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We study strange attractors generated by two dimensional nonlinear oscillators. These attractors
are embedded in a phase space that is a solid torus, D2×S1. Such strange attractors can be mapped
in a locally 1-1 way to an entire set of strange attractors that are indexed by a pair of quantum
numbers, n1 and n2. These integers are associated with the two generators of the homotopy group
of the torus boundary, ∂(D2 × S1). The torsion and energy integrals for this two parameter family
of locally identical strange attractors are simple functions of these two quantum numbers.

I. INTRODUCTION

It is common as well as convenient, and possibly mis-
leading, to separate dynamical systems into two classes:
autonomous and nonautonomous [1]. Familiar among the
former are the Lorenz [2] and Rössler equations [3]. In
three dimensions familiar examples of nonautonomous
dynamical systems are periodically driven two dimen-
sional nonlinear oscillators. In three dimensions the
phase spaces for autonomous and nonautonomous dy-
namical systems are R3 and D2 ×S1, where D2 is a disk
(bounded region in R2) on which coordinates (X, Y ) are
defined and S1 is a circle with θ/2π ↔ t/Td relating the
topology of the torus with the dynamics. Here Td is the
period of the harmonic driving term.

The forcing terms of a periodically driven nonlinear
oscillator exhibit a periodic symmetry under (X, Y, t) →
(X, Y, t + Td). Under rather general terms they also ex-
hibit an internal order-two symmetry under (X, Y, t) →
(−X,−Y, t + 1

2Td). This two-fold internal symmetry
can be removed by projecting the motion (periodic or
chaotic) onto “the” van der Pol plane [1, 4, 5]. This is
a rotating plane whose rotation angular frequency, Ω, is
synchronized with the angular frequency of the forcing
term, ωd = 2π/Td. In fact, there are two counterrotating
van der Pol planes that create a 2 → 1 map of a strange
attractor of period Td to an “image” attractor with no
internal symmetry and half the period: Timage = 1

2Td.

There is a growing understanding of dynamical systems
and their strange attractors with some symmetry and lo-
cally identical (diffeomorphic) dynamical systems with
less symmetry, the same symmetry but different topol-
ogy, different symmetry, or more symmetry [6–8]. Most
of these studies have been carried out for autonomous dy-
namical systems. In the present work we carry out such
studies for nonautonomous dynamical systems such as
periodically driven two dimensional nonlinear oscillators
[4, 5, 9].

We find for each periodic strange attractor in D2 ×S1

that there is an entire set of locally diffeomorphic strange
attractors. These are distinguished by two integer quan-
tum numbers, n1 and n2, with n1 ≥ 1 and n2 relatively
prime to n1. Two such attractors, labeled (n1, n2) and
(n1, n2)

′, are distinct if (n1, n2) 6= (n1, n2)
′; they are

globally diffeomorphic if n1 = n′

1 and distinct if n1 6= n′

1

or n2 6= n′

2. The two quantum numbers are related to the
two generators of the homotopy group of the boundary
of a torus, ∂(D2 × S1), containing a certain “universal
image” attractor [4]. The quantum number n1 is related
to the longitude; dynamically, it describes the order of
the cover [6–8]. The quantum number n2 is identified
with the meridian; dynamically, it describes the torsion
of the attractor [10].

We introduce two integrals to characterize the entire
family of attractors. One is an averaged torsion integral,
the second is an averaged energy integral. These inte-
grals depend smoothly on the quantum numbers (n1, n2).
The values of these integrals can be plotted on universal
curves that can be computed from the parameters of any
single member of this family. The “universal image at-
tractor” is typically chosen as the member of this family
with least symmetry that minimizes the energy integral.
These ideas are illustrated using a strange attractor gen-
erated by a version of the periodically driven van der Pol
oscillator [1, 4, 5].

The structure of this paper is as follows. In Sect. II we
introduce a large class of two dimensional nonlinear os-
cillators with periodic drive. The two-fold internal sym-
metry under (X, Y, t) → (−X,−Y, t + 1

2Td) is exhibited.
In Sect. III we introduce 2 → 1 and 1 → 1 mappings
of the strange attractor onto phase spaces D2 ×S1 using
coordinate systems rotating harmonically with Ω = kωd,
k integer. For k even the mappings are 1 → 1 global dif-
feomorphisms, for k odd they are 2 → 1 local diffeomor-
phisms. As |k| increases the mapped attractor becomes
more tightly wound up.

Torsion and energy integrals are introduced in Sect.
IV, where they are computed analytically and numeri-
cally. In Sect. V we introduce the idea of a “universal im-
age attractor.” In Sect. VI we map the universal image in
a locally 1-1 way onto n1-fold covering strange attractors
with Ω = (n2/n1)ω1, where ω1 is the angular frequency
of the universal image attractor: ω1 = 2π/(1

2Td) = 2ωd.
The torsion and energy integrals are presented for a large
number of strange attractors (n1, n2) in this class. In
Sect. VII we make a number of remarks about the class
of strange attractors constructed and the relation of the
methods used for this construction with traditional ideas
in physics and mathematics. In Sect. VIII we summarize
these results.
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II. DRIVEN NONLINEAR OSCILLATORS

Two-dimensional nonlinear oscillators Ẋi = Fi(X):

d

dt

[

X
Y

]

=

[

F1(X, Y )
F2(X, Y )

]

(1a)

have been used to model many physical systems. Such
dynamical systems cannot exhibit chaotic behavior since
they are two dimensional. If they are periodically driven
they can behave chaotically and generate strange attrac-
tors. The driven systems have the form Ẋi = Fi(X) + t:

d

dt

[

X
Y

]

=

[

F1(X, Y )
F2(X, Y )

]

+

[

a1 sin(ωdt + φ1)
a2 sin(ωdt + φ2)

]

(1b)

In most instances a1 or a2 is taken to be zero and φi is
chosen as 0 or π/2, for convenience. The relevant phase
space for such periodically driven nonlinear oscillators is
the solid torus D2 ×S1, where the geometric coordinate,
θ, which parameterizes the S1 part of the solid torus, is
related to the dynamical parameter, t, the physical time,
by

θ

2π
↔ t

Td
(2)

In many instances the forcing functions Fi(X, Y ) are
taken to be odd: Fi(−X,−Y ) = −Fi(X, Y ), for physical
reasons. In such cases the dynamical systems equations
(1b) are unchanged (“equivariant”) under the transfor-
mation (X, Y, t) → (−X,−Y, t + 1

2Td). If a strange at-
tractor of period Td is generated by this dynamics, it
shares the same internal two-fold symmetry.

The two-fold internal symmetry can be removed by
projecting the phase space coordinates (X, Y ) to a har-
monically rotating set of axes [1, 4, 5], so that the coor-
dinates in the rotating coordinate system are

[

u(t)
v(t)

]

=

[

cosΩt − sinΩt
sin Ωt cosΩt

] [

X(t)
Y (t)

]

(3)

with Ω = ±ωd. Under this transformation (u, v, t) →
(+u, +v, t+ 1

2Td). The coordinate transformation (3) re-
moves the internal symmetry and reduces the periodicity
of the image attractor(s) to T1 = 1

2Td. The image attrac-

tor has period one in a torus D2 × S1 with the following
identification between the geometric coordinate θ of the
torus and the dynamical coordinate t of the attractor:

θ

2π
↔ t

1
2Td

(4)

The two choices Ω = ±ωd define two counter-rotating
van der Pol planes.

The dynamical system equations in the rotating coor-
dinate system are

d

dt

[

u
v

]

= RF(R−1u) + Rt + Ω

[

−v
+u

]

(5)

The first term on the right is the original forcing term
in Equ. (1b), without the periodic drive. This is seen in
a rotating coordinate system. The matrix R = R(Ωt) is
the rotation matrix in Equ. (3), and R−1(Ωt) = R(−Ωt)
is its inverse. The second term in this equation is the
periodic drive at angular frequency ωd, seen in the rotat-
ing coordinate system. As this term contains products of
sines and cosines at the driving and rotating frequencies
ωd and Ω, it can be expressed as in terms of sines and
cosines of sum and difference frequencies |Ω ± ωd|. The
last term in this equation is the Coriolis term.

The ideas presented below will be illustrated by appli-
cation to the following version of the van der Pol equa-
tions:

Ẋ = bY + (c − dX2)X

Ẏ = −X + A sin(ωdt) (6)

with the following values of the control parameters:
(A, b, c, d, ωd) = (0.25, 0.7, 1.0, 10.0, π/2).

III. HARMONIC ROTATIONS: IMAGES

Harmonic rotations are synchronized with the drive:
Ω = kωd, k integer. They induce the following symmetry:

(u, v, t) → (−(−1)ku,−(−1)kv, t +
1

2
Td) (7)

For k even these rotations induce a global 1-1 diffeomor-
phism between the original strange attractor with two-
fold internal symmetry and period Td and the resulting
mapped attractor, with identical internal symmetry and
period. For k odd all the resulting image attractors have
period 1

2Td and no residual internal symmetry. They are
all 2 → 1 locally diffeomorphic images of the original
strange attractor (k = 0) and its diffeomorphic siblings
(k even). Attractors constructed with k odd are all glob-
ally diffeomorphic with each other but topologically in-
equivalent.
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FIG. 1: Strange attractors in the torus D2 × S1 projected
from the van der Pol strange attractor, with parameter values
(a, b, c, d, ω) = (0.25, 0.7, 1.0, 10.0, π/2) and rotation index k,
−2 ≤ k ≤ +2.

The integer k serves to increase the torsion of the at-
tractor. This can be seen in Figure 1. This consists of
a series of plots of u(t) vs. t for 0 ≤ t ≤ Td for the
van der Pol attractor Equ. (6). In this series of figures
the integer k ranges from −2 to +2. The orbit segments
with v > 0 are plotted darker than segments with v < 0.
This figure illustrates three features of projections using
rotating planes: (a) the rotation of the image attractor
changes direction as k increases through 0; (b) the attrac-
tors become more tightly wound as |k| increases. (c) the
periodicity of the strange attractor alternates between Td

(k even) and 1
2Td (k odd).

IV. TORSION AND ENERGY INTEGRALS

Two integrals express the relation between the rotation
of the plane and the apparent rotation of the strange at-
tractor as seen from that plane. These are the (averaged)
torsion and energy integrals:

L = L(0) = lim
τ→∞

1

τ

∫ τ

0

XdY − Y dX (8)

K = K(0) = lim
τ→∞

1

τ

∫ τ

0

1

2
(Ẋ2 + Ẏ 2)dt (9)

The integrals L(Ω) and K(Ω) for a strange attrac-
tor with coordinates (u, v) in a coordinate system rotat-
ing with angular velocity Ω are related to the integrals
L(0) and K(0) of the original attractor with coordinates
(X, Y ) (and Ω = 0) by

L(Ω) = 〈uv̇ − vu̇〉
= 〈XẎ − Y Ẋ〉 + Ω〈(X2 + Y 2)〉
= L(0) + Ω〈R2〉 (10)

K(Ω) = 〈1
2
(u̇2 + v̇2)〉

= 〈1
2
(Ẋ2 + Ẏ 2)〉 + Ω〈(XẎ − Y Ẋ)〉

+
1

2
Ω2〈(X2 + Y 2)〉

= K(0) + ΩL(0) +
1

2
Ω2〈R2〉 (11)

If the mean moment of inertia 〈R2〉 = limτ→∞

1
τ

∫ τ

0
(u2 +

v2)dt, which is independent of Ω, and the torsion L(0)
and kinetic energy K(0) are known for the original
strange attractor, they can be computed for any projec-
tions of that attractor into harmonically rotating planes.

In Fig. 2 we plot the average torsion integral for
strange attractors projected from the van der Pol strange
attractor, for values of k ranging from −10 to +10. Since
Ω = kωd we have plotted L(k)/(ωd〈R2〉), so that the
steps between successive values of the integers k should
be integer: (L(k+1)−L(k))/(ωd〈R2〉) = +1. This result
is evident in Fig. 2. In Fig. 3 we plot K(Ω) vs. k in the
same range of values. These graphs show clearly that the
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torsion increases linearly with k and the kinetic energy
depends quadratically on k. In fact, the averaged energy
integral is a quadratic function of the averaged torsion
integral:

K(Ω) − K(0) =
L(Ω)2

2〈R2〉 − L(0)2

2〈R2〉 (12)
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FIG. 2: Torsion Integral. The display is of the long term
limit defined in Equ. (10) divided by ωd〈u

2 + v2〉, so that
the integral changes by ∆L = +1 when ∆k = +1. The zero
crossing occurs at “k” = 0.398.

-10 -8 -6 -4 -2 0 2 4 6 8 10
Rotation Index, k

0

10

20

30

40

50

E
ne

rg
y 

In
te

gr
al

Energy Integral

FIG. 3: Energy Integral. The value depends quadratically on
k, with a minimum between k = 0 and k = 1 at the zero
crossing of the Torsion Integral.

V. UNIVERSAL IMAGE

The energy plot strongly suggests that one of the ro-
tating van der Pol planes (k = +1) is preferred over the

other (k = −1). In this preferred rotating plane the ro-
tational energy is lower, as is the absolute value of the
torsion integral. This can also be seen by comparing Fig.
1(b) with Fig. 1(d). We identify the image attractor in
this coordinate system as “the” universal image attractor
for the control parameters shown. All attractors created
below will be lifts (n1 > 1) or images (n1 = 1) of this pre-
ferred (with least symmetry and energy) universal image
attractor.

VI. SUBHARMONIC ROTATIONS: COVERS

Once a universal image attractor has been identified, a
series of rotational transformations can be carried out on
that attractor. This procedure is almost exactly the same
as that described in Sect. II. The relation between the
torsion and energy integrals given in Sect. IV remains
unchanged, with the understanding that L(0) and K(0)
are measured for the universal image attractor of period
T1 = 1

2Td and angular frequency ω1 = 2ωd.

The only difference is a notable one. The rotation
frequency can be subharmonically related to the angu-
lar frequency ω1 of the periodically driven image attrac-
tor: Ω = (p/q)ω1 = (n2/n1)ω1. Strange attractors
generated by these rotations are periodic with period
T(n1,n2) = n1T1. For these attractors the relation be-
tween the geometric parameter θ describing position in
the torus D2 × S1 and the dynamical parameter t is

θ

2π
↔ t

T(n1,n2)
=

t

n1T1
(13)

The transformation with p = 0, q = 1 or (n1, n2) = (1, 0)
reproduces the universal image. The transformation with
(n1, n2) = (2,−1) or p/q = −1/2 generates a double
cover (n1 = 2) that is identical to the original van der
Pol attractor, for the covering coordinates are related to
the image coordinates by

R(
−1

2
ω1t)R(+1ωdt) = R(−1

2
2ωdt)R(+1ωdt) = I2 (14)

The double covers of the image attractor with (n1, n2) =
(2,−1) and (2, +1) are shown in Fig. 4. The attractor
with p/q = −1/2 is clearly related to the original van der
Pol attractor (Fig. 1 (c)). The two are related by a rigid
rotation.
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FIG. 4: Projections of the strange attractors with quantum
numbers p/q = n2/n1 with (n1, n2) = (2,−1) and (2, +1)
onto the (u, t) plane.

The torsion and energy integrals behave linearly and
quadratically with Ω = (n2/n1)ω1. The values of the
torsion and energy integrals for all attractors of type
(n1, n2), with 1 ≤ n1 ≤ 8 and −3 ≤ n2/n1 ≤ +3, with n1

and n2 relatively prime, have been estimated numerically
with τ = 1000Td. The results are shown in Fig. 5 and
Fig. 6. The torsion has been scaled by ω1〈R2〉 so that
L(ω1(n2/n1))/(ω1〈R2〉) = (n2/n1)+ cst. These plots are
shifted to the left by 1 from those of Fig. 2 and Fig. 3, as
all measurements are with respect to the image attractor
(with k = 1) in Figs. 5 and 6 instead of the original
attractor (k = 0 in Figs. 2 and 3).
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FIG. 5: Torsion Integral for everywhere locally diffeomorphic
but topologically inequivalent strange attractors with quan-
tum numbers (n1, n2), with 1 ≤ n1 ≤ 8 and −3 ≤ n2/n1 ≤
+3.

-3 -2 -1 0 1 2 3
p/q

0

1

2

3

4

5

6

K
(O

m
eg

a 
=

 (
p/

q)
*o

m
eg

a_
1)

Energy Integral

FIG. 6: Energy Integral for everywhere locally diffeomorphic
but topologically inequivalent strange attractors with quan-
tum numbers (n1, n2), with 1 ≤ n1 ≤ 8 and −3 ≤ n2/n1 ≤
+3.

VII. REMARKS

It is useful to make a number of remarks here.

A. Autonomous vs. Nonautonomous

The autonomous-nonautonomous dichotomy is useful
but not rigid. It is possible to rewrite a periodically
driven system as an autonomous system. This is done
for the van der Pol system (6) by introducing two new
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variables, c and s (for example), that satisfy the equa-
tions ċ = −ωds, ṡ = +ωdc, and replacing the sine term
in Equ. (6) by the solution s to this differential equa-
tion. In this way the nonautonomous van der Pol equa-
tion, a periodically driven system whose dynamics lie
in D2 × S1, is represented as an autonomous dynami-
cal system in the phase space R4. The solution exists
in a three-dimensional manifold in R4: this manifold is
topologically D2 × S1.

It has been argued that it should be possible to
write certain classes of autonomous dynamical systems in
nonautonomous form [4]. This class includes equations
that generate strange attractors that exist within bound-
ing tori of genus one [11, 12]. The Rössler equations are
an example of such a set of equations, for normal param-
eter values. The basic idea is that it should be possible to
find a 1-1 relation between the dynamical variable t and
the geometric coordinate θ so that the equations can be
written as dx1/dθ = f1(x1, x2, θ), dx2/dθ = f2(x1, x2, θ).
If such a transformation is possible, the standard Rössler
strange attractor(s) would show no internal symmetry
of the type exhibited by the standard two-dimensional
nonlinear oscillators, and we would not have to spend
time removing this symmetry. In this case the Rössler
attractor itself would be the “universal image attractor”
from which an entire two-parameter family of attractors
(n1, n2) could be constructed. The two attractors (2,−1)
and (2, +1) in this Rössler family are shown in Fig. 7,
just to show that this really can be done. The coordi-
nate X(θ) is the mean radius and Y is its derivative:
Y (θ) = dX/dθ.

B. One Slight Complication

The presentation in this paper would have been more
straightforward if we could have begun our discussion di-
rectly with the universal image attractor. All the most
familiar examples of periodically driven dynamical sys-
tems are two dimensional nonlinear oscillators with in-
version symmetry. As such, the strange attractors they
generate have an internal symmetry. Sect. III was de-
voted to getting rid of this symmetry using a 2 → 1 local
diffeomorphism. The general approach, introducing the
pair of quantum numbers (n1, n2) in Sect. V, was delayed
by the need to remove the internal symmetry.

If we could have begun with a description of the Rössler
attractor as generated by a nonautonomous set of equa-
tions, following suggestions made elsewhere [4], this de-
tour (Sect. III) could have been avoided.

C. Quantum Numbers

The strange attractors in this two-parameter class
(n1, n2) of strange attractors are everywhere locally dif-
feomorphic with each other, and to the universal image
attractor. The quantum numbers are integers related to
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FIG. 7: Two double covers of the universal image Rössler
attractor are shown. They have quantum numbers (n1, n2) =
(2,−1) (top) and (2, +1) (bottom).

the two generators of the homotopy group of the bound-
ary of the torus. The quantum number n1 describes
quantization in the longitudinal direction. After n1 inter-
vals, each of duration T1, the attractor satisfies periodic
boundary conditions. The quantum number n2 describes
quantization in the meridional direction. When the at-
tractor satisfies the boundary conditions in the flow di-
rection, it has rotated through n2 full rotations in the
meridional direction.

D. Geometry, Dynamics, Topology

Tools that have been used to analyze strange attractors
come from three branches of mathematics or physics: ge-
ometry, dynamics, and topology. Geometric measures in-
clude the full panoply of fractal dimensions [13]. Dynam-
ical measures include the spectrum of Lyapunov expo-
nents [14] and estimates of a Lyapunov dimension. Topo-
logical tools include linking numbers and relative rotation
rates, used to determine their organization and the knot
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holder or branched manifold that organizes all the orbits
and identifies the mechanism generating chaotic behav-
ior [10, 15–17]. Geometric and dynamical measures are
diffeomorphism invariants. They are also invariant under
local diffeomorphisms. As a result, all strange attractors
(n1, n2) share an identical spectrum of fractal dimensions
and Lyapunov exponents. These measures are unable to
distinguish any of these strange attractors from any of
the others. However, each strange attractor (n1, n2) has
a spectrum of orbits that is uniquely determined from:
(a) the spectrum of orbits in the universal image attrac-
tor; (b) the order n1 of the cover; and (c) the global tor-
sion n2 of the cover. These topological fingerprints serve
uniquely to distinguish cover (n1, n2) from (n1, n2)

′.

E. Mathematical Descriptions

The construction of large classes of strange attractors
presented in Sect. V has both a mathematical and a
physical motivation. On both sides there is a simple de-
scription and a more complicated description. In the cur-
rent subsection we present the simple and sophisticated
mathematical descriptions. In the following subsection
we present the simple and sophisticated physical descrip-
tions.

Simple Mathematical Description: Imagine a
strange attractor embedded inside a torus. Cut the torus
at θ = 0 and straighten it out so that the axis of the torus
is a straight line. The intersection of the strange attrac-
tor at the section θ = 0 is identical to the intersection
at θ = 2π (periodic boundary conditions). Now rotate
one end through p/q full twists. It is assumed that the
rotation angle in the rest of the torus is proportional to
distance between θ = 0 and θ = 2π, so for example the
(surface of) section at θ rotates through angle (p/q)× θ.
If p/q is not an integer, periodic boundary conditions at
the two ends are no longer satisfied. Now place a copy of
this twisted torus end to end with the original, matching
up the θ = 0 end of the copy with the θ = 2π end of the
original. If 2×p/q is not an integer, boundary conditions
are still not satisfied. Repeat this process. Eventually, q
copies placed back to back in this way will satisfy peri-
odic boundary conditions as θ increases from 0 to 2π× q.
If p and q are not relatively prime, periodic boundary
conditions will be achieved sooner. The strange attrac-
tor inside this torus of “length” q × 2π is the cover with
quantum numbers (n1, n2) = (p, q). It is clearly a q-fold
cover of the original that is everywhere locally diffeomor-
phic with the original, that rotates p full turns before
closing up.

Sophisticated Mathematical Description: At ev-
ery point in the manifold S1

θ it is possible to specify a
coordinate system for D2. One erects a frame bundle
with frame group SO(2)φ, parameterized by angle φ (or-
thogonal rotations of coordinate system choice (X, Y ) for
any value of θ in S1

θ ) on the closed one-manifold S1
θ . The

choice of frame constitutes the identification of a sec-

tion in the frame bundle. As one travels around S1
θ from

θ = 0 to θ = 2π the coordinate frame rotates through k
full turns as φ increases from φ = 0 to φ = 2π × k.

If k = p/q is not an integer, as θ returns to 2π the an-
gle φ does not return to an integer multiple of 2π. We no
longer have a section (one point in each fiber over θ) in
the frame bundle. Rather, the bundle consists of q points
over each point in the base manifold. Instead of a section
we have a multisheeted cover of a section, similar to the
two-sheeted cover of the square root function z → √

z
in complex analysis. In fact, the q-sheeted “covering sec-
tion” is exactly like the complex covering sheet of the map
z → (zp)1/q. A group Cq acts on the points on any fiber

through the representation Γp(γ) = ei2πp/q , where γ is a
rotation through 2π/q radians. This process amounts to
parallel transport of a coordinate system along the man-
ifold S1

θ until it returns to its original orientation after q
full circles, during which time SO(2)φ rotates through p
full rotations: ∆θ = 2πq and ∆φ = 2πp.

F. Physical Descriptions

As stated above, we provide an analysis of our proce-
dure based on elementary physics first. Subsequently we
present a more sophisticated description.

Simple Physical Description: Assume that the co-
ordinates (X, Y ) describe the position of a particle of
mass m in the plane R2. This particle is acted on by forc-
ing functions as given in Equ. (1b). We assume that the
motion is bounded, recurrent, and nonperiodic, so that
the trajectory lies on a strange attractor in the phase
space D2 × S1 (D2 ⊂ R2, since the motion is bounded).
The average angular momentum and kinetic energy of the
particle are as presented in Equs. (8) and (9) (m = 1).
In a rotating coordinate system the equations of motion
are as shown in Equ. (5). The angular momentum and
kinetic energy in the rotating coordinate system are as
given in Equs. (10) and (11). From this analogy it is no
surprise to find a Coriolis term in the equations of motion
(5), an Ω·L term in Equ. (11), and centrifugal terms in
Equs. (10) and (11).

Sophisticated Physical Description: We have cre-
ated a whole series of strange attractors from a single
strange attractor almost from “thin air.” We did this
using two principles from classical physics and two from
modern physics.

At the classical level we rely on the Principles of Rel-
ativity and Equivalence. Assume two observers, Alice
and Bob, observe the dynamics. Alice sits in an inertial
coordinate system and observes the development of the
universal image strange attractor. Bob observes from a
uniformly rotating coordinate system. The Principle of
Relativity guarantees that either can describe what the
other sees, algorithmically, through invertible coordinate
transformations. The Principle of Equivalence guaran-
tees that if “the rest of the universe” “looks the same” to
Alice and Bob, Alice can use Bob’s description to predict
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the existence of a strange attractor that Bob observes,
and that attractor must exist.

On the modern physics side, we use two properties im-
posed on bound-state wave functions. These are square-
integrability and single valuedness. A standard condi-
tion used to define strange attractors is that the motion
is bounded. This is analogous the the L2 condition on
bound state wavefunctions. The other condition is sin-
gle valuedness. We have imposed this to demand that
the strange attractor as observed by Bob in his rotating
coordinate system closes up by making p roations in q
revolutions.

G. Are These All the Covers?

No. Not by a long shot.
These are all the locally diffeomorphic covers in the

intrinsic torus D2 × S1 [4, 5, 18, 19].
The torus itself can be embedded into R3. There are

many ways to embed a torus into R3 [20]. The most usual
one is the “natural embedding.” This embedding has the
center line of the torus following a circle in the plane. The
centerline can be mapped onto any closed curve in R3.
These are all known, if not completely classified. Each
of the strange attractors (n1, n2) in the intrinsic torus
D2×S1 can be embedded into R3 inside an extrinsic torus
whose center line follows one of the knots that have been
so thoroughly studied, for example the trefoil, granny, or
square knot [5].

It is also possible to find strange attractors that are
covers of the universal image in bounding tori of genus
g > 1 [11, 12, 20]. For example, the Rössler attractor has
been lifted to a double cover in a genus-three torus [5, 8].
That cover is very similar to the Lorenz attractor [21,
22]. The number of bounding tori of genus g increases
exponentially with g − 1, with “entropy” [23]

lim
g→∞

log N(g)

g − 1
→ 3 (15)

This leaves room for a great many more topologically

distinct covers that are locally identical to any universal
image strange attractor than even the large number pa-
rameterized by the quantum numbers (n1, n2) described
in this paper.

VIII. SUMMARY AND CONCLUSIONS

We have described nonautonomous dynamical systems
in three dimensions. These have taken the form of peri-
odically driven two dimensional nonlinear oscillators that
possess an inversion symmetry. We have described pro-
jections to locally diffeomorphic 2 → 1 images using har-
monic rotations, two of which are to the van der Pol
planes (k = ±1). By introducing torsion and energy in-
tegrals we have been able to identify a universal image
attractor uniquely.

We have introduced subharmonic rotations to lift the
universal image to n1 fold covers, with n1 ≥ 1. These
covers are identified by two relatively prime integers,
(n1, n2). We have called these integers quantum num-
bers because they arise by enforcing periodic boundary
conditions. We have computed the torsion and energy
integrals for many members of this class of covers nu-
merically and for all members analytically. All strange
attractors (n1, n2) are locally diffeomorphic and topo-
logically distinct. They have identical spectra of fractal
dimensions and Lyapunov exponents but each carries a
different topological signature, consisting of its spectrum
of periodic orbits and the linking numbers and relative
rotation rates of these orbits. The cover (2,−1) of the
universal image strange attractor is the original van der
Pol attractor. This has also been done for the Rössler
attractor, expressed in a torus representation.

Many influences have contributed to the approach to
creating new strange attractors from old described here.
Some of these influences have been discussed in the Re-
marks Section.
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