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Background

J. R. Tredicce

Can you explain my data?

I dare you to explain my data!
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Motivation

Where is Tredicce coming from?

Feigenbaum: α = 4.66920 16091 .....
δ = −2.50290 78750 .....
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Experiment

Laser with Modulated Losses
Experimental Arrangement
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Our Hope

Original Objectives

Construct a simple, algorithmic procedure for:

Classifying strange attractors

Extracting classification information

from experimental signals.
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Our Result

Result

There is now a classification theory.

1 It is topological

2 It has a hierarchy of 4 levels

3 Each is discrete

4 There is rigidity and degrees of freedom

5 It is applicable to R3 only — for now
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Topology Enters the Picture

The 4 Levels of Structure

• Basis Sets of Orbits

• Branched Manifolds

• Bounding Tori

• Extrinsic Embeddings
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Topological Components

Organization

LINKS OF PERIODIC ORBITS
organize

BOUNDING TORI
organize

BRANCHED MANIFOLDS
organize

LINKS OF PERIODIC ORBITS
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Experimental Schematic

Laser Experimental Arrangement
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Experimental Motivation

Oscilloscope Traces
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Results, Single Experiment

Bifurcation Schematics
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Some Attractors

Coexisting Basins of Attraction
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Many Experiments

Bifurcation Perestroikas
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Real Data

Experimental Data: LSA

Lefranc - Cargese
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Real Data

Experimental Data: LSA
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Mechanism

Stretching & Squeezing in a Torus
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Time Evolution

Rotating the Poincaré Section
around the axis of the torus
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Time Evolution

Rotating the Poincaré Section
around the axis of the torus

Lefranc - Cargese
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Another Visualization

Cutting Open a Torus
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Satisfying Boundary Conditions

Global Torsion
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Experimental Schematic

A Chemical Experiment

The Belousov-Zhabotinskii Reaction



The Topology
of Chaos

Robert
Gilmore

Chaos

Chaos

Motion that is

•Deterministic: dx
dt = f(x)

•Recurrent

•Non Periodic

• Sensitive to Initial Conditions
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Strange Attractor

Strange Attractor

The Ω limit set of the flow. There are
unstable periodic orbits “in” the
strange attractor. They are

• “Abundant”

•Outline the Strange Attractor

•Are the Skeleton of the Strange
Attractor
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Skeletons

UPOs Outline Strange attractors

BZ reaction



The Topology
of Chaos

Robert
Gilmore

Skeletons

UPOs Outline Strange attractors

Lefranc - Cargese
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Dynamics and Topology

Organization of UPOs in R3:

Gauss Linking Number

LN(A,B) =
1

4π

∮ ∮
(rA − rB)·drA×drB

|rA − rB|3

# Interpretations of LN ' # Mathematicians in World
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Linking Numbers

Linking Number of Two UPOs

Lefranc - Cargese
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Evolution in Phase Space

One Stretch-&-Squeeze Mechanism



The Topology
of Chaos

Robert
Gilmore

Motion of Blobs in Phase Space

Stretching — Squeezing
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Collapse Along the Stable Manifold

Birman - Williams Projection

Identify x and y if

lim
t→∞
|x(t)− y(t)| → 0
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Fundamental Theorem

Birman - Williams Theorem

If:

Then:

Certain Assumptions

Specific Conclusions
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Fundamental Theorem

Birman - Williams Theorem

If:
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Certain Assumptions

Specific Conclusions
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Birman-Williams Theorem

Assumptions, B-W Theorem

A flow Φt(x)

• on Rn is dissipative, n = 3, so that
λ1 > 0, λ2 = 0, λ3 < 0.

•Generates a hyperbolic strange
attractor SA

IMPORTANT: The underlined assumptions can be relaxed.
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Birman-Williams Theorem

Conclusions, B-W Theorem

• The projection maps the strange
attractor SA onto a 2-dimensional
branched manifold BM and the flow Φt(x)
on SA to a semiflow Φ(x)t on BM.
•UPOs of Φt(x) on SA are in 1-1
correspondence with UPOs of Φ(x)t on
BM. Moreover, every link of UPOs of
(Φt(x),SA) is isotopic to the correspond
link of UPOs of (Φ(x)t,BM).

Remark: “One of the few theorems useful to experimentalists.”
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A Very Common Mechanism

Rössler:

Attractor Branched Manifold
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A Mechanism with Symmetry

Lorenz:

Attractor Branched Manifold
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Examples of Branched Manifolds

Inequivalent Branched Manifolds
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Aufbau Princip for Branched Manifolds

Any branched manifold can be built up
from stretching and squeezing units

subject to the conditions:
•Outputs to Inputs
•No Free Ends
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Dynamics and Topology

Rossler System
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Dynamics and Topology

Lorenz System



The Topology
of Chaos

Robert
Gilmore

Dynamics and Topology

Poincaré Smiles at Us in R3

•Determine organization of UPOs ⇒

•Determine branched manifold ⇒

•Determine equivalence class of SA
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Topological Analysis Program

Topological Analysis Program

Locate Periodic Orbits

Create an Embedding

Determine Topological Invariants (LN)

Identify a Branched Manifold

Verify the Branched Manifold

—————————————————————————-

Model the Dynamics

Validate the Model
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Locate UPOs

Method of Close Returns
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Embeddings

Embeddings

Many Methods: Time Delay, Differential, Hilbert Transforms,
SVD, Mixtures, ...

Tests for Embeddings: Geometric, Dynamic, Topological†

None Good

We Demand a 3 Dimensional Embedding
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Locate UPOs

An Embedding and Periodic Orbits

Lefranc - Cargese
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Determine Topological Invariants

Linking Number of Orbit Pairs

Lefranc - Cargese
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Determine Topological Invariants

Compute Table of Expt’l LN
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Determine Topological Invariants

Compare w. LN From Various BM
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Determine Topological Invariants

Guess Branched Manifold

Lefranc - Cargese
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Determine Topological Invariants

Identification & ‘Confirmation’

• BM Identified by LN of small number of orbits

• Table of LN GROSSLY overdetermined

• Predict LN of additional orbits

• Rejection criterion
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Determine Topological Invariants

What Do We Learn?
• BM Depends on Embedding
• Some things depend on embedding, some don’t
• Depends on Embedding: Global Torsion, Parity, ..
• Independent of Embedding: Mechanism
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Perestroikas of Strange Attractors

Evolution Under Parameter Change

Lefranc - Cargese
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Perestroikas of Strange Attractors

Evolution Under Parameter Change

Lefranc - Cargese
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An Unexpected Benefit

Analysis of Nonstationary Data

Lefranc - Cargese
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Last Steps

Model the Dynamics
A hodgepodge of methods exist: # Methods ' # Physicists

Validate the Model
Needed: Nonlinear analog of χ2 test. OPPORTUNITY:
Tests that depend on entrainment/synchronization.
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Our Hope → Now a Result

Compare with
Original Objectives

Construct a simple, algorithmic procedure for:

Classifying strange attractors

Extracting classification information

from experimental signals.
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Orbits Can be “Pruned”

There Are Some Missing Orbits

Lorenz Shimizu-Morioka
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Linking Numbers, Relative Rotation Rates, Braids

Orbit Forcing
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An Ongoing Problem

Forcing Diagram - Horseshoe
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An Ongoing Problem

Status of Problem

Horseshoe organization - active

More folding - barely begun

Circle forcing - even less known

Higher genus - new ideas required
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Perestroikas of Branched Manifolds

Constraints on Branched Manifolds

“Inflate” a strange attractor

Union of ε ball around each point

Boundary is surface of bounded 3D manifold

Torus that bounds strange attractor
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Torus and Genus

Torus, Longitudes, Meridians
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Flows on Surfaces

Surface Singularities

Flow field: three eigenvalues: +, 0, –

Vector field “perpendicular” to surface

Eigenvalues on surface at fixed point: +, –

All singularities are regular saddles∑
s.p.(−1)index = χ(S) = 2− 2g

# fixed points on surface = index = 2g - 2
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Flows in Vector Fields

Flow Near a Singularity
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Some Bounding Tori

Torus Bounding Lorenz-like Flows
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Canonical Forms

Twisting the Lorenz Attractor
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Constraints Provided by Bounding Tori

Two possible branched manifolds
in the torus with g=4.
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Use in Physics

Bounding Tori contain all known
Strange Attractors
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Labeling Bounding Tori

Labeling Bounding Tori

Poincaré section is disjoint union of g-1 disks

Transition matrix sum of two g-1 × g-1 matrices

One is cyclic g-1 × g-1 matrix

Other represents union of cycles

Labeling via (permutation) group theory
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Some Bounding Tori

Bounding Tori of Low Genus
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Motivation

Some Genus-9 Bounding Tori
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Aufbau Princip for Bounding Tori

Any bounding torus can be built up
from equal numbers of stretching and
squeezing units

•Outputs to Inputs
•No Free Ends
• Colorless
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Aufbau Princip for Bounding Tori

Application: Lorenz Dynamics, g=3
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Poincaré Section

Construction of Poincaré Section
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Exponential Growth

The Growth is Exponential
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Exponential Growth

The Growth is Exponential
The Entropy is log 3
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Extrinsic Embedding of Bounding Tori

Extrinsic Embedding of Intrinsic Tori

Partial classification by links of homotopy group generators.
Nightmare Numbers are Expected.
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Modding Out a Rotation Symmetry

Modding Out a Rotation Symmetry
 X

Y
Z

→
 u

v
w

 =

 Re (X + iY )2

Im (X + iY )2

Z


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Lorenz Attractor and Its Image
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Lifting an Attractor: Cover-Image Relations

Creating a Cover with Symmetry
 X

Y
Z

←
 u

v
w

 =

 Re (X + iY )2

Im (X + iY )2

Z


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Cover-Image Related Branched Manifolds

Cover-Image Branched Manifolds
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Covering Branched Manifolds

Two Two-fold Lifts
Different Symmetry

Rotation Inversion
Symmetry Symmetry
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Topological Indices

Topological Index: Choose Group

Choose Rotation Axis (Singular Set)
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Locate the Singular Set wrt Image

Different Rotation Axes Produce
Different (Nonisotopic) Lifts
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Nonisotopic Locally Diffeomorphic Lifts
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Indices (0,1) and (1,1)

Two Two-fold Covers
Same Symmetry
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Indices (0,1) and (1,1)

Three-fold, Four-fold Covers
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Two Inequivalent Lifts with V4 Symmetry
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How to Construct Covers/Images

Algorithm

• Construct Invariant Polynomials, Syzygies, Radicals

• Construct Singular Sets

• Determine Topological Indices

• Construct Spectrum of Structurally Stable Covers

• Structurally Unstable Covers Interpolate
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Surprising New Findings

Symmetries Due to Symmetry

Schur’s Lemmas & Equivariant Dynamics

Cauchy Riemann Symmetries

Clebsch-Gordon Symmetries

Continuations

Analytic Continuation
Topological Continuation
Group Continuation



The Topology
of Chaos

Robert
Gilmore

Covers of a Trefoil Torus

Granny Knot Square Knot

Trefoil Knot
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You Can Cover a Cover = Lift a Lift

Covers of Covers of Covers

Rossler Lorenz

Ghrist
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Universal Branched Manifold

EveryKnot Lives Here
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Isomorphisms and Diffeomorphisms

Local Stuff

Groups:
Local Isomorphisms
Cartan’s Theorem

Dynamical Systems:
Local Diffeomorphisms
??? Anything Useful ???
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Universal Covering Group

Cartan’s Theorem for Lie Groups
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Universal Image Dynamical System

Locally Diffeomorphic Covers of D

D: Universal Image Dynamical System
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Useful Analogs

Local Isomorphisms & Diffeomorphisms

Lie Groups

Local Isomorphisms

Dynamical Systems

Local Diffeos
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Useful Analogs
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Lie Groups
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Dynamical Systems

Local Diffeos
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Creating New Attractors

Rotating the Attractor

d

dt

[
X
Y

]
=
[
F1(X,Y )
F2(X,Y )

]
+
[
a1 sin(ωdt+ φ1)
a2 sin(ωdt+ φ2)

]
[
u(t)
v(t)

]
=
[

cos Ωt − sin Ωt
sin Ωt cos Ωt

] [
X(t)
Y (t)

]
d

dt

[
u
v

]
= RF(R−1u) +Rt + Ω

[
−v
+u

]
Ω = n ωd q Ω = p ωd

Global Diffeomorphisms Local Diffeomorphisms
(p-fold covers)
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Two Phase Spaces: R3 and D2 × S1

Rossler Attractor: Two Representations

R3 D2 × S1
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Other Diffeomorphic Attractors

Rossler Attractor:

Two More Representations with n = ±1
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Subharmonic, Locally Diffeomorphic Attractors

Rossler Attractor:

Two Two-Fold Covers with p/q = ±1/2
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Subharmonic, Locally Diffeomorphic Attractors

Rossler Attractor:

Two Three-Fold Covers with p/q = −2/3,−1/3
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Subharmonic, Locally Diffeomorphic Attractors

Rossler Attractor:

And Even More Covers (with p/q = +1/3,+2/3)
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New Measures

Angular Momentum and Energy

L(0) = lim
τ→∞

1
τ

∫ τ

0
XdY−Y dX

L(Ω) = 〈uv̇ − vu̇〉

= L(0) + Ω〈R2〉

K(0) = lim
τ→∞

1
τ

∫ τ

0

1
2

(Ẋ2+Ẏ 2)dt

K(Ω) = 〈1
2

(u̇2 + v̇2)〉

= K(0) + ΩL(0) +
1
2

Ω2〈R2〉

〈R2〉 = lim
τ→∞

1
τ

∫ τ

0
(X2 + Y 2)dt = lim

τ→∞

1
τ

∫ τ

0
(u2 + v2)dt
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New Measures, Diffeomorphic Attractors

Energy and Angular Momentum

Diffeomorphic, Quantum Number n
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New Measures, Subharmonic Covering Attractors

Energy and Angular Momentum

Subharmonics, Quantum Numbers p/q



The Topology
of Chaos

Robert
Gilmore

Embeddings

Embeddings

An embedding creates a diffeomorphism between an
(‘invisible’) dynamics in someone’s laboratory and a (‘visible’)
attractor in somebody’s computer.

Embeddings provide a representation of an attractor.

Equivalence is by Isotopy.

Irreducible is by Dimension
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Representation Labels

Inequivalent Irreducible Representations

Irreducible Representations of 3-dimensional Genus-one
attractors are distinguished by three topological labels:

Parity
Global Torsion
Knot Type

P
N
KT

ΓP,N,KT (SA)

Mechanism (stretch & fold, stretch & roll) is an invariant of
embedding. It is independent of the representation labels.
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Creating Isotopies

Equivalent Reducible Representations

Topological indices (P,N,KT) are obstructions to isotopy for
embeddings of minimum dimension (irreducible
representations).

Are these obstructions removed by injections into higher
dimensions (reducible representations)?

Systematically?
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Creating Isotopies

Equivalences by Injection
Obstructions to Isotopy

R3

Global Torsion
Parity
Knot Type

→ R4

Global Torsion

→ R5

There is one Universal reducible representation in RN , N ≥ 5.
In RN the only topological invariant is mechanism.
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The Road Ahead

Summary

1 Question Answered ⇒

2 Questions Raised

We must be on the right track !
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Our Hope

Original Objectives Achieved

There is now a simple, algorithmic procedure for:

Classifying strange attractors

Extracting classification information

from experimental signals.
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Our Result

Result

There is now a classification theory

for low-dimensional strange attractors.

1 It is topological

2 It has a hierarchy of 4 levels

3 Each is discrete

4 There is rigidity and degrees of freedom

5 It is applicable to R3 only — for now



The Topology
of Chaos

Robert
Gilmore

Four Levels of Structure

The Classification Theory has
4 Levels of Structure

1 Basis Sets of Orbits

2 Branched Manifolds

3 Bounding Tori

4 Extrinsic Embeddings
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Four Levels of Structure
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Topological Components

Poetic Organization

LINKS OF PERIODIC ORBITS
organize

BOUNDING TORI
organize

BRANCHED MANIFOLDS
organize

LINKS OF PERIODIC ORBITS
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Answered Questions

Some Unexpected Results
Perestroikas of orbits constrained by branched manifolds
Routes to Chaos = Paths through orbit forcing diagram
Perestroikas of branched manifolds constrained by
bounding tori
Global Poincaré section = union of g − 1 disks
Systematic methods for cover - image relations
Existence of topological indices (cover/image)
Universal image dynamical systems
NLD version of Cartan’s Theorem for Lie Groups
Topological Continuation – Group Continuuation
Cauchy-Riemann symmetries
Quantizing Chaos
Representation labels for inequivalent embeddings
Representation Theory for Strange Attractors
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Unanswered Questions

We hope to find:
Robust topological invariants for RN , N > 3
A Birman-Williams type theorem for higher dimensions

An algorithm for irreducible embeddings

Embeddings: better methods and tests

Analog of χ2 test for NLD

Better forcing results: Smale horseshoe, D2 → D2,
n×D2 → n×D2 (e.g., Lorenz), DN → DN , N > 2
Representation theory: complete

Singularity Theory: Branched manifolds, splitting points
(0 dim.), branch lines (1 dim).

Singularities as obstructions to isotopy


