
The Quantum Hall Effect in Graphene

Daniel G. Flynn∗

Department of Physics, Drexel University, Philadelphia, PA
(Dated: December 7, 2010)

Graphene is a single layer of carbon atoms arranged in a hexagonal lattice. The two-dimensional
nature of graphene leads to many interesting electronic, thermal, and elastic properties. One par-
ticularly interesting property of graphene is that it exhibits the quantum Hall effect at room tem-
perature.

I. INTRODUCTION

Classically, when an external magnetic field is ap-
plied perpendicularly to a current carrying conductor,
the charges experience the Lorenz force and are deflected
to one side of the conductor. Then, equal but opposite
charges accumulate on the opposite side. The result is
an asymmetric distribution of charge carriers on the con-
ductor’s surface. This separation of charges establishes
an electric field that opposes further charge build-up. As
long as charges flow, a steady electric potential exists
called the Hall voltage and the resistivity of the conduc-
tor depends linearly on the magnetic field strength. This
is known as the classical Hall effect.

In 1980, Klaus von Klitzing discovered that at low tem-
peratures and high magnetic field strength, the plot of re-
sistivity vs. applied magnetic field strength becomes an
increasing series of plateaus. This implied that in quan-
tum mechanics, resistance is quantized in units of h

e2 .
The plateaus corresponded to the cases where the resis-
tivity was related to the magnetic field by integer and
some fractional values of a quantity known as the filling
factor. These integer and fractional values led to the the-
ory of the integer quantum Hall effect and the fractional
quantum Hall effect. Both of these effects have since been
observed in graphene, a single layer of carbon atoms in a
hexagonal lattice, at room temperature. [1][2][3][4]

II. BACKGROUND

A. Particle Exchange and Fractional Statistics

The quantum Hall effect is only observed in two-
dimensional systems. Thus the quantum Hall effect must
be explained using the properties of two-dimensional
systems. In three dimensions, particles with integer
spin (bosons) follow Bose-Einstein statistics while parti-
cles with half-integer spin (fermions) follow Fermi-Dirac
statistics. However, in two dimensions, particles can
follow statistics that range continuously from fermionic
to bosonic statistics. Such statistics are called para-
statistics. To understand how these statistics work, con-

∗Electronic address: dgf26@drexel.edu

sider the particle exchange operator, P, acting on n iden-
tical particles constrained along a chain. Let xi be the
position of the ith particle. Then the composite wave-
function for the particles in the chain is

Ψ := Ψ(x1, x2, ..., xn) (1)

For identical bosons, the particle exchange operator, P,
flips two of the coordinates and the resulting wavefunc-
tion has eigenvalue +1.

PijΨ(x1, .., xi, .., xj , .., xn) = Ψ(x1, .., xj , .., xi, .., xn)
(2)

For identical fermions, the particle exchange operator
flips two of the coordinates and the resulting wavefunc-
tion has eigenvalue -1.

PijΨ(x1, .., xi, .., xj , .., xn) = −Ψ(x1, .., xj , .., xi, ..., xn)
(3)

For particles in two dimensions obeying parastatistics

PijΨ(x1, .., xi, .., xj , .., xn) = exp(iα)Ψ(x1, .., xj , .., xi, .., xn)
(4)

In this case, applying the particle exchange operator
swaps two of the coordinates and the resulting wavefunc-
tion has an eigenvalue of arbitrary phase, α. Applying
the exchange operator a second time will swap the two
coordinates back to their original position returning the
system to its initial wavefunction.

PjiPijΨ(x1, .., xi, .., xj , .., xn) = exp(2iα)Ψ(x1, .., xj , .., xi, .., xn)

= Ψ(x1, .., xi, .., xj , .., xn) (5)

This requires that the phase follows

exp(2iα) = 1→ exp(iα) = ±1 (6)

For bosons the phase is given by α = 2nπ, and for
fermions the phase is given by α = π(2n + 1) where n
is an integer. In two dimensions, however, the phase can
range between the fermionic and bosonic values, and the
statistics corresponding to these intermediate phases are
called fractional statistics.

B. Anyons

The quasi-particles that follow the fractional statistics
described above were given the name “anyons” by Frank
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Wilczek in 1982. One model for anyons is a spinless
particle orbiting around a thin solenoid that produces
a magnetic field that defines the z-axis. The charge of
the particle is proportional to the applied flux Φ

q = CΦ (7)

where C is a constant. Before the magnetic flux is ap-
plied to the system, the particle’s angular momentum is
quantized, lz = n~. Then when a changing magnetic field
is applied, it creates a circular electric field according to
Maxwell’s equation

~∇× ~E = −∂
~B

∂t
(8)

This circular electric field exerts a torque on the particle
changing its angular momentum. This change in angular
momentum is due to the change of magnetic field and
can be calculated usings Stoke’s theorem∫

~∇× ~E · ~dS =

∫
~E · ~ds = E2πr = −

∫
~B · ~S = −Φ̇

(9)

where ~dS and ~ds are the infitesimal elements of the sur-
face and its enclosing curve, respectively. This leads to

l̇z = qEr = −qΦ̇
2π

= −CΦΦ̇

2π
(10)

Thus, the change in the angular momentum associated
with applying magnetic flux to the system is

∆lz = −cΦ
2

4π
=
qΦ

4π
(11)

If the particle’s angular momentum in the absence of flux
is zero and the dimensions of the solenoid and the parti-
cle’s orbit are limited toward zero, then the system may
be treated as a single object with spin determined by the
magnetic flux passing through the solenoid.

The statistical properties of this model for anyons can
be described as an extension of the properties of a two-
anyon system. Such a system follows the Hamiltonian

H =
(~p1 − q ~A1)2

2m
+

(~p2 − q ~A2)2

2m
(12)

where ~pi are the momenta of the anyons and ~Ai are the
vector potentials at the position of each anyon given by

~Ai = ± Φ

2π
ẑ × ~r

r2
(13)

where ~r = ~r1− ~r2. In terms of the center of mass coordi-
nate ~P = ~p1 + ~p2 and relative coordinate ~p = (~p1− ~p2)/2,
the Hamiltonian is

H =
P 2

4m
+

(~p− q ~Arel)
2

m
(14)

The first term in the Hamiltonian describes the motion
of the center of mass while the second term describes a

system where a particle of mass m/2 is orbiting a flux Φ.
The particle is spinless giving the boundary conditions

Ψ(r, θ + π) = Ψ(r, θ) (15)

Making use of the gauge transformation

~A′ → ~A−∇Λ (16)

where Λ = φθ
2π , allows the Hamiltonian to be written as

H =
P 2

4m
+
p2

m
(17)

in the gauge where ~A′ = 0. This Hamiltonian is equiva-
lent to the Hamiltonian of two free particles. The bound-
ary conditions in this choice of gauge are also trans-
formed, picking up a phase factor

Ψ′(r, θ + π) = exp(−iqΛ)Ψ(r, θ) = exp(− iqΦθ
2π

)Ψ(r, θ)

(18)
Then using the original boundary conditions and calcu-
lating Ψ(−~r) gives

Ψ′(r, θ + π) = exp(− iqΦ
2

)Ψ′(r, θ) (19)

This proves that the wavefunction describing two anyons
is multiplied by a phase factor when the particles are
interchanged. The phase factor describing the resulting
fractional statistics, also known as anyonic statistics is

α =
qΦ

2
(20)

Classically, the amount of magnetic flux produced by the
solenoid is an independent parameter in this system so
the phase factor and the corresponding statistics are ar-
bitrary. [5]

C. Landau Levels

Another important concept in the explanation of the
quantum Hall effect is Landau levels. Consider an elec-
tron confined to the x-y plane in the presence of a uni-
form magnetic field in the z-direction. The Hamiltonian
is given by

H =
1

2m
(~p+

e ~A

c
)2 (21)

where ~A is the vector potential related to the applied

magnetic field by the Maxwell relation ∇× ~A = ~B. The
electron will follow Schrodinger’s equation HΨ = EΨ
which is invariant under the Landau gauge transforma-
tion:

~A(x, y, z) = B(−y, 0, 0) (22)
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In the Landau gauge, the Hamiltonian can be written in
terms of dimensionless quantities

y′ =
y

l
− lkx

p′y =
lpy
~

(23)

where kx is the x-component of the particle’s wavevector

and l is the magnetic length l =
√

~c
eB . The Hamiltonian

is then

H = ~ωc[
1

2
y′2 +

1

2
(p′y)2] (24)

where ωc is the cyclotron frequency ωc = eB
mc . This is the

Hamiltonian for the familiar one-dimensional harmonic
oscillator with energy eigenvalues

En = (n+
1

2
)~ωc (25)

where n=0,1,2,... The levels corresponding to each n are
called Landau levels, and the correspondeing eigenvectors
η are given by

ηn,kx(~r) = [π22n(n!)2]
1
4 exp[ikxx−

1

2
(
y

l
−lkx)2]Hn(

y

l
−lkx)

(26)
where Hn are Hermite polynomials. Some interesting
properties of Lanau levels are that the energy of the level
does not depend on kx while the y position does depend
on kx. Because the energy is not dependent on kx, the
eigenstates with different values of kx in a given Landau
level are degenerate.

D. Filling Factor

Another important feature in describing the quantum
Hall effect is the filling factor. In the Landau gauge de-
scribed above, the electron orbital corresponding to a
given n value is localized at y = kxl

2 according to [23].
If the electron is confined to a space of length Lx in the
x-direction with the periodic boudary conditions

eikx(x+Lx) = eikxx (27)

then the allowed values of kx and nx are

kx = 2π
nx
Lx
→ nx =

Lxkx
2π

(28)

where nx is the corresponding Landau level quantum
number. Counting the number of states in a region of
LxLy defined by y = 0 and y = Ly (For simplicity, the
state at y = 0 has nx = 0 and the state y = Ly corre-
sponds to the wavevector kx = Ly/l

2.) gives the total
number of states in this region, Nx.

Nx =
LxLy
2πl2

(29)

The degeneracy of the Landau states, G, is then

G =
Nx
LxLy

=
1

2πl2
=
B

φ0
(30)

where is φ0 is the flux quantum φ0 = hc
e . Therefore,

there is one state per flux quantum in each Landau level.
The filling factor, ν, is the number of occupied Landau
levels for electrons in a given magnetic field. It is defined
as

ν =
ρ

G
= 2πl2ρ =

ρ

B/φ0
(31)

where ρ is the two dimensional density of electrons.
Hence, the number of electrons that can exist in a given
Landau level increases proportionally with the magnetic
field strength so that as the magnetic field strength
increases fewer and fewer Landau levels are occupied.
Thus, the filling factor is a measure of both the applied
magnetic field strength and the number of Landau levels
that are occupied in a system.

III. THE HALL EFFECT

A. Classical Hall Effect

The Hall effect describes how current flowing through
a sample will be effected by the application of a magnetic
field. Consider a two-dimensional conducting plate in an

applied electric field, ~E. According to Ohm’s law, the
current flowing through the plate, I, is proportional to
the applied voltage, V, and is inversely proportional to
the resistance of the plate, R. This is equivalent to

~J = σ ~E (32)

where σ is the conductivity of the plate, and ~J = qρ~v is
the current density for particles of charge q and density
ρ moving with a velocity ~v. Ohm’s law states that cur-
rent will flow in the same direction as the applied electric
field.

In 1879, Edwin Hall discovered that in the presence
of an applied magnetic field, the current in the plate wil
actuallyl flow in a direction perpendicular to the applied
electric field. Consider the conducting plate in the pres-
ence of an applied magnetic field perpendicular to the

x-y plane, ~B = Bẑ. Then the charges flowing through
the plate are subject to the Lorenz force:

FLorenz = q( ~E +
1

c
~v × ~B) (33)

If the applied electric field is in the y-direction, ~E = Eŷ,
then the particle will move with velocity ~v given by

q ~E = −q~v × ~B → ~v = c
E

B
x̂ (34)
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Then from Ohm’s law, the conductivity of the plate, or
Hall conductivity, is given by

σH =
~J

~E
=
qρ~v

Ey
=
ρqc

B
(35)

Similarly, the Hall resistance RH = 1/σ is defined as:

RH =
B

ρqc
(36)

The Hall effect has been confirmed by countless ex-
periments and is used routinely in solid-state physics
to determine the density of charge carriers ρ through
measurements of a system’s Hall resistance.

Figure 1: Physical picture of classical quantum Hall effect

B. Quantum Hall Effect - Integer and Fractional

The integral quantum Hall effect (IQHE) was discov-
ered by Klaus von Klitzing in 1980. Von Klitzing was
studying the Hall effect of two-dimensional electrons in
silicon MOSFET(metal oxide-semiconductor field-effect
transistor). He found that at low temperatures and high
magnetic field, the Hall resistance of the system did not
vary linearly with the strength of the magnetic field as
predicted by the classical Hall effect. The plot of the re-
sistivity as a function of magnetic field strength exhibited
many plateaus which indicated that the Hall resistance
is quantized.

In a two-dimensional system, the density of electrons,ρ,
can be written as:

ρ = ν
B

φ0
(37)

Then, the classical Hall resistance with q=e is

RH =
B

ρec
=

B
νBec
φ0

=
h

νe2
(38)

Therefore, the Hall resistance is quantized in units of h
e2

and is inversely proportional to the filling factor ν.

C. Integer Quantum Hall Effect

The Integer Quantum Hall Effect (IQHE) refers to the
scenario where the filling factor, ν, has an integer value.

Integer values of the filling factor describes a system of
non-interacting electrons where the highest Landau level
is completely filled. Once the Landau level is completely
filled, a gap exists requiring a finite amount of energy
to reach the next degenerate Landau level. However,
impurities in the sample create localized potentials that
can trap electrons in localized states. Therefore, if the
filling is changed slightly, the extra electrons fill the
localized states and do not contribute to the current.
Thus, in regions where the filling factor has an integer
value, there is a plateau in the plot of resistivity vs.
magnetic field strength where the longitudinal resistance
of the sample disappears.

Figure 2: Plot of Hall resistivity and longitudinal resistivity vs.

magnetic field strength exhibiting the integer quantum Hall effect

D. Fractional Quantum Hall Effect

In 1982, the fractional quantum Hall effect (FQHE)
was discovered by Horst Stormer and Dan Tsui. By re-
peating von Klitzing’s earlier experiments with cleaner
samples in higher magnetic fields, they found that the
plateaus in the plot of resistivity vs. magnetic field
strength also occured at some fractional values of the fill-
ing factor. Because fractional values of the filling factor
refers to partially filled Landau states, the plateaus could
only be explained in terms of interacting particles. The
Hamiltonian for N interacting electrons can be written
as:

H = ΣNi
(~pi − e ~A(xi)2

2m
+ ΣNi<j

e2

~xi − ~xj
(39)

For the FQHE, the electron-electron interaction term is
dominant and the system is strongly correlated. In 1983,
Robert Laughlin introduced an ansatz wavefunction for
filling factors, ν = 1/m where m = (2j + 1).

Ψm = Πi<j(zi − zj)me−Σi|zi|2/4l2 (40)
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where zj are the complex electron coordinates in the
plane, zj = xj + iyj . This wavefunction is known as
the Laughlin wavefunction. The Laughlin wavefunction
gives a very uniform distribution of the electrons and
minimizes the Coloumb energy of the system. The
wavefunction is the lowest energy state for the system
and is not degenerate. The Laughlin wavefunction
describes a stable electronic ground state with high
correlation for fractional values of the filling factor.
Small deviations from these filling factors result in the
excitation of quasi-particles that carry fractional charge
and obey fractional statistics, i.e. anyons. As in the
IQHE, these quasi-particles get trapped by impurities
in real samples and do not contribute to the current.
Therefore, the resistivity of the sample does not change
until the filling factor reaches the next stable value.

Figure 3: Plot of Hall resistivity vs. magnetic field strength

exhibiting fractional quantum Hall effect

IV. THE QUANTUM HALL EFFECT IN
GRAPHENE

Graphene is a single layer of carbon atoms in a
two-dimensional hexagonal lattice. The carbon atoms
bond to one another via covalent bonds leaving one
2p electron per carbon atom unbonded. The result is
that the Fermi surface of graphene is characterized by
six double cones. In the absence of applied fields, the
Fermi level is situated at the connection points of these
cones. Since the density of electrons is zero at the Fermi
level, the electrical conductivity of graphene is very

low. However, the application of an external electric
field can change the Fermi level causing graphene to
behave as a semi-conductor. In this case, near the Fermi
level the dispersion relation for electrons is linear and
the electrons behave as though they have zero effective
mass (Dirac fermions). Because graphene exhibits this
behavior even at room temperature, it is observed to
exhibit both the integer and fractional quantum Hall
effects.

Figure 4: Energy level diagram for graphene showing the Fermi

level in the absence of any applied fields

The existence of the QHE at such high temperatures
in graphene is due to the large energy gaps characteristic
of Dirac fermions. These energies are given by:

En = vf
√
|2ne~B| (41)

where vf is the Fermi velocity ( 106m/s) and n is the
Landau level quantum number. In a strong magnetic
field (B=45T), the energy level spacing is 2800K.
Graphene has a large concentration of charge carri-
ers which keeps the lowest Landau level completely
populated at high magnetic fields. Therefore, any
carriers above the lowest Landau level will not be able
to overcome the energy gap, and the quantum Hall
effect is observed. The quantum Hall effect has been
observed for the integer values of the filling factor
ν = 0,±1,±2,±6,±10, ... as well as the fractional filling
factors ν = 1

3 ,
2
3 , and

2
5 . Because graphene exhibits

both the integer and fractional quantum Hall effects,
it is ideal for studying QHE, and may be proven use-
ful in the development of quantum computers. [6][7][8][9]
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