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Chapter Abstract
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Bounding Tori Each strange attractor in R3 is contained in a 3D submanifold

in R3.

Chapter
S The boundary of this 3D submanifold is a torus.

Tori are classified by genus, and bounding tori are also dressed
by the flow induced on the surface.

Bounding tori are classified by permutation group elements.
They are also built up by an Aufbau Principle.

The global Poincaré surface of section of a genus-g bounding
torus consists of g — 1 disconnected disks.



Perestroikas of Branched Manifolds

Alice in C S
Streteh & onstraints
Squeezeland:
11
Bounding Tori

Branched manifolds largely constrain the ‘perestroikas” that

forcing diagrams can undergo.
Tori-01

Is there some mechanism /structure that constrains the types of
perestroikas that branched manifolds can undergo?



Perestroikas of Branched Manifolds

vl Constraints on Branched Manifolds
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“Inflate” a strange attractor
Union of ¢ balls around each point
Boundary is surface of bounded 3D manifold

Torus that bounds strange attractor



Torus and Genus

S & Torus, Longitudes, Meridians
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Tori are identified by genus g and dressed with a surface flow
induced from that creating the strange attractor.



Flows on Surfaces

st Surface Singularities
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Flow field: three eigenvalues: +, 0, —
Vector field “perpendicular” to surface
Eigenvalues on surface at fixed point: +, —
All singularities are regular saddles

Do ()M = x(S) =2~ 29

# fixed points on surface = index = 2g - 2

Singularities organize the surface flow dressing the torus



Flows in Vector Fields
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Some Bounding Tori
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Canonical Forms

Sesch & Twisting the Lorenz Attractor
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(a)

Tori-07 .
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Constraints Provided by Bounding Tori

k.= Two possible branched manifolds
queezeland:
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o in the torus with g—4.




Labeling Bounding Tori
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Poincaré section is disjoint union of g-1 disks.

Transition matrix sum of two g-1 x g-1 matrices.

Both are g-1 x g-1 permutation matrices.

They identify mappings of Poincaré sections to P’sections.

Bounding tori labeled by (permutation) group theory.
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Some Bounding Tori
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Exponential Growth
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TABLE I Mumber of canonical bounding tori as a fune-
bion of genus, 4.

Nigl g Ng) ¢ Nig
1 o 15 15 2211
1 10 28 14 ER4D
2 11 &7 17 14200
2 12 145 18 56524
o]
i)
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14 8v0 20 252027
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Motivation

Some Genus-9 Bounding Tori




Aufbau Princip for Bounding Tori

el Aufbau Princip for Bounding Tori
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These units (" pants, trinions”) surround the stretching and
squeezing units of branched manifolds.



Aufbau Princip for Bounding Tori

SSA  Any bounding torus can be built up

Squeezeland:

B from equal numbers of stretching and
B squeezing units

e Outputs to Inputs
e No Free Ends
e Colorless



Poincaré Section
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P. S. = Union .

# Components = g-1



Aufbau Princip for Bounding Tori
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Represerntation Theory Redux

Alice in .
Streteh & Representation Theory for g>1

Squeezeland:
11
Bounding Tori

Can we extend the representation theory for strange attractors
“with a hole in the middle” (i.e., genus = 1) to higher-genus
attractors?

Yes. The results are similar.

Begin as follows:



Aufbau Princip for Bounding Tori
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Embeddings

Embeddings



Embeddings

s’ Redcution to Networks
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R

Equivalent to embedding a specific class of directed networks
into R3



Extrinsic Embedding of Bounding Tori
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A specific simple example.
Partial classification by links of homotopy group generators.
Nightmare Numbers are Expected.



Creating Isotopies

Sesch & Equivalences by Injection
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Index ‘ R3 R4 RS
Global Torsion | Z®3(9-1) 22®2(9*1)
Parity 7o i )

Knot Type Gen. KT. - -

In R all representations (embeddings) of a genus-g strange
attractor become equivalent under isotopy.
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