Alice in Stretch & SqueezeLand: 11 Bounding Tori

Chapter Summary-01

1011-01

Tori-02

Tori-03

_ . .

Tori OS

Taul 1

1011

Alice in Stretch & SqueezeLand: 11 Bounding Tori

August 12, 2012

Chapter Abstract

Alice in Stretch & SqueezeLand: 11 Bounding Tori

Each strange attractor in \mathbb{R}^3 is contained in a 3D submanifold in \mathbb{R}^3 .

Chapter Summary-01

The boundary of this 3D submanifold is a torus.

Tori-01

Tori are classified by *genus*, and bounding tori are also dressed by the flow induced on the surface.

Tori-0

Bounding tori are classified by permutation group elements.

Tori-0!

They are also built up by an Aufbau Principle.

Fori-08

The global Poincaré surface of section of a genus-g bounding torus consists of g-1 disconnected disks.

Tori-0

Tori-10

Perestroikas of Branched Manifolds

Alice in Stretch & SqueezeLand: 11 Bounding Tori

Constraints

Branched manifolds largely constrain the 'perestroikas" that forcing diagrams can undergo.

Is there some mechanism/structure that constrains the types of perestroikas that branched manifolds can undergo?

Summary-0

_ . . .

. ---

i ori-us

1011-0

1011-0

_ . .

Tori 0

Tori (

Tori-1

Tori-1

T. . . . 17

Perestroikas of Branched Manifolds

Alice in Stretch & SqueezeLand: 11 Bounding Tori

Constraints on Branched Manifolds

"Inflate" a strange attractor

Union of ϵ balls around each point

Boundary is surface of bounded 3D manifold

Torus that bounds strange attractor

Summary-0

Tori-01

Tori-02

TOTI-US

T--: 01

T.... 0

Tori-0

Tori-0

Tori-0

Tori-1

Tori-

Torus and Genus

Alice in Stretch & SqueezeLand: 11 Bounding Tori

Torus, Longitudes, Meridians

Tori are identified by genus g and dressed with a surface flow induced from that creating the strange attractor.

Chapter Summary-0

Tori-0

Tori-0

Tori-03

Tori-0

1011-0

_ . .

Tori-0

Tori-0

Tori-1

Tori-

Flows on Surfaces

Alice in Stretch & SqueezeLand: 11 Bounding Tori

Surface Singularities

Chapter Summary-0

Tori-0

Tori-02

Tori-03

Tori-04

Tori-0

Tori-(

Tori-0

Tori-09

1011-10

Tori-1

Flow field: three eigenvalues: +, 0, -

Vector field "perpendicular" to surface

Eigenvalues on surface at fixed point: +, -

All singularities are regular saddles

$$\sum_{s.p.} (-1)^{\text{index}} = \chi(S) = 2 - 2g$$

fixed points on surface = index = 2g - 2

Singularities organize the surface flow dressing the torus

Flows in Vector Fields

Flow Near a Singularity

(a)

Chapter

Alice in

Stretch & SqueezeLand: 11 Bounding Tori

Tori 01

Tori-0

Tori-0

Tori-0

Tori-05

I ori-

- . .

Tori 0

Tori-10

Tori-1

1011-1

Some Bounding Tori

Alice in Stretch & SqueezeLand: 11 Bounding Tori

Chapter Summary-01

Tori-0

Tori-0

Tori-0

+ .,

Tori-06

Tori 0

Tori-0

Tori-1

Tori-1

Tori-1

Torus Bounding Lorenz-like Flows

Canonical Forms

Alice in Stretch & SqueezeLand: Bounding Tori

Tori-07

Twisting the Lorenz Attractor

Constraints Provided by Bounding Tori

Alice in Stretch & SqueezeLand: 11 Bounding Tori

Two possible branched manifolds in the torus with g=4.

hapter ummary-01

Tori-0

Tori-0

Tori-0

Tori-0

Tori-

I orı-L

Tori-08

Tori-0

I orı-1

Labeling Bounding Tori

Alice in Stretch & SqueezeLand: Bounding Tori

Labeling Bounding Tori

Poincaré section is disjoint union of g-1 disks.

Transition matrix sum of two g-1 \times g-1 matrices.

Both are g-1 \times g-1 permutation matrices.

They identify mappings of Poincaré sections to P'sections.

Bounding tori labeled by (permutation) group theory.

Some Bounding Tori

Alice in Stretch & SqueezeLand: Bounding Tori

Tori-10

Bounding Tori of Low Genus

TABLET B

Snumeration of canonical forms up						
g	m) n1n2ng-1			
1	1	(0)	1			
3 4 5	2	(2)	11			
4	3	(3)	111			
5	4	(4)	1111			
5	3	(2,2)	1212			
5	5	(5)	11111			
6	4	(3,2)	12112			
7	6	(6)	111111			
7	5	(4,2)	112121			
7	5	(3,3)	112112			
7	4	(2,2,2)	122122			
7	4	(2,2,2)	131313			
8	?	(7)	1111111			
8	6	(5,2)	1211112			
8	6	(4,3)	1211121			
8	5	(3,2,2)	1212212			
8	5	(3,2,2)	1 221 221			
8	5	(3,2,2)	1313131			
9	8	(8)	111111111			
9	7	(6,2)	11111212			
9	7	(5,3)	11112112			
9	7	(4,4)	11121112			
9	6	(4,2,2)	11122122			
9	ð	(4,2,2)	11131313			
9	ð	(4,2,2)	11212212			
9	6	(4,2,2)	12121212			
9	6	(3,3,2)	11212122			
9	6	(3,3,2)	11221122			
9	ō	(3,3,2)	11221212			
9	ō	(3,3,2)	11311313			
9	5	(2,2,2,2)	12221222			
9	5	(2,2,2,2)	12313132			
9	5	(2,2,2,2)	14141414			

Exponential Growth

Alice in Stretch & SqueezeLand: 11 Bounding Tori

Chapter Summary-01

Tori-01

Tori-0

Tori-0

Tori-0

Tori-0

Tori-C

- . .

Tori-0

Tori-1

Tori-11

The Growth is Exponential

TABLE I: Number of canonical bounding tori as a function of genus, g.

g	N(g)	g	N(g)	g	N(g)
3	1	9	15	15	2211
4	1	10	28	16	5549
5	2	11	67	17	14290
ð	2	12	145	18	3 6 824
7	5	13	3 6 8	19	96347
8	ð	14	870	20	252927

20

Motivation

Alice in Stretch & SqueezeLand: 11 Bounding Tori

Chapter Summary-0

T--: 0

Tori O

.

. . . .

I ori-U

Tori-0

Tori-1

Tori-1

Tori-12

Some Genus-9 Bounding Tori

Aufbau Princip for Bounding Tori

Alice in Streetch & Squeezel and: Aufbau Princip for Bounding Tori

These units ("pants, trinions") surround the stretching and squeezing units of branched manifolds.

Bounding Tori

Aufbau Princip for Bounding Tori

Alice in Stretch & SqueezeLand: Bounding Tori

Any bounding torus can be built up from equal numbers of stretching and squeezing units

- Outputs to Inputs
- No Free Ends
- Colorless

Poincaré Section

Alice in Stretch & SqueezeLand: 11 Bounding Tori

Construction of Poincaré Section

napter ummary-0

Tori 01

Tori-0

Tori-0

. . . .

_ . .

Tori-1

Tori 1

Aufbau Princip for Bounding Tori

Alice in Stretch & SqueezeLand: 11 Bounding Tori

Application: Lorenz Dynamics, g=3

Chapter Summary-0

Tori-0

Tori-U

Tori-0

Tori (

Tori-0

Tori-

T.... 0

Tori-0

- --- -

Represerntation Theory Redux

Alice in Stretch & SqueezeLand: 11 Bounding Tori

Representation Theory for g > 1

Can we extend the representation theory for strange attractors "with a hole in the middle" (i.e., genus = 1) to higher-genus attractors?

Yes. The results are similar.

Begin as follows:

Tori-0 Tori-0

Aufbau Princip for Bounding Tori

Alice in Stretch & SqueezeLand: Bounding Tori

Application: Lorenz Dynamics, g=3

Embeddings

Alice in Stretch & SqueezeLand: 11 Bounding Tori

Chapter Summary-0

Tori-01

Tori-0

Tori-0

Tori-(

Tori-0

I orı-(

_ . .

. ---

Tori-1

. ---

Embeddings

Embeddings

Alice in Stretch & SqueezeLand: Bounding Tori

Redcution to Networks

Equivalent to embedding a specific class of directed networks into R^3

Extrinsic Embedding of Bounding Tori

Alice in Stretch & SqueezeLand:

Bounding Tori

Extrinsic Embedding of Intrinsic Tori

A specific simple example.

Partial classification by links of homotopy group generators. Nightmare Numbers are Expected.

Creating Isotopies

Alice in Stretch & SqueezeLand: 11 Bounding Tori

Equivalences by Injection Obstructions to Isotopy

Index	R^3	R^4	R^5
Global Torsion	$Z^{\otimes 3(g-1)}$	$Z_2^{\otimes 2(g-1)}$	-
Parity	Z_2	-	-
Knot Type	Gen. KT.	-	-

In R^5 all representations (embeddings) of a genus-g strange attractor become equivalent under isotopy.

Summary-0 Tori-01 Tori-02

Tori-03

Tori-0

Tori-0

Tori-0

- . .

Tori-09

Tori-10

Tori-1

