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Background

J. R. Tredicce

Can you explain my data?

I dare you to explain my data!



Motivation

The Topology

#8  Where is Tredicce coming from?
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Experiment

e e Laser with Modulated Losses
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Our Hope

The Topology

e Original Objectives
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Construct a simple, algorithmic procedure for:

o Classifying strange attractors

@ Extracting classification information

from experimental signals.



Our Result

The Topology R lt
of Chaos
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There is now a classification theory.

@ It is topological

@ It has a hierarchy of 4 levels

© Each is discrete

@ There is rigidity and degrees of freedom
@ It is applicable to R? only — for now



Topology Enters the Picture

bt*8 The 4 Levels of Structure
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e Basis Sets of Orbits
e Branched Manifolds
« Bounding Tori

¢ Extrinsic Embeddings



Topological Components

Organization

LINKS OF PERIODIC ORBITS
organize
BOUNDING TORI
organize
BRANCHED MANIFOLDS

organize

LINKS OF PERIODIC ORBITS



Experimental Schematic

The Topology

g8 Laser Experimental Arrangement
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Experimental Motivation

The Topology

e Oscilloscope Traces
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Results, Single Experiment

e e Bifurcation Schematics
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Some Attractors

The Topology

"t oo Coexisting Basins of Attraction
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Many Experiments

The Topology

e Bifurcation Perestroikas
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Real Data

Jietied Experimental Data: LSA
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Real Data

Jietied Experimental Data: LSA
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Mechanism

Stretching & Squeezing in a Torus




Time Evolution

o o Rotating the Poincaré Section
Robert

Gimore around the axis of the torus
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Time Evolution

The Topology

Rotating the Poincaré Section
around the axis of the torus
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Figure 2. Left: Inersections of a chaotic attrmctor with a senies of section planes are computed. Right: Their
evolution from plane to plane shows the interplay of the stretching and squeezing mechanisms.
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Another Visualization

The Topology

o Cutting Open a Torus
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Satisfying Boundary Conditions

The Topology
of Chaos

Global Torsion
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Experimental Schematic

The Topology

¢ Choos A Chemical Experiment
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The Belousov-Zhabotinskii Reaction
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The Topology
of Chaos C haOS
Robert
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Motion that is

e Deterministic: dr — f(2)
e Recurrent
e Non Periodic

e Sensitive to Initial Conditions



Strange Attractor

The Topology

"t oo Strange Attractor
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The @ limit set of the flow. There are
unstable periodic orbits “in” the
strange attractor. They are

e “Abundant”
e Outline the Strange Attractor

e Are the Skeleton of the Strange
Attractor



Skeletons

g8 UPOs Outline Strange attractors

of Chaos
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e UPOs Outline Strange attractors

R rt

Gilmore

Figure 5, Left: a chaotic attractar reconstructed from a time series from achaatic laser ; Right : Superposition
of 12 perodic orbits of perods from 1w 10
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Dynamics and Topology

The Topology

ot s Organization of UPOs in rs:
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Gauss Linking Number

N(A, B) 7{?{ rqg —rp)dryxdrp
T i g —rpl3

# Interpretations of LN ~ # Mathematicians in World



Linking Numbers

el Linking Number of Two UPOs
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trivial knot

trefoil knol\_/

Figure 6. Left: two periodic orbits of periods | and 4 embedded in a strange attractor; Right: a link of two
krts that is equivalent to the pair of periodic arbits up to contimous deformations without crossings.
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Evolution in Phase Space

The Topology

g One Stretch-&-Squeeze Mechanism
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Motion of Blobs in Phase Space

The Topology

St Chns Stretching — Squeezing

STRETCH
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Collapse Along the Stable Manifold

The Topology

i Birman - Williams Projection
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Identify x and y if

tlim |x(t) —y(t)| — 0
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Fundamental Theorem

The Topology

s Birman - Williams Theorem
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If:

Then:



Fundamental Theorem

The Topology

s Birman - Williams Theorem
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If: Certain Assumptions

Then:



Fundamental Theorem

The Topology

s Birman - Williams Theorem
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If: Certain Assumptions

Then: Specific Conclusions



Birman-Williams Theorem

The Topology

¥ s Assumptions, B-W Theorem

Robert
Gilmore

A flow @(x)
eon R" is dissipative, n =3, so that
A1 > 0,22 =0,23 <0.

« Generates a hyperbolic strange
attractor sA

IMPORTANT: The underlined assumptions can be relaxed.



Birman-Williams Theorem

it Conclusions, B-W Theorem
Robert
Gilmore

e The projection maps the strange
attractor s4 onto a 2-dimensional
branched manifold M and the flow &,(z)
on SA to a semiflow &(z); on BM.

¢« UPOs of ¢,(z) on s4 are in 1-1
correspondence with UPOs of &(z), on
BM. Moreover, every link of UPOs of
(®4(z),SA) is isotopic to the correspond
link of UPOs of (&(z);, BM).

Remark: “One of the few theorems useful to experimentalists.”



A Very Common Mechanism

The Topology

of Chaos RasSler:

Attractor Branched Manifold
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A Mechanism with Symmetry

The Topology

e Lorenz:

Sl Attractor Branched Manifold

Gilmore




Examples of Branched Manifolds

Inequivalent Branched Manifolds
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Aufbau Princip for Branched Manifolds

The Topology

gt  Any branched manifold can be built up
Robert from stretching and squeezing units

Gilmore

‘SQUEEZE

2. BRANCH
LINE

subject to the conditions:
e Outputs to Inputs

e No Free Ends



Dynamics and Topology

The Topology

i Rossler System
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(a) Rdssler Equations




Dynamics and Topology

The Topology

¢ Croos Lorenz System

Robert
Gilmore
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Dynamics and Topology

The Topology

o Chnoe Poincaré Smiles at Us in r3

Robert
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e Determine organization of UPOs =
e Determine branched manifold =

e Determine equivalence class of s4



Topological Analysis Program

Topological Analysis Program

Locate Periodic Orbits

Create an Embedding

Determine Topological Invariants (LN)
Identify a Branched Manifold

Verify the Branched Manifold

Model the Dynamics
Validate the Model



Locate UPOs

e e Method of Close Returns
Robert
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Embeddings

ot Embeddings

Gilmore

Many Methods: Time Delay, Differential, Hilbert Transforms,
SVD, Mixtures, ...

Tests for Embeddings: Geometric, Dynamic, Topological
None Good

We Demand a 3 Dimensional Embedding



Locate UPOs

sl An Embedding and Periodic
R rt

Gilmore

Figure 5, Left: a chaotic attractar reconstructed from a time series from achaatic laser ; Right : Superposition
of 12 perodic orbits of perods from 1w 10
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Determine Topological Invariants

il Linking Number of Orbit Pairs
Robert

Gilmore

trivial knot

trefoil knol\_/

Figure 6. Left: two periodic orbits of periods | and 4 embedded in a strange attractor; Right: a link of two
krts that is equivalent to the pair of periodic arbits up to contimous deformations without crossings.
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The Topology

Determine Topological Invariants

Compute Table of Expt’l LN

Tabte 7.2 Linking numbers for all the surrogate periodic orbits, to period 3, extracted from
Eielon sov—Zh abotin skii data™

Orbit Symbolics 1 2 3 4 5 & 7 Ba Bb
1 1 0 1 1 2 2 2 3 4 3
2 01 1 1 2 3 4 4 & g g
3 011 1 2 2 4 5 6 T 8 &
4 0111 2 3 4 & 8 & 11 13 12
5 01011 2 4 5 & 8 10 13 16 15
& 011 OM1 2 4 i & 10 a 14 16 14
7 01olo11 3 5 7 11 13 14 14 1 21
Ba 01010111 4 & 8 13 16 14 21 23 24
8h 01011 011 3 & 8 12 15 14 21 24 21

24l indices e negative.



Determine Topological Invariants

Compare w. LN From Various Bum
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Table 2.1 Linking numbers for orbits to period five in Smale horseshoe dynanics.
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Determine Topological Invariants

e e Guess Branched Manifold

Robert
Gilmore

Figure 7. “Combing™ the inte ation {right) created
by the stretching and squeezing mechanisms.
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Determine Topological Invariants

The Topology

S Identification & ‘Confirmation’

Robert

Gilmore

o BM ldentified by LN of small number of orbits
e Table of LN GROSSLY overdetermined
e Predict LN of additional orbits

e Rejection criterion



Determine Topological Invariants

e e What Do We Learn?
Robert

Gilmore e BM Depends on Embedding

e Some things depend on embedding, some don't
e Depends on Embedding: Global Torsion, Parity, ..
e Independent of Embedding: Mechanism

(a) (b}




Perestroikas of Strange Attractors

e Evolution Under Parameter Change

Gilmore

m {modulation amplitude) FIBER LASER

T — gird implae srtae ok

YAG LASER

schematic representation of the
it templates observed in the
to the next [40]. Bottom left:

Figure 11. Varous templates observed in two laser experiments. Top left:
pammeter space of forced ponli near ascillators showing resonance twongu
fiber laser experiment: global torsion inc systematically from ane to
templates observed in the YAG laser experiment (only the branches are shown): there is a variation in the

topological organization across one chaotic wngue (39,41
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Perestroikas of Strange Attractors

The Topology

ge#sl F'volution Under Parameter Change

Robert
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X, (arb, units)

sinfwt) (ach. units) X (£) sin(wt) (arb. wnits)

X, (arb. units)

units)  X(t)

X, (arb. units)

nfwt) (arb

X(t)si
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An Unexpected Benefit

The Topology

Analysis of Nonstationary Data

(a) k)
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s o ais = = s ™ s
Tirm () X1 e uri B

Figure 16, Top left: time series from an optical parametric oscillator showing a burst of irregular behavior.
Bottom lefi: segment of the time series containing a periodic orbit of perod 9. Right: embeddi I the '|'.lt.J'ItJdIC.

arbit in a reconstructed phase space and representation of the brid realized by the orbit, The braid entmopy is
hep = 0L.377, showing that the underlying dynamics is chuotic. Reprinted from [61].
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Last Steps

it Model the Dynamics
Robert

Gilmore A hodgepodge of methods exist: # Methods ~ # Physicists

Validate the Model

Needed: Nonlinear analog of y? test. OPPORTUNITY:
Tests that depend on entrainment/synchronization.

I




Our Hope — Now a Result

The Topology

Rt Compare with

Robert
Gilmore

Original Objectives

Construct a simple, algorithmic procedure for:

o Classifying strange attractors

@ Extracting classification information

from experimental signals.




Orbits Can be “Pruned”

g¥#8 There Are Some Missing Orbits

Robert

Lorenz Shimizu-Morioka



Linking Numbers, Relative Rotation Rates, Braids

Orbit Forcing
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An Ongoing Problem

The Topology

Forcing Diagram - Horseshoe
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An Ongoing Problem

e e Status of Problem

Robert

Gilmore

Horseshoe organization - active
More folding - barely begun

Circle forcing - even less known

Higher genus - new ideas required



Perestroikas of Branched Manifolds

sl Constraints on Branched Manifolds

Robert
Gilmore

“Inflate” a strange attractor
Union of ¢ ball around each point
Boundary is surface of bounded 3D manifold

Torus that bounds strange attractor



Torus and Genus

The Topology

¥ s Torus, Longitudes, Meridians

Robert
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Flows on Surfaces

it Surface Singularities

Robert
Gilmore

Flow field: three eigenvalues: +, 0, —
Vector field “perpendicular” to surface
Eigenvalues on surface at fixed point: +, —
All singularities are regular saddles

Do ()M = x(S) =2~ 29

# fixed points on surface = index = 2g - 2



Flow Near a Singularity



Some Bounding Tori

Torus Bounding Lorenz-like Flows




Canonical Forms

The Topology

o Twisting the Lorenz Attractor

Robert

Gilmore

(a)

(b) o



Constraints Provided by Bounding Tori

The Topology

8l Two possible branched manifolds
Gimrs in the torus with g=4.

Gilmore




Use in Physics

h:f-?haﬂs i i i
el Bounding Tori contain all known

R rt

Grmer Strange Attractors

Tab.1. All known strange attractors of dimension dz < 3 are bounded by one of the standard drezsed tor.

Stronge Atkroctor Direseed Torma | Pericd g — 1 Orhit
Foesler, Duffing, Burke and Shom Ar 1
Vorious Lazers, Gatesnn Foule Ar 1
MNeuron with Subthreshold Osdllations A 1
Shase-wan der Pal Agu A 1u1
Lerens, Shirnizu- Moricka, Rildtske As {12y
Multispiral sktractors An {12yl
Co Clovers of Feesler i 1

Cz Clover of Larenz '™ [+ 1#

{3 Caver of Lerenz™ Az (122)%
Cn Clover of Lorenzi®! Con 1%
Cn Cover of Larenz® Pt {1m)"

2 — 1 Image of Fig. & Branched BManifold Ay {122)®
Fig. & Branched Manifcld Py (14

87 Fiotakion asds through crigin
) Retation axi= through one facue




Labeling Bounding Tori

The Topology

ot o Labeling Bounding Tori

Robert
Gilmore

Poincaré section is disjoint union of g-1 disks
Transition matrix sum of two g-1 x g-1 matrices
One is cyclic g-1 x g-1 matrix

Other represents union of cycles

Labeling via (permutation) group theory



Some Bounding Tori

The Topology

"t oo Bounding Tori of Low Genus

Gilmor

TABLE T Bmumeration of camonical forms up bo gemus 9
3 (p1,72, . Pm) mima
T G

T
E) : 11
a5 5 111
54 B 1
53 (29 1212
55 5 T
64 (33 12112
78 G EEEESEY
P5 (43 12121
5 (33 12112
74 (223 122122
T4 (229 131313
B [ EREEEEEY
56 (32 121112
56 (43 11m21
55 (323 1212212
55 (327 12121
85 (327 1313131
o8 @ T
o7 (83 122
07 (53 112112
97 (49 12112
96 (423 1122122
96 (423 1131515
96 (422 122212
96 (422 1221212
86 (333 11212122
86 (333 11221122
86 (333 11221212
06 (339 11311313
05 (2222 12012
05 (2222 1233
05 (2222 1441414



Motivation

Some Genus-9 Bounding Tori




Aufbau Princip for Bounding Tori

The Topology

gt  Any bounding torus can be built up
Robert from equal numbers of stretching and
squeezing units

¢ Outputs to Inputs
e No Free Ends
e Colorless



Aufbau Princip for Bounding Tori

The Topology

et Application: Lorenz Dynamics, g=3

Robert
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Poincaré Section

The Topology

5 s Construction of Poincaré Section

Robert

Gilmore

P. S. = Union .

# Components = g-1



Exponential Growth

The Topology

i The Growth is Exponential

Robert

Gilmore

TABLE I Mumber of canonical bounding tori as a fune-
bion of genus, 4.

Nigl g Ng) ¢ Nig
1 o 15 15 2211
1 10 28 14 ER4D
2 11 &7 17 14200
2 12 145 18 56524
o]
i)

15 588 19 B6547
14 8v0 20 252027

Lt s I I N B



Exponential Growth

The Topology

i The Growth is Exponential

Robert

Gilmre The Entropy is log 3

Bounding Torus Entropy
Log[N(g)l(g-1)

Log[N(g)Jig-1)

gy



Extrinsic Embedding of Bounding Tori

The Topology

of Chaos Extrinsic Embedding of Intrinsic Tori

Robert
Gilmore

Partial classification by links of homotopy group generators.
Nightmare Numbers are Expected.



Modding Out a Rotation Symmetry

The Topology

gl Modding Out a Rotation Symmetry

X u Re (X +iY)?
Y | = v | = Im (X+iY)?
(2)-(0)- ()
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Lorenz Attractor and Its

The Topology
of Chaos

Robert
Gilmore

T |
600 800




Lifting an Attractor: Cover-Image Relations

The Topology

=l Creating a Cover with Symmetry

" X u Re (X +iY)?
Y || v | = Im (X+iY)?
VA4 w A

Gilmore
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Cover-Image Related Branched Manifolds

The Topology

sl Cover-Image Branched Manifolds

Robert
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Covering Branched Manifolds

e e Two Two-fold Lifts
Robert

Gilmore Different Symmetry

Rotation Inversion

Symmetry Symmetry



Topological Indices

Topological Index: Choose Group
i W Choose Rotation Axis (Singular Set)




Locate the Singular Set wrt Image

The Topology

e Different Rotation Axes Produce
Robert

Gimors Different (Nonisotopic) Lifts




Nonisotopic Locally Diffeomorphic Lifts

The Topology
of Chaos

Robert
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{c) p=—2.083 (e) p= —4.166

(b) o = —0.84548 (d) e = ~3.14674




The Topology

prti Two Two-fold Covers
Robert

Gilmore Same Symmetry
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of Chaos



How to Construct Covers/Images

Jietied Algorithm
Robert

Gilmore

e Construct Invariant Polynomials, Syzygies, Radicals
e Construct Singular Sets

e Determine Topological Indices

e Construct Spectrum of Structurally Stable Covers

e Structurally Unstable Covers Interpolate



Surprising New Findings

The Topology

o Symmetries Due to Symmetry

Robert

Gilmore

@ Schur’'s Lemmas & Equivariant Dynamics
@ Cauchy Riemann Symmetries
o Clebsch-Gordon Symmetries

@ Continuations

o Analytic Continuation
o Topological Continuation
e Group Continuation



Covers of a Trefoil Torus

The Topology
of Chaos

R t

Gilmore

Square Knot

Trefoil Knot



You Can Cover a Cover = Lift a Lift

The Topology

e Covers of Covers of Covers

Robert

Gilmore

Lorenz

Ghrist



Universal Branched Manifold

The Topology

o ot EveryKnot Lives Here

Robert




Isomorphisms and Diffeomorphisms

The Topology
of Chaos LO Ca]. St Uﬂ.
Robert
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Groups:
Local Isomorphisms
Cartan’s Theorem

Dynamical Systems:
Local Diffeomorphisms
77?7 Anything Useful 77?7



Universal Covering Group

The Topolo, .
of Chacs Cartan’s Theorem for Lie Groups

Robert
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Simply connected

Lie group
G
oo
o ~
Multiply = g
=3y =2
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Linearization
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Universal Image Dynamical System

The Topology

of Chaos Locally Diffeomorphic Covers of D

Robert
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Do e Dl,{ﬁfGl "o Dg;pll.lng Dg;ﬁf@g - ]

D

D: Universal Image Dynamical System



Useful Analogs

The Topology

sl Local Isomorphisms & Diffeomorphisms

Robert

Gilmore



Useful Analogs

The Topology

sl Local Isomorphisms & Diffeomorphisms

Robert

Gilmore

Lie Groups



Useful Analogs

The Topology

sl Local Isomorphisms & Diffeomorphisms

Robert

Gilmore

Lie Groups

Local Isomorphisms



Useful Analogs

The Topology

sl Local Isomorphisms & Diffeomorphisms

Robert

Gilmore

Lie Groups

Local Isomorphisms




Useful Analogs

The Topology

sl Local Isomorphisms & Diffeomorphisms

Robert

Gilmore

Lie Groups Dynamical Systems

Local Isomorphisms




Useful Analogs

The Topology

sl Local Isomorphisms & Diffeomorphisms

Robert
Gilmore

Lie Groups Dynamical Systems

Local Isomorphisms Local Diffeos




Useful Analogs

The Topology

sl Local Isomorphisms & Diffeomorphisms

Robert
Gilmore

Lie Groups Dynamical Systems

Local Isomorphisms Local Diffeos

DG1 DG2 DG3 DG4
D




Creating New Attractors

Jietied Rotating the Attractor

Robert
Gilmore

ag sin(wgt + ¢2)
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Two Phase Spaces: R? and D? x S*

The Topology

i al Rossler Attractor: Two Representations

Robert

Gilmore R3 D2 X S].
E Rossler Attractor, Toroidal Representation
201~ E Index (n_1,n_2) = (1,0)
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Other Diffeomorphic Attractors

The Topolo;
of Chaos. . Rossler Attractor:

Robert
G

Two More Representations with n=+1

Rossler Attractor, Toroidal Representation Rossler Attractor, Toroidal Representation
Index (n_l.n_2) = (1.-1) Index (n_1,n_2) = (1,+1)

4

2

=
2
=]
R
2
=
<
<

Coordinate u

n_1 x Phase Angle /2 Pi n_1 x Phase Angle /2 Pi



Subharmonic, Locally Diffeomorphic Attractors

The Topology

of Chavs Rossler Attractor:

Robert
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Two Two-Fold Covers with p/q=+1/2

Rossler Attractor, Toroidal Representation Rossler Attractor, Toroidal Representation
Index (n_l,n_2)=(2.-1) Index (n_l.n_2) = (2,+1)

Coordinate u
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Subharmonic, Locally Diffeomorphic Attractors

The Topology

of Chavs Rossler Attractor:

Robert

Gilmore

Two Three-Fold Covers with p/q=-2/3,-1/3

Rossler Attractor, Toroidal Representation Rossler Attractor, Toroidal Representation
Index (n_l,n_2)=(3.-2) Index (n_l,n_2)=(3.-1)
2 T

Coordinate u

1 2 K 1 2
n_1 x Phase Angle /2 Pi n_1 x Phase Angle /2 Pi



Subharmonic, Locally Diffeomorphic Attractors

The Topolo;
of Chaos. . Rossler Attractor:

Robert

Gilmore

And Even More Covers (with p/qg=+1/3,+2/3)

Rossleer Attractor, Toroidal Representation Rossler Attractor, Toroidal Representation
Index (n_1.n_2) = (3,+1) Index (n_1L,n_2) = (3,4+2)

Coordinate u

1 2 1 2
n_I x Phase Angle /2 Pi n_l x Phase Angle /2 Pi



New Measures

The Topology

et Angular Momentum and Energy

Robert

Gilmore
T1 . .
1 /7 K(0) = lim / ~(X24Y?)dt
L(0) = lim - [ XdY-YdX T T Jo 2

T—00 T 0

1 .9 )
L) — i K(Q) = (i + %)

= L(0) + Q(R?) = K(0) + QL(0) + %QQ<RQ>

I I
(R?) = lim — [ (X>+Y?)dt= lim — [ (u®+v?)dt

T T Jo T—=00 T Jo



New Measures, Diffeomorphic Attractors

The Topology

i Energy and Angular Momentum

Robert

Gilmore

Diffeomorphic, Quantum Number n

Torsion Integral Energy Integral
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New Measures, Subharmonic Covering Attractors

The Topology

i Energy and Angular Momentum

Robert

Gilmore

Subharmonics, Quantum Numbers p/q

Torsion Integral Energy Integral
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Embeddings

The Topology .
i Embeddings
Robert
Gilmore

An embedding creates a diffeomorphism between an
(‘invisible’) dynamics in someone’s laboratory and a (‘visible")
attractor in somebody’s computer.

Embeddings provide a representation of an attractor.

Equivalence is by Isotopy.

Irreducible is by Dimension



Representation Labels

The Topology

<Al Inequivalent Irreducible Representations

Robert
Gilmore

Irreducible Representations of 3-dimensional Genus-one
attractors are distinguished by three topological labels:

Parity P

Global Torsion N

Knot Type KT
FP’N’KT(SA)

Mechanism (stretch & fold, stretch & roll) is an invariant of
embedding. It is independent of the representation labels.



Creating Isotopies

The Topology

of Chaos Equivalent Reducible Representations

Robert
Gilmore

Topological indices (P,N,KT) are obstructions to isotopy for
embeddings of minimum dimension (irreducible
representations).

Are these obstructions removed by injections into higher
dimensions (reducible representations)?

Systematically?



Creating Isotopies

The Topology

"t oo Equivalences by Injection

Robert
Gilmore

Obstructions to Isotopy

R3 — R4 — RS
Global Torsion Global Torsion
Parity
Knot Type

There is one Universal reducible representation in RV, N > 5.
In RN the only topological invariant is mechanism.



The Road Ahead

Summary

1 Question Answered -

2 Questions Raised

We must be on the right track !



Our Hope

The Topology

&= Original Objectives Achieved

Robert
Gilmore

There is now a simple, algorithmic procedure for:

o Classifying strange attractors

@ Extracting classification information

from experimental signals.



Our Result

The Topology

S Result

Robert
Gilmore

There is now a classification theory

for low-dimensional strange attractors.

@ It is topological

@ It has a hierarchy of 4 levels

© Each is discrete

@ There is rigidity and degrees of freedom
@ It is applicable to R3 only — for now



Four Levels of Structure

The Classification Theory has

4 Levels of Structure
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@ Basis Sets of Orbits
@® Branched Manifolds
© Bounding Tori



Four Levels of Structure

bt The Classification Theory has

Robert
Gilmore

4 Levels of Structure

@ Basis Sets of Orbits
@ Branched Manifolds
© Bounding Tori

@ Extrinsic Embeddings



Four Levels of Structure

The Topology
of Chaos

Robert

Gilmore

(b) wort r

on:f



Topological Components

Poetic Organization

LINKS OF PERIODIC ORBITS
organize
BOUNDING TORI
organize
BRANCHED MANIFOLDS
organize
LINKS OF PERIODIC ORBITS



Answered Questions

k=8 Some Unexpected Results

Robert
Gilmore

@ Perestroikas of orbits constrained by branched manifolds
Routes to Chaos = Paths through orbit forcing diagram
Perestroikas of branched manifolds constrained by
bounding tori

Global Poincaré section = union of g — 1 disks
Systematic methods for cover - image relations
Existence of topological indices (cover/image)

Universal image dynamical systems

NLD version of Cartan's Theorem for Lie Groups
Topological Continuation — Group Continuuation
Cauchy-Riemann symmetries

Quantizing Chaos

Representation labels for inequivalent embeddings
Representation Theory for Strange Attractors



Unanswered Questions

Jetina We hope to find:

Robert
Gilmore

Robust topological invariants for RN, N > 3

A Birman-Williams type theorem for higher dimensions
An algorithm for irreducible embeddings

Embeddings: better methods and tests

Analog of x? test for NLD

Better forcing results: Smale horseshoe, D? — D?,
n x D? — n x D? (e.g., Lorenz), DN - DN N>2

@ Representation theory: complete

@ Singularity Theory: Branched manifolds, splitting points
(0 dim.), branch lines (1 dim).

@ Singularities as obstructions to isotopy



