 + (−1)n)

= χ(M) + χ(M)− χ(Sn).

(A.12)

Note the strange even/odd dependence on the manifold dimension.

When n = 2 these results are particularly simple. Two homology groups are trivial to compute: H0(M#N) ∼=

H2(M#N) ∼= Z. This leaves only H1(M#N) = H1(M) ⊕ H1(N). The Euler characteristic is given by

χ(M#N) = χ(M) + χ(N)− 2.
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Appendix B: Local ReWection Isotopy

The purpose of this appendix is to Vll in the technical details of Sec. 5.4 by constructing explicit deformations

of the mappings F3 and F4 to a local reWection and inclusion respectively. The idea of a smooth deformation

of an embedding is made precise through the notion of isotopy. Two embeddings f and g are isotopic if

there is a smooth map h(x, s), s ∈ [0, 1], that satisVes the following three properties: 1) for every Vxed s,

hs(x) ≡ h(x, s) is an embedding; 2) h0 = f ; and 3) h1 = g. We will refer to either h(x, s) or hs(x) as

the isotopy. Thinking of s as time, the isotopy smoothly transforms the embedding f at time zero to the

embedding g at time one through a sequence of embeddings. It is natural to regard isotopic embedding’s as

the same or equivalent. We note that it will often be convenient to deVne an isotopy over an interval other

than [0, 1]. In all cases the isotopies deVned will be obviously smooth, so one need only check that they are

one-to-one for each s.

Recall the twisted embedding Eq. (5.13), and the denominators of the last two coordinate which normalized

them to approach inclusion as |x| → ∞. This embedding is isotopic to the un-normalized mapping

G : (x, y, z) 7→ (x, y,−xz, z). (B.1)

One can take for the deformation (1− s)F + sG with s ∈ [0, 1] and check that this is one-to-one for each s.

We may also refer to the Vrst three coordinates of this mapping as a local reWection of R3.

The mapping F3 deVnes a rather complicated embedding of R3 − {yz-plane} into R3. Denote the image

of (x, y, z) by (X,Y, Z) = F3(x, y, z) and recall that these coordinates are given by Eq. (5.4). We will now

simplify F3 through a sequence of isotopies. We note that the isotopies need only be one-to-one away from

the yz-plane since F3 is singular there. In each case s ∈ [0, 1]. Our goal is to show that F3 is isotopic to a

local reWection.

First note that the Vrst coordinate is already X = x. Next, by smoothly rescaling the axes, the overall

factor of σ on the last two components may be set to one. The second coordinate is now given by Y = y− x.
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By deVning Ys = y + (s − 1)x this coordinate can be smoothly changed to Y = y. One can check that

this is one-to-one for every s. For the third coordinate deVne Zs = Z(1 − s) − szx to smoothly deform

it to −zx. In this case points with diUerent z coordinate are identiVed when x = 0. In fact, when x = 0,

Zs = (s− 1)(1 + σ)y, so for every s the yz-plane is taken to a line. The form of the singularity is preserved

during this deformation and Zs deVnes an isotopy of F3 away from its singular set. We have thus succeeded

in bring F3 to the form of (the Vrst three coordinates of) Eq. (B.1) through a sequence of deformations. This

proves the claim in Sec. 5.4 that the attractors Li and L diUer by a local reWection in R3.

Now we consider the embedding F4 into R4. Since the Vrst three coordinate of F4 are given by F3, the

above isotopies apply to F4 as well. However, the isotopy Zt was singular for F3 along x = 0. By checking

the fourth coordinate W of F4 given in Eq. (5.8) we see that points are identiVed only when y = 0 as well.

But this deVnes the z-axis, which is the singular set of F4. We conclude that Zt is an isotopy away from the

singular set of F4.

It remains only to transform the Vnal coordinateW to z to arrive at the twisted embedding Eq. (B.1). This

can be done through a sequence of deformations,W → z(x − y) → zx → z. At each step the deformation

is linear: f → g by sg + (1− s)f . It is tedious but straightforward to check that each deformation is one-to-

one away from the z-axis and so completes the isotopy of F4 to the twisted embedding. Finally, the twisted

embedding is isotopic to the standard inclusion R3 ↪→ R4. This can be achieved by the isotopy

(x, y, z, s)→ (x, y,−z sin ξ, z cos ξ), (B.2)

where we set

ξ = s arctanx+ (s− 1)π/2, (B.3)

and s ∈ [0, 1]. We conclude that F4 is isotopic to the inclusion R3 ↪→ R4. This proves the claim in Sec. 5.4

that the attractors Li and L are identical in R4.
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Appendix C: Linking Integral Projection

The linking integral is an invariant of the link-type of two manifolds immersed in a Euclidean space. It is

shown that the ordinary Gauss integral in three dimensions may be simpliVed to a winding number integral

in two dimensions. This result is then generalized to show that in certain circumstances the linking integral be-

tween arbitrary manifolds may be similarly reduced to a lower dimensional integral. This procedure simpliVes

practical calculations and may prove useful in investigating the topological structure of higher dimensional

dynamical systems. We include it here for completeness.

C.1 Reduction of the Gauss Integral to the Winding Number Integral

The linking number of two disjoint oriented closed curves in R3 is an integer invariant that in some sense

measures the extent of linking between the curves. While there are many equivalent ways to compute this

number [64], the most well-known is the linking integral of Gauss. In this section we show that this integral in

3-space may always be simpliVed to an integral in 2-space which is equivalent to a winding number integral.

Proposition C.1. Given two disjoint immersed closed curves s 7→ γ1(s) and t 7→ γ2(t) in R3, the Gauss

linking integral of the pair reduces to a sum of winding numbers of one curve about a sequence of points

determined by the other, contained in some 2-dimensional hyperplane (see Fig. C.1).

γ2 γ1

(−) (+)

Figure C.1: Reduction of linking number to winding number. Curve γ1 is projected into a plane, and we
calculate the sum of its winding numbers about the intersection points of γ2 with this plane. The sum of
winding numbers is −2, which is equal to the linking number of the two curves.

Proof. The link of γ1 and γ2, lk(γ1, γ2), is given by the Gauss integral,

lk(γ1, γ2) =
1

4π

∫
det

(
r,
∂γ1

∂s
,
∂γ2

∂t

)
dsdt

r3
,
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where each term in the determinant is a column vector and r = γ2−γ1 is the relative position vector. Through

a homotopy of the maps we may arrange γ1 to lie in the plane x3 = 0 with γ2 intersecting the plane perpen-

dicularly in a Vnite number of points pi. This may be done so that γ1 and γ2 remain disjoint throughout. Since

the Gauss integral is a homotopy invariant, lk(γ1, γ2) is preserved through this deformation. If the homotopy

was merely continuous we may replace it with an arbitrarily close smooth homotopic approximation.

Next, deform γ2 near the intersection with the plane so that it becomes a straight line segment perpendic-

ular to the plane in a neighborhood of each intersection point. Now deform it further by “stretching” it away

from the plane so that the straight line segments are extended further away from the plane and the rest of γ2

is pushed further away from the plane. In the limit that the stretching goes oU to inVnity, the denominator

of the integral falls oU suXciently fast that its contribution goes to zero. We are left with a Vnite number of

inVnite line segments perpendicular to the plane and disjoint from γ1. We assume each line is parametrized

in the standard way, t 7→ ±x3.

We will now assume each line parametrized by t 7→ x3 so that ∂γ2/∂t = e3, but introduce an orientation

to each point o(pi) which is ±1 depending on the original parameterization of the corresponding line in an

obvious way. We then see that the linking integral becomes

∑

i

o(pi)
1

4π

∫
det

(
r,
∂γ2

∂s
, e3

)
dsdt

(ρ2 + t2)3/2
,

where ρ is the restriction of r to the plane x3 = 0.

Notice that since e3 = (0, 0, 1)t the determinant reduces to that of the upper-left block, which is det(ρ12, ∂γ2/∂s))

and is independent of t. Thus we may evaluate the integral

∫

R

dt

(ρ2 + t2)3/2
=

2

ρ2
,

and the linking integral becomes

∑

i

o(pi)
1

2π

∫
det

(
ρ,
∂γ2

∂s

)
ds

ρ2
,
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which is easily seen to be the sum of the winding numbers of γ2 about each point pi times the orientation of

pi.

The construction in the proof also allows one to show the linking integral may also be given as an inter-

section number of γ1 with a surface spanned by γ2. Indeed, perturb γ2 to an embedding and let S be a Seifert

surface constructed by Seifert’s algorithm [64, 71]. The number of Seifert disks above a pi is precisely the

winding number of γ1 about pi and the induced orientation of each Seifert disk is given by the orientation of

the bounding curve. Finally, with o(pi) we have the signed intersection number of γ2 with the Seifert disk,

and the sum over all gives the signed intersection number of γ2 with S.

C.2 The General Linking Integral Projection

In this section the proposition of Sec. C.1 is generalized from curves to arbitrary compact boundaryless ori-

ented manifoldsMn and Nn mapped disjointly into Rp+1, p = m+ n. In this case one may deVne a linking

number by lk(M,N) = (−1)m deg r̂, where r̂ is the unit relative position vector deVned by

r̂ : M ×N → Sp

(x, y) 7→ r

||r|| =
x− y
||x− y|| ,

where x and y are points in the images ofM and N in Rp+1 respectively. We will show that under certain

conditions the linking number calculation reduces to a calculation in a hyperplane. We note that these expres-

sions may be deVned with diUering sign conventions in which case the conclusion of the theorem will hold

up to a sign. The present convention is most convenient for expressing the present result.

Theorem C.2. Given M and N as above, suppose that there exists smooth homotopies of M and N main-

taining disjointness and taking M into an m + n′ + 1-dimensional hyperplane H , 0 ≤ n′ ≤ n, and that

N intersects H transversely in the submanifold N ′. Then lk(M,N) = lk(M,N ′), where the Vrst linking

integral is taken in Rp+1 and the second in H ∼= Rp′+1, where p = m+ n and p′ = m+ n′.
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Proof. It is straightforward to show [17] that the degree of this map may be written explicitly as

deg r̂ =
(−1)m

volSp

∫

M×N
det

(
r,
∂x

∂s
,
∂y

∂t

)
dsdt

||r||p+1
, (C.1)

where s and t represent oriented local coordinates si and tj onM and N respectively, and the quantities in

the determinant are column vectors.

We now deform (homotopy) M into H ' Rp′+1 and deform N so that it intersects H transversely.

The intersection N ′ = ∪N ′i will be a Vnite disjoint union of closed oriented manifolds of dimension n′

(the codimension of the transverse intersection of two manifolds is the sum of their codimensions). We may

actually assume that N ⊥ H (in the Euclidean metric of Rp+1) so that N is locally of the form N ′ × Rn−n′

in some neighborhood of H . Now extend this local product decomposition by pushing the rest of N oU to∞

as was done in Sec. C.1. Since the integrand in Eq. C.1 falls oU suXciently fast with distance, this contribution

to the integral goes to zero, so we may make the replacement N → N ′ × Rn−n′ .

Adapt the coordinates on N with respect to the product decomposition so that the last n− n′ coordinates

are Euclidean coordinates on Rn−n′ . The partial derivatives ∂y/∂ti with respect to these coordinates are

just ±ei, the i-th unit vector, but the signs may vary on diUerent N ′i . We may absorb these signs into the

orientation of the components, considering their orientations reversed if necessary (rather than explicitly

introducing an orientation function as was done in Sec. C.1).

The matrix in the integrand has a block structure with an n− n′ unit matrix in the lower right block and

zero in the upper right block. Thus the determinant may be replaced with just that of the upper left block.

Since this matrix is independent of the last n− n′ coordinates the distance function r reduces to ρ = r|H . It

remains to evaluate the integral

I =

∫ ∞

−∞
· · ·
∫ ∞

−∞

dtq+1 · · · dtn
(ρ2 +

∑
t2i )

(p+1)/2
,

for i = q + 1, . . . , n. Write tn = z and a = ρ2 +
∑
t2i , i 6= n and then

∫ ∞

−∞

dz

(a+ z2)
(p+1)/2

=

√
π

ap/2
Γ(p2 )

Γ(p+1
2 )

=
1

ap/2
volSp

volSp−1

,
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using the well-known expression for the volume of a sphere. By progressively isolating the variables ti we

obtain an integral of the same form but with p decreasing by one each time. Proceeding by induction we

obtain

I =
1

||ρ||p′+1

volSp

volSp′
,

where p′ = p− n+ n′ = m+ n′. Hence Eq. C.1 becomes

deg r̂ =
(−1)m

volSp′

∫

M×N ′
det

(
ρ,
∂x

∂t
,
∂y

∂s

)
dsdt

||ρ||p′+1

= (−1)m deg ρ̂,

which is lk(M,N ′).



163

Appendix D: Thesis Defense Slides

Representation Theory
of Dynamical Systems

Daniel J. Cross
Drexel University
19 August 2010
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An Experimental Problem

observable

→
↙ reconstruction↘

(x(t), x(t− τ), x(t− 2τ))

(x(t), ẋ(t), ẍ(t))

2/58

The Questions
“When you perform an analysis on a reconstruction, are you
studying the original dynamical system or are you studying
the reconstruction?”

(Anonymous) Referee to Bob

i. For any analysis methodology, which results depend on the
reconstruction and which are reconstruction independent?

ii. For data taken from a given dynamical system, what is its
spectrum of inequivalent reconstructions and how are they
distinguished?

iii. As the dimension of the reconstruction increases, do
reconstructions remain inequivalent?

3/58
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The Answers
i. For any analysis methodology, which results depend on the
reconstruction and which are reconstruction independent?

Measure Example Independent
Geometrical Fractal Dimensions Y

Fractal Dimension: Cover object with ε-sized boxes: N(ε) ∼
( 1
ε

)dim.

Rearranging, dim = − lim
ε→0

lnN(ε)

ln ε
.

4/58

The Answers
i. For any analysis methodology, which results depend on the
reconstruction and which are reconstruction independent?

Measure Example Independent
Geometrical Fractal Dimensions Y

Fractal Dimension:

Iteration N(ε) ε

1 1
2 1/4
22 1/42

23 1/43

DeVne dim = − lim
ε→0

lnN(ε)

ln ε
.

dim = − lim
n→∞

ln 2n

1/4n
=

ln 2
2 ln 2

=
1
2
.

4/58
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The Answers
i. For any analysis methodology, which results depend on the
reconstruction and which are reconstruction independent?

Measure Example Independent
Geometrical Fractal Dimensions Y
Dynamical Lyapunov Exponents Y∗

Lyapunov Exponents:

λ1 = 0→ λ2 > 0

λ3 < 0

d(t) ∼ eλt

4/58

The Answers
i. For any analysis methodology, which results depend on the
reconstruction and which are reconstruction independent?

Measure Example Independent
Geometrical Fractal Dimensions Y
Dynamical Lyapunov Exponents Y∗

Topological Linking Numbers of UPOs N

Linking Numbers:

lk(γ1, γ2) =

1
4π

∮

γ1

∮

γ2

γ2 − γ1
||γ2 − γ1||3

·(dγ1×dγ2)

4/58
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The Answers
ii. For data taken from a given dynamical system, what is its

spectrum of inequivalent reconstructions and how are they
distinguished?

iii. As the dimension of the reconstruction increases, do
reconstructions remain inequivalent?

Representation theory . . .

5/58

Representation Theory: The Idea
Regard reconstructions as representations of the original dynamics.

Consider two representations equivalent if they are smoothly
deformable into each other.

“Topological obstructions” prevent deformations.

6/58
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Representation Theory: The Program
i. Determine a Euclidean space of minimum dimension in which to
reconstruct the system.

ii. Compute the complete set of inequivalent representations (and
topological indices) in this space.

iii. Reconstruct in a Euclidean space of one higher dimension.
Determine which representations remain inequivalent and which
become equivalent because of the additional room available for
deformations.

iv. Repeat until all representations become equivalent.

7/58

Dynamical Systems
DeVnition

A dynamical system (M, ϕ) on a manifold M is a Wow, ϕt : M →
M. Equivalently, one may specify the vector Veld v generating ϕt. In
coordinates, ẋ = v(x).

Example: The Rössler System

ẋ = −y− z

ẏ = x + ay

ż = b + z(x− c)

8/58

168



Dynamical Systems
DeVnition

A dynamical system (M, ϕ) on a manifold M is a Wow, ϕt : M →
M. Equivalently, one may specify the vector Veld v generating ϕt. In
coordinates, ẋ = v(x).

Example: The Rössler System

ẋ = −y− z

ẏ = x + ay

ż = b + z(x− c)

8/58

Dynamical Representations
DeVnition

A representation of the dynamical system (M, ϕ) is an embedding
(diUeomorphism) f : M→ Rn (that preserves the Wow):

M
f
//

ϕt

��

Rn

ψt
��

M
f
// Rn.

DeVnition

Two representations f0 and f1 are equivalent if f1 is isotopic (smoothly
deformable) to f2. That is, if there is a smooth map F : M× [0, 1] → N
with

• Fs(x) = F(x, s) is an embedding for each Vxed s;
• F0(x) = f0(x) and F1(x) = f1(x).

9/58
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A Few Good Theorems
Whitney (1936)

Generically, F : Mn → RN is an embedding, N ≥ 2n + 1.

Takens (1981)

If M has a Wow ϕ, generically it suXces to take
F(x) = f(x), d

dt f(ϕt(x)), d2
dt2 f(ϕt(x)), . . . , d2n

dt2n f(ϕt(x)), N ≥ 2n + 1.

Wu (1958)

If F,G : Mn → RN are embeddings, they are isotopic if N ≥ 2n + 1
(n > 1).

What if N < 2n + 1?

10/58

A Few Good Theorems

Manifolds Dynamical Systems

Embeddings Whitney (1936) Takens (1981)

Isotopy Wu (1958)

11/58
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Three Dimensional Systems
“Every” three-dimensional dynamical system “lives” inside a genus-g
handlebody, Mg:

Find embeddings of Mg → R3,R4, . . .

12/58

Genus One Systems

Continuous “stretch and fold” mechanisms.

Solid torus T = D2 × S1 phasespace.

Embeddings of T → R3,R4, . . .

13/58
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Genus One Representations

Representation Obstructions to Isotopy

Labels R3 R4 R5 R6 R7

? ? ? ? ? -
? ? ? ? ? -
? ? ? ? ? -
...

...
...

...
...

...

14/58

The Mapping Class Group
Classify diUeomorphisms T → T up to isotopy.

Dehn Twist: →

Inversion: →

MCG(T ) = Z⊕ Z2 ⊕ Z2

15/58
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Genus One: R3

↙ ↓ ↘

Oriented Knot-Type Global Torsion Parity

︸ ︷︷ ︸
Extrinsic

︸ ︷︷ ︸
Intrinsic

16/58

Inversion?
Inversion deVned by an isotopy on the trivial embedding.
What about non-trivial knot-types?

If we give K an orientation, then Inv : K→ −K, (orientation reversed)
So consider oriented knot-type.

If K = −K, K is inversion-symmetric.
‘Simplest” inversion-asymmetric knot, 817:

6=

17/58
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Genus One Representations

Representation Obstructions to Isotopy

Labels R3 R4 R5 R6 R7

Global Torsion Z ? ? ? -
Parity Z2 ? ? ? -
Oriented Knot-Type K ? ? ? -

18/58

Parity in R4

Parity becomes trivial:




x1

x2

x3


 Inject−→




x1

x2

x3

0




Isotopy−→




x1

x2

x3 cos θ
x3 sin θ




Project−→
θ=π




x1

x2

−x3




19/58
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Genus One Representations

Representation Obstructions to Isotopy

Labels R3 R4 R5 R6 R7

Global Torsion Z ? ? ? -
Parity Z2 - - - -
Oriented Knot-Type K ? ? ? -

20/58

Knot-Type in R4

Knot-type becomes trivial (x4 =color):

Any knot may be changed into any other by Wipping crossings.

21/58
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Genus One Representations

Representation Obstructions to Isotopy

Labels R3 R4 R5 R6 R7

Global Torsion Z ? ? ? -
Parity Z2 - - - -
Oriented Knot-Type K - - - -

22/58

Global Torsion in R3 (Again)
Consider how to detect global torsion in R3:

→

Twists change the linking number of these two curves.

But curves don’t link in R4→ no global torsion?

23/58
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Global Torsion in R3 (Again)
Frame (t, u, v) along torus core:

t is tangent, u point toward the longitude, and v = u× t.

As we go along core, the pair (u, v) determines a sequence of frames of
R2, or a sequence of rotations. This determines a closed loop in SO(2).

24/58

Global Torsion in R3 (Again)
Smooth deformations of the embedding→ smooth deformations of
the loop.

The set of all loops in a space M up to deformation is the fundamental
group π1M.

π1SO(2) = Z↔ global torsion in R3.

25/58
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Global Torsion in R4

Frame (t, u, v,w) along core.

As we go along core, the triple (u, v,w) determines a sequence of
frames of R3, or a sequence of rotations. This determines a closed loop
in SO(3).

Smooth deformations of the embedding→ smooth deformations of
the loop.

π1SO(3) = Z2↔ global torsion in R4.

26/58

Genus One Representations

Representation Obstructions to Isotopy

Labels R3 R4 R5 R6 R7

Global Torsion Z Z2 ? ? -
Parity Z2 - - - -
Oriented Knot-Type K - - - -

27/58
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Global Torsion in R5

Parametrize T = S1 × D2 by (s, reiφ).

If s ∈ S1, twist: z→ zeis.

Embed in S1 × D4 ⊂ R5

(
s

reiφ

)
7→




s
reiφ

rei(φ+s)




DeVne the isotopy by




1 0

0
cos θ sin θ
− sin θ cos θ






s
reiφ

rei(φ+s)


 ,

which exchanges the two complex factors between θ = 0 and θ = π/2.

28/58

Genus One: Summary
Complete representations for genus one, D2 × S1.

Representation Obstructions to Isotopy

Labels R3 R4 R5

Global Torsion Z Z2 -
Parity Z2 - -
Oriented Knot-Type K - -

Phys. Rev. E, 80, 056207 (2009).

29/58
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Higher Genus Systems
Lorenz System:

ẋ = σ(y− x)

ẏ = x(R− z)− y

ż = xy− βz

30/58

Trinions, Dreibeins, and Graphs

→

Graph Embeddings:

31/58
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Local Torsion
A genus-g handlebody decomposes into 2(g− 1) trinions:

Add a twist on each “port” of the trinion→ 6(g− 1) twists.

Ports identiVed pairwise→ 3(g− 1) twists.

Z3(g−1)↔ local torsion in R3.

32/58

Higher Genus Representations

Representation Obstructions to Isotopy

Labels R3 R4 R5

Local Torsion Z3(g−1) ? ?
Parity Z2 ? ?
Oriented “Knot”-Type Kg ? ?

33/58
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Representations in R4

Parity becomes trivial as before.

Graph “knots” become trivial as before.

Local Torsion reduced Z→ Z2 as before, but . . .

34/58

Local Torsion in R4

Twist exchange:

So. One twist is redundant: Z3 → Z2.

Thus Z3(g−1) → Z2(g−1)
2 .

35/58
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Higher Genus Representations

Representation Obstructions to Isotopy

Labels R3 R4 R5

Local Torsion Z3(g−1) Z2(g−1)
2 ?

Parity Z2 - -
Oriented “Knot”-Type Kg - -

36/58

Local Torsion in R5

Remaining twists become trivial as before.

All embeddings isotopic.

37/58
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Higher Genus Systems: Summary
Complete representations for genus-g.

Representation Obstructions to Isotopy

Labels R3 R4 R5

Local Torsion Z3(g−1) Z2(g−1)
2 -

Parity Z2 - -
Oriented “Knot”-Type Kg - -

Phys. Rev. E, (submitted).

38/58

Interim Summary
“When you perform an analysis on a reconstruction, are you
studying the original dynamical system or are you studying
the reconstruction?”

Until now, a framework for answering this questions did not exist.

I have addressed it by introducing a Representation Theory for
Dynamical Systems.

Based on the topological theory for three dimensional systems, I have
completely worked out this theory for these systems.

When performing an analysis of data from three-dimensional systems,
we know what depends on the physical mechanism and what depends
on the reconstruction (knot-type, torsion, parity).

39/58
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Extensions
i. Representations of the Lorenz System.

ii. Pushing into higher dimensions.

40/58

Lorenz
Perform a diUerential “embedding” of the Lorenz system using x(t):

→

41/58
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Branched Manifolds

↓

42/58

DiUerential Mapping into R3

F3 =



X
Y
Z


 =




x
σ(y− x)

σ(R + σ − z)x− σ(1 + σ)y




This mapping is singular on yz-plane:

F3(0, y, z) =




0
σy

−σ(1 + σ)y




This plane cuts the attractor, so is not an embedding into R3.

43/58
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DiUerential Mappings into R4

F4 =




X
Y
Z
W


 =




x
σ(y− x)

σ(R + σ − z)x− σ(1 + σ)y
σz(Ax− σy) + σy(B− x2)− σCx




where A = 1+ b+ 2σ, B = σ(R+ σ+ 1) + 1, and C = R+ 2Rσ+ σ2.

F4 is not singular and provides an embedding into R4.

Moreover, this embedding is isotopic to the standard one.

We conclude that F3 is a “bad” projection of F4 into R3.

44/58

Local ReWection

F : (x, y, z) 7→
(
x, y,

−xz√
1 + x2

,
z√

1 + x2

)
.

45/58
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Lorenz: Conclusion
Representation theory shows that the standard “diUerential
embedding” of the Lorenz system into R3 cannot actually be an
embedding.

However, the diUerential mapping F4 embeds the Lorenz system into
R4.

This embeddings is the trivial representation, though “twisted”.

The mapping F3 is a singular projection of this twisted embedding into
R3.

Phys. Rev. E, 81, 066220 (2010).
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Towards Higher Dimensions
Solid n-torus: T n = Dn × S1.

Problem: Vnd MCG(T n).

Dehn Twist: →

Inversion: →

47/58
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Mapping Class Group
If smoothness is dropped, then MCG(T n) = π1SO(n)⊕ Z2 ⊕ Z2.

A “Dehn twist” yields a loop in SO(n) (amount of rotation along S1).

π1SO(2) = Z and π1SO(n) = Z2 for n > 2.

Smooth case = ?

48/58

Smooth Mapping Class Group
The problem is Alexander’s Lemmas:
Lemma 1: Any homeomorphism f : Sn → Sn extends to a homeomor-
phism F : Dn → Dn.

F(rx) = rf(x)

Lemma 2: Any homeomorphism f : Dn → Dn which is the identity on
Sn is isotopic to the identity on all of Dn.

ht(x) =

{
tf(x/t) 0 ≤ ||x|| < t

x t ≤ ||x|| ≤ 1
.

Problem: these are not smooth procedures!

49/58
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Twisted Spheres
Construct a sphere Σ by glue disks along their boundaries.

→

Σ ∼= Sn iU f extends over Dn.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

|An| 1 1 1 ? 1 1 28 2 8 6 992 1 3 2 16256 2 16 16

50/58

Working Around
Solution: Determine spectrum of embeddings directly.

T n = Dn × S1 → Rn+1+c, c = 0, 1, 2, . . .

T n is a “thickened” circle or knot.

If n ≥ 3 then n + 1 ≥ 4 and no non-trivial knot-type.

Parity (Z2) only in Rn+1 (c = 0).

51/58
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Global Torsion in Rn+1 and Rn+2

Determine twisting by “frames long the core” as for T 2.

Rn+1→ π1SO(n) ∼= Z2.

Rn+2→ π1SO(n + 1) ∼= Z2.

52/58

Global Torsion in Rn+3

Write x in “polar” form x = ru and use hyperspherical coordinates

uk = sinφ1 · · · sinφk−1 cosφk
z = un−1 + iun = sinφ1 · · · sinφn−2eiθ.

If s ∈ S1, twist: z→ zeis.




s
ru
rz


 7→




s
ru
rz
rzeis


→



1 0

0
cos t sin t
− sin t cos t







s
ru
rz
rzeis


 ,

which exchanges the two complex factors between t = 0 and t = π/2.

53/58
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Higher Dimensions: Summary
Complete representations of T n = Dn × S1.

Representation Obstructions to Isotopy

Labels Rn+1 Rn+2 Rn+3

Global Torsion Z2 Z2 -
Parity Z2 - -
Oriented Knot-Type - - -

54/58

Conclusions
The analysis of data from complex dynamical systems relies on
reconstructions of the original phase space.

Methods of analysis may in principle depend on the choice of
reconstruction.

We have introduced a representation theory to classify these
reconstructions.

This representation theory has been worked out for three-dimensional
dynamical systems and a class of higher dimensional systems.

55/58
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Outlook
A topological understanding of dynamical systems exists in three
dimensions.

Representation theory provides a capstone to this theory.

A topological understanding of dynamical systems in higher
dimensions is lacking.

Representation theory provides a cornerstone on which to build this
theory.

This will lead to a better understanding of the phasespace mechanisms
that generate chaos and ultimately to a better understanding of the
underlying physics.

56/58

Fin
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