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Abstract

Gravity never stops attracting matter to other massive objects; its pull can bring gas together from 
across space to form stars and is also responsible for the stars demise. Neutrons in a collapsing star will 
provide a quantum mechanically derived pressure to maintain the star in equilibrium. Degeneracy of 
energy states of the neutrons, explained by quantum mechanics as a byproduct of a predetermined way 
in which the particles can occupy the states, will prevent the collapse of stars with the requisite mass 
into black holes.



1. Introduction

Violent deaths on Earth, more often than not lost in the flow of history, have also been catalysts 
for the formation of new life as well as turning points in human history. Significance in such deaths 
during Earth's history, from the incineration of the dinosaurs to the crucifixion of Jesus, pales in 
comparison to that associated with the death of the first stars ever formed, whose demise populated the 
universe with the materials necessary for the emergence of organic life. Stars all begin to die as the self 
cannibalization of their bodies, necessary as a fuel source for the nuclear fusion processes at their core, 
becomes a fruitless search for fusible elements. Once a star can no longer fuse enough fuel to 
counteract the same gravitational force that powered its ignition, it will go through several stages of 
death dictated solely by how much mass the star contains. Total death for a star of sufficient mass 
involves a transformation into a black hole, a metamorphosis preceded by a stage during which the 
remnant core is composed entirely of neutrons. Extreme pressure caused by gravity's take over of the 
star's life is again the cause of a counter-insurgent pressure brought forth by the quantum mechanical 
effects that dominate the behavior of the neutrons. 

Neutron stars represent a class of stars in a specific mass range that, through the degeneracy 
pressure exerted by the neutrons, will offer enough resistance to balance gravity's death grip. Neutron 
creation in stars that have collapsed beyond the white dwarf stage is due to the interaction of electrons 
and protons, modeled by the inverse beta decay reaction pe1.36MeV⇔n ve . Although 
neutrons formed in this manner are usually unstable and decay in a matter of minutes, the white dwarf 
stage saw a degeneracy in the electron gas that resulted in all available electron states being filled. As 
no electrons can form with energy below or equal to 1.36Mev, the neutrons will not decay via a beta 
reaction to form an electron and a proton. Along with neutrons, the inverse beta decay reaction also 
forms neutrinos. Enough neutrons are formed so that the neutrinos' flux, coupled with the tightly 
packed matter in the surrounding star, is enough to begin counteracting the gravitational collapse of the 
star. As the neutrons become degenerate and occupy higher and higher energy states, they exert the 
degeneracy pressure that if produced in a small enough star will balance the effects of gravity. In stars 
whose mass prevents the equilibrium between degeneracy pressure and gravity, the continuous 
crushing of gravity leads inexorably to the next stage in star death, a black hole.

In order to quantify neutron degeneracy pressure, a quantum mechanical approach to a system 
of neutrons inside a three dimensional box in which the potential is zero, described in section 2, will be 
used to produce a model of the neutrons in a star. Section 3 will detail the gravitational collapse of a 
star and will contain the derivation of an expression of energy, which will be used to calculate the 
pressure due to gravity in the star. Section 4 will use the expression obtained from section 2 for the 
total energy contained in the degenerate system, whose relevance is predicated by the fact that the 

pressure exerted by a system on its surroundings can be calculated by −
dE
dV

. Of interest is the 

radius of a neutron star. Calculated in section 5, this radius will be the limit at which neutron 
degeneracy successfully balances gravity to produce a stable star.



2. Free Neutron Gas Degeneracy

Neutrons constrained to a box of length L with volume V=L3 constitute a system that can be studied 
by making the simplifying assumptions that neutrons cannot exist outside the box, experience no 
neutron-neutron interactions and are free of any other potential. Such assumptions lead to the following 
form of the Schrödinger equation:
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The condition of restriction to inside the box lead to the boundary conditions:
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Solutions of the Schrödinger equation under these conditions are very much the three dimensional 
generalization of the solutions for the case of a free particle in square well potential, with the 
eigenstates and corresponding energy eigenvalues given by:
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Neutrons with the highest allowed energy in this system will be at the Fermi Energy E f , which can 
be obtained by noting that each energy eigenstate is associated with a set of three integers, namely 
n1 , n2  and n3 . Each triplet of these integers n1 , n2, n3  can represent a point corresponding 

to a specific energy in a three dimensional space in which it serves to specify a maximum radius 
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Since n1 , n2  and n3 are positive integers, all possible triplets will specify locations in the first 
octant of the three dimensional space. Each triplet specifies an energy level allowed to the neutrons, 

which, by virtue of being fermions have a spin of 
1
2

, meaning two neutrons can occupy a single 

eigenstate at its corresponding energy, as long as their spins are opposite. Counting the total number of 
neutrons in the box then is a problem of counting the number of energy eigenvalue points in the first 
octant. Accounting for the spin gives:
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Equations 5 and 6 combine to give:
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Equations 6 and 7 combine to give:
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Equation 8 leads to an expression of the Fermi energy:
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The number of neutrons, given by N, divided by the volume of the box is the number density of the 
neutrons:

 nn=
N
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N
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An equivalent expression of the Fermi energy that is independent of the physical dimensions of the box 
emerges when equations 9 and 10 are combined to give:
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An integral can be used to compute the combined energy of all the states below the state that has the 
Fermi energy by integrating over the first octant in the three dimensional space:
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3. Gravitational Collapse

In order to stay a neutron star, the dying core needs to exert enough pressure through the neutron 
degeneracy to balance the gravitational force driving the collapse. Gravity acts to gather all material in 
a system to the center of mass. For a star of radius r , assumed uniform density  , and mass 

mstar=4
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3
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 , the work dW  gravity does to add mass dm=43dr  to the star can written 

in terms of its radius, the number of neutrons and the mass in the following way:

dW=−G
mstar
r
dm                                                            (14)

Solving and plugging in gives the total energy needed to collapse the star:
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In this case, the density given by  is the total mass of the neutrons divided by the volume of the 
star:
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Combining equations 15 and 16 gives the total energy needed to form the star of mass M, radius R and 
containing N neutrons:
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As noted, the pressure of a system can be given by −
dE
dV

. The gravitational pressure is then:
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4. Degeneracy Pressure

The neutron degeneracy pressure is given by applying the derivative on equation 13 in the same 
way as the gravitational pressure:
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5. Neutron Star

Neutrons produced by the joining of an electron and proton, when formed in energy levels 
necessary to produce a gravity balancing degeneracy pressure, will result in an equilibrium between the 
gravitational and the degeneracy pressure. To find the radius of the star for which the equilibrium will 
be reached, the pressures in equations 18 and 19 can be equalized and solved for the volume V:
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Plugging in  the expression R=
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, the radius of a neutron star in terms of the number of 

neutrons present and their mass is:
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6. Conclusion

Outlined in this paper is an example of the connection between quantum mechanics and the 
force of gravity. In the transformation of a star from a fusion reactor to its stint as a neutron star, 
gravity was opposed in its habitual attractive tendencies by a pressure whose origin rests solely in 
quantum mechanics. Ultimately dependent on the amount of matter present in the star, its path can lead 
to the point of equilibrium between neutron degeneracy pressure and gravitational pressure. As gravity 
crushes the stellar material with no resistance from fusion reactions, the electrons and protons are 
brought close enough to fuse into neutrons, whose collective energy fills every available state up to the 
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degeneracy pressure arises, namely the fermion nature of the neutron that allows two neutrons of the 
same energy but with different spin to occupy the same state. Gravity continues in its attempt to 
compress the star, which serves to impart the energy on the neutrons, causing the population of higher 
energy states that push out against the collapse. A star that is in equilibrium with gravity will have the 

theoretical radius R=
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, which is determined by the amount of neutrons present 

and their mass.
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