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Abstract: Quantum mechanical descriptions of polyatomic molecules can be, in 
principle, obtained directly from solutions to a multi-electron/nuclei Schrodinger 
equation; however, these solutions are extremely difficult to obtain. Here we show that 
approximations of the electronic ground state are sufficient to describe rudimentary 
geometric properties of polyatomic molecules by using the water molecule as an 
example.

Introduction: One of the obvious 
strengths of Quantum Mechanics (QM) 
is its complete description of simple 
molecular systems such as H2. In 
principle, the same general formalism 
for developing a description of H2 can be 
used to describe much more complicated 
polyatomic molecules. If we head down 
this path, we arrive at the following 
relations:
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Where A is the number of nuclei and N 
is the number of electrons in the system, 
and U is the expression of the potential 
energy taking into account electrostatic 
energy contributions between both 
nuclei and electrons, TN is the kinetic 
energy contribution taking into account 
vector potential correction for the 
motion of charged particles, and Te is the 
kinetic energy contribution due to 
electron motion. If we follow the Born-
Oppenheimer approximation, mass 
differences between electrons and nuclei 

are of the order of 104 so we can neglect 
kinetic energy contributions from nuclei 
and concern ourselves with electron 
motion in a constant electric potential.

Variational Approximation and 
Hartree-Fock Method: With the 
neglect of nuclear motion, we can 
rewrite our equation 1) as two-separated 
equation, once with explicit dependence 
on electron distances and an implicit 
dependence on nuclei positions and one 
dependent on the sum of nuclear kinetic 
energy and electronic energy 
contributions: 
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 The trouble with this simplification is 
the need to obtain solutions for the 
electronic eigenvalue problem. To 
remedy this, we can make use of the 
Rayleight-Ritz (RR) variational principle 
to obtain upper bounds for the electronic 
energies. A consequence of utilizing the 
RR variational principle is that it is 
necessary to obtain reasonable well-
behaved trial wavefunctions. Since we 
are looking for wavefunctions that could 
describe an N electron system, we need 
trial functions that take into account both 
spatial and spin contribution. As it turns 
out the criteria for the trial 
wavefunctions are satisfied by a Slater 
determinant. If we now minimize the 
upper bound on the energy obtained by 



the RR scheme1, we arrive at the 
Hartree-Fock Equations: 
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Where φ’s the terms in a series 
expansion of the test wavefunctions. If 
we look at the expression for  weɛ  
should note that this produces a set of N 
linear equations which we can put into 
matrix form and find eigenvalues.

Before we can find the 
eigenvalues of the matrix, it is necessary 
to evaluate the K and J matrix elements 
before we can diagonalize. This could 
potentially be very problematic; 
however, since we have defined the φ’s 
as terms in the series of the 
wavefunction we are free to choose their 
form, so long as their behavior is similar 
to the behavior of the test wavefunction. 
A common choice at this point is to 
assume the φ takes a Gaussian form, and 
as a result will provide a reduction of 
total integral calculations due to 
symmetry considerations. By choosing 
the form of the φ, we need to find series 
coefficients to get back the test 
wavefunction we had used to start the 
analysis. We can avoid this problem, to 

1 See ref (2) for a derivation of this minimization 
procedure

some extent, by instead guessing as to 
what the coefficients are then 
diagonalizing the iε  matrix with them, 
and take the new coefficients from the 
digonalization to form an updated iε  
matrix and repeat until the coefficients 
converge. 

Once we have the converged iε
matrix and associated φ’s with proper 
coefficients we can then use these results 
to find the energy surface described by 
the E equation of equation set 3). With 
the energy surface obtained, we can take 
the gradient and obtain the minimum 
energy conformation of the nuclei, and 
extract geometric information2 for the 
ground state conformation of the 
molecule.

The Water Molecule: As an example of 
the method described in the previous 
sections, we seek to find the optimum H-
O-H bond angle for the water molecule. 
In principle, we should select hundreds 
of nuclei positions and compute energies 
for each to construct an energy surface; 
however, we can avoid these massive 
computations in the search for the H-O-
H bond angle by fixing the lengths of the 
H-O bond and varying the positions of 
the H nuclei. To do this, we note that we 
need at least ten test wavefunctions, one 
for each electron in the H2O molecule. 
By using the PyQuante quantum 
chemistry module for python, we 
perform twenty Hartree-Fock 
calculations on the ground state of H2O 
by placing nuclei at their approximate 
accepted equilibrium bond lengths and 
then varying the H-O-H bond angle 

2 We can also obtain the Hellmann-Feynman 
force, nuclear quadrupole coupling constant, 
electrical dipole/quadrupole moments, and 
diamagnetic shielding constant by using our 
converged expansion of the test wavefunction. 
See ref (1). 
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ranging from 80° to 130° degrees. The 
results of these calculations are found in 
figure 1. 

It is clear from the plot that the 
minimum occurs between 100° and 
110°. A closer examination near the cusp 
of the energy curve permits a minimum 
at 104°. A comparison with other studies 
[3,4] shows that the accepted 
equilibrium  H-O-H angle is found to be 
104.5°.  
Conclusion: In this short paper, we have 
demonstrated the use of the quantum 
mechanics in describing polyatomic 
molecular structure through the example 
of finding the accepted H-O-H bond 
angle.
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