
Chapter 1

Experimental Background

The subject of this series of lectures is the analysis of data generated by a
dynamical system operating in a chaotic regime. More specifically, we describe
how to extract, from chaotic data, topological signatures that determine the
stretching and squeezing mechanisms which act on flows in phase space and
which are responsible for generating chaotic data.

In the first section of this introductory chapter we describe, for purposes of
motivation, a laser that has been operated under conditions in which it behaved
chaotically. The topological methods of analysis that we describe in this lecture
series were developed in response to the challenge of analyzing chaotic data sets
generated by this laser.

In the second section we list a number of questions which we would like to
be able to answer when analyzing a chaotic signal. None of these questions
can be addressed by the older tools for analyzing chaotic data: estimates of
the spectrum of Lyapunov exponents and estimates of the spectrum of fractal
dimensions. The question that we would particularly like to be able to answer
is this: How does one model the dynamics? To answer this question we must
determine the stretching and squeezing mechanisms that operate together—
repeatedly—to generate chaotic data. The stretching mechanism is responsible
for sensitivity to initial conditions while the squeezing mechanism is responsible
for recurrent nonperiodic behavior. These two mechanisms operate repeatedly
to generate a strange attractor with a self-similar structure.

A new analysis method, topological analysis, has been developed to respond
to the fundamental question just stated. At the present time this method is
suitable only for strange attractors that can be embedded in three-dimensional
spaces. However, for such strange attractors it offers a complete and satisfying
resolution to this question. The results are previewed in the third section of this
chapter.

It is astonishing that the topological analysis tools that we describe have
provided answers to more questions than we asked originally. This analysis
procedure has also raised more questions than we have answered. We hope
that the interaction between experiment and theory and between old questions
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answered and new questions raised will hasten evolution of the field of nonlinear
dynamics.

1.1 Laser with Modulated Losses

The possibility of observing chaos in lasers was originally demonstrated by and
by Gioggia and Abraham. The use of lasers as a testbed for generating de-
terministic chaotic signals has two major advantages over fluid and chemical
systems, which until that time had been the principal sources for chaotic data:

1. The time scales intrinsic to a laser (10−7 to 10−3 s) are much shorter than
the time scales in fluid experiments and oscillating chemical reactions.
This is important for experimentalists, since it is possible to explore a
very large parameter range during a relatively short time.

2. Reliable laser models exist in terms of a small number of ordinary differ-
ential equations whose solutions show close qualitative similarity to the
behavior of the lasers that are modeled.

The topological methods described in the remainder of this work were orig-
inally developed to understand the data generated by a laser with modulated
losses. A schematic of this laser is shown in Fig. 1.1. A CO2 gas tube is
placed between two infrared mirrors (M). The ends of the tube are terminated
by Brewster angle windows, which polarize the field amplitude in the vertical
direction. Under normal operating conditions, the laser is very stable. A Kerr
cell (K) is placed inside the laser cavity. The Kerr cell modifies the polarization
state of the electromagnetic field. This modification, coupled with the polariza-
tion introduced by the Brewster windows, allows one to change the intracavity
losses. The Kerr cell is modulated at a frequency determined by the operating
conditions of the laser. When the modulation is small, the losses within the
cavity are small, and the laser output tracks the input from the signal gener-
ator. The input signal (from the signal generator) and the output signal (the
measured laser intensity) are both recorded in a computer (C). When the modu-
lation crosses a threshold, the laser output can no longer track the signal input.
At first every other output peak has the same height, then every fourth peak,
then every eighth peak, and so on.

In Fig. 1.2 we present some of the recorded and processed signals from this
part of the period-doubling cascade and beyond. The signals were recorded
under different operating conditions and are displayed in five lines, as follows:
(a) period 1; (b) period 2; (c) period 4; (d) period 8; (e) chaos. Each of the
four columns presents a different representation of the data. In the first column
the intensity output is displayed as a function of time. In this presentation the
period-1 and period-2 behaviors are clear but the higher-period behavior is not.

The second column displays a projection of the dynamics into a two-dimension-
al space, the dI/dt vs. I(t) plane. In this projection, periodic orbits appear as
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Figure 1.1: This schematic representation of a laser with modulated losses shows
the carbon dioxide tube (CO2); power source (P.S.); mirrors (M); Kerr cell (K);
signal generator (S); detector (D); and computer, oscilloscope, and recorder (C).
A variable electric field across the Kerr cell rotates its polarization direction and
modulates the electric field amplitude within the cavity.

closed loops (deformed circles) which go around once, twice, four times, . . . be-
fore closing. In this presentation the behavior of periods 1, 2, and 4 is clear.
Period 8 and chaotic behavior is less clear. The third column displays the power
spectrum. Not only is the periodic behavior clear from this display, but the rel-
ative intensity of the various harmonics is also evident. Chaotic behavior is
manifest in the broadband power spectrum. Finally, the last column displays a
stroboscopic sampling of the output. In this sampling technique, the output in-
tensity is recorded each time the input signal reaches a maximum (or some fixed
phase with respect to the maximum). There is one sample per cycle. In period-1
behavior, all samples have the same value. In period-2 behavior, every other
sample has the same value. The stroboscopic display clearly distinguishes be-
tween periods 1, 2, 4, and 8. It also distinguishes periodic behavior from chaotic
behavior. The stroboscopic sampling technique is equivalent to the construction
of a Poincaré section for this periodically driven dynamical system. All four of
these display modalities are available in real time, during the experiment.

The laser with modulated losses has been studied extensively both experi-
mentally and theoretically. The rate equations governing the laser intensity I
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Figure 1.2: Each column provides a different representation of the experimental
data. Each row describes different experimental conditions. The first column
shows the recorded intensity time signal, I(t). The second column presents
the phase-space projection, dI(t)/dt vs. I(t). The third column shows the
power spectrum of the recorded intensity signal. The frequencies of the Fourier
components in the signal, and their relative amplitudes, jump out of this plot.
The last column presents a stroboscopic plot (Poincaré section). This is a record
of the intensity output at each successive peak (or more generally, at some
constant phase) of the input signal. The data sets were recorded under the
following experimental conditions: (a) period 1; (b) period 2; (c) period 4; (d)
period 8; (e) chaotic. Reprinted with permission from Tredicce et al.
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and the population inversion N are

dI

dt
= −k0I[(1 − N) + m cos(ωt)]

dN

dt
= −γ[(N − N0) + (N0 − 1)IN ]

(1.1)

Here m and ω are the modulation amplitude and angular frequency, respectively,
of the signal to the Kerr cell; N0 is the pump parameter, normalized to N0 = 1
at the threshold for laser activity; and k0 and γ are loss rates. In dimensionless,
scaled form this equation is

du

dτ
= [z − A cos(Ωτ)]u

dz

dτ
= (1 − ǫ1z) − (1 + ǫ2z)u

(1.2)

The scaled variables are u = I, z = k0κ(N − 1), t = κτ , A = k0m, ǫ1 = 1/κk0,
and κ2 = 1/γk0(N0 − 1). The bifurcation behavior exhibited by the simple
models (1.1) and (1.2) is qualitatively, if not quantitatively, in agreement with
the experimentally observed behavior of this laser.

A bifurcation diagram for the laser model (1.2) is shown in Fig. 1.3. The
bifurcation diagram is constructed by varying the modulation amplitude A and
keeping all other parameters fixed. The overall structures of the bifurcation
diagrams are similar to experimentally observed bifurcation diagrams.

This figure shows that a period-1 solution exists above the laser threshold
(N0 > 1) for A = 0 and remains stable as A is increased until A ∼ 0.8. It
becomes unstable above A ∼ 0.8, with a stable period-2 orbit emerging from
it in a period-doubling bifurcation. Contrary to what might be expected, this
is not the early stage of a period-doubling cascade, for the period-2 orbit is
annihilated at A ∼ 0.85 in an inverse saddle-node bifurcation with a period-2
regular saddle. This saddle-node bifurcation destroys the basin of attraction of
the period-2 orbit. Any point in that basin is dumped into the basin of a period
4 = 2×21 orbit, even though there are two other coexisting basins of attraction
for stable orbits of periods 6 = 3 × 21 and 4 at this value of A.

Subharmonics of period n (Pn, n ≥ 2) are created in saddle-node bifurcations
at increasing values of A and I (P2 at A ∼ 0.1, P3 at A ∼ 0.3, P4 at A ∼ 0.7,
P5 and higher shown in the inset). All subharmonics in this series up to period
n = 11 have been seen both experimentally and in simulations of (1.2). The
evolution (perestroika) of each of these subharmonics follows a standard scenario
as T increases:
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Figure 1.3: The bifurcation diagram for the laser model (1.2) is computed by
varying the modulation amplitude A. Stable periodic orbits (solid lines), regu-
lar saddles (dotted lines), and strange attractors are shown. Period n branches
(Pn ≥ 2) are created in saddle-node bifurcations and evolve through the Feigen-
baum period-doubling cascade as the modulation amplitude increases. There
are two apparently distinct stable period-2 orbits. However, these are connected
by an unstable period-2 orbit (dotted, extending from A ≃ 0.1 to A ≃ 0.8) and
thus constitute a single period-2 orbit which is a snake. A period-3 snake is
also present. Two distinct stable period-4 orbits are present and coexist over a
short range of parameter values (0.7 < A < 0.8). The inset shows a sequence of
period-n orbits (Newhouse orbits) for n ≥ 5. The Smale horseshoe mechanism
predicts that as many as three inequivalent pairs of period-5 orbits could exist.
The locations of the two additional pairs have been shown in this diagram at
A ≃ 0.65 and A ≃ 2.5. Parameter values: ǫ1 = 0.03, ǫ2 = 0.009, Ω = 1.5.
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1. A saddle-node bifurcation creates an unstable saddle and a node that is
initially stable.

2. Each node becomes unstable and initiates a period-doubling cascade as
A increases. The cascade follows the standard Feigenbaum scenario. The
ratio of A intervals between successive bifurcations, and of geometric sizes
of the stable nodes of periods n× 2k, have been estimated up to k ≤ 6 for
some of these subharmonics, both from experimental data and from the
simulations. These ratios are compatible with the universal scaling ratios.

3. Beyond accumulation, there is a series of noisy orbits of period n × 2k

that undergo inverse period-halving bifurcations. This scenario has been
predicted by Lorenz.

Additional systematic behavior has been observed. Higher subharmonics are
generally created at larger values of A. They are created with smaller basins of
attraction. The range of A values over which the Feigenbaum scenario is played
out becomes smaller as the period n increases. In addition, the subharmonics
show an ordered pattern in phase space. In Fig. 1.4 we show four stable periodic
orbits that coexist under certain operating conditions. Roughly speaking, the
larger period orbits exist “outside” the smaller period orbits. These orbits share
many other systematics, which have been describe. In Fig. 1.5 we show an
example of a chaotic time series taken for A ∼ 1.3. The chaotic attractor based
on the period-2 orbit (the period-1 orbit) has just collided with the period-3
regular saddle.

The period-doubling, accumulation, inverse noisy period-halving scenario
described above is often interrupted by a crisis (Grebogi and Ott) of one type
or another:

Boundary Crisis: A regular saddle on a period-n branch in the boundary of
the basin of attraction surrounding either the period-n node or one of its
periodic or noisy periodic progeny collides with the attractor. The basin
is annihilated or enlarged.

Internal Crisis: A flip saddle of period n × 2k in the boundary of a basin
surrounding a noisy period n × 2k+1 orbit collides with the attractor to
produce a noisy period-halving bifurcation.

External Crisis: A regular saddle of period n′ in the boundary of a period n
(Pn 6= Pn′) strange attractor collides with the attractor, thereby annihi-
lating or enlarging the basin of attraction.

Figure 1.6(a) provides a schematic representation of the bifurcation diagram
shown in Fig. 1.3. The different kinds of bifurcations encountered in both
experiments and simulations are indicated here. These include both direct and
inverse saddle-node bifurcations, period-doubling bifurcations, and boundary
and external crises. As the laser operating parameters (k0, γ, ω) change, the
bifurcation diagram changes.
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Figure 1.4: Multiple basins of attraction can coexist over a broad range of
parameter values. The stable periodic orbits and the strange attractors within
these basins have a characteristic organization. The coexisting orbits shown
above are, from the inside to the outside: period 2 bifurcated from a period 1
branch; period 2; period 3; period 4. The two inner orbits are separated by an
unstable period-2 orbit (not shown); all three are part of a snake.

Figure 1.5: This time series from a laser with modulated losses was taken at
a value of A ∼ 1.3, which is just beyond the collision (crisis) of the strange
attractors based on the period-2 and period-3 orbits. There is an alternation in
this time series between noisy period-2 and noisy period-3 behavior.
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Figure 1.6: Schematics of three bifurcation diagrams for three different operating
conditions of Eqs. (1.2). As control parameters change, the bifurcation diagram
is modified. Slow change in control parameter values deforms the bifurcation
diagram from (a) to (b) to (c). The sequence (a) to (c) shows the unfolding of
the snake in the period-2 orbit. The unstable period-2 orbit connecting the two
lowest branches is invisible in (a) and (b) since only stable attractors are shown.
In each diagram the bifurcations are: ↓, saddle-node; △, inverse saddle-node; ,
inverse saddle-node; doesn’t work •, boundary crisis; ⋆, external crisis. Period-
doubling bifurcations are indicated by a small vertical line separating stable
orbits of periods differing by a factor of 2. Accumulation points are indicated
by A. Strange attractors based on period-n orbits are indicated by the Cn.

In Fig. 1.6(b) and (c) we show the schematics of bifurcation diagrams ob-
tained for slightly different values of these operating—or control—parameters.

In addition to the subharmonic orbits of period n created at increasing values
of A (Fig. 1.3), there are orbits of period n that do not appear to belong to that
series (Newhouse series) of subharmonics. The clearest example is the period-
2 orbit, which bifurcates from period 1 at A ∼ 0.8. Another is the period-3
orbit pair created in a saddle-node bifurcation that occurs at A ∼ 2.45. These
bifurcations were seen in both experiments and simulations. It was possible to
trace the unstable orbits of period 2 (0.1 ≤ A ≤ 0.85) and period 3 (0.4 ≤ A ≤

2.5) in simulations and find that these orbits are components of an orbit snake
(Alligood; Alligood, Sauer, and Yorke). This is a single orbit that folds back
and forth on itself in direct and reverse saddle-node bifurcations as A increases
(this is not unlike a Feynman diagram for hard scattering of an electron by a
photon, which scatters the electron backward in time, creating a positron ...).
The unstable period-2 orbit (0.1 ≤ T ≤ 0.85) is part of a snake. By changing
operating conditions, both snakes can be eliminated [see Fig. 1.6(c)]. As a
result, the “subharmonic P2” is really nothing other than the period-2 orbit,
which bifurcates from the period-1 branch P1. Furthermore, instead of having
saddle-node bifurcations creating four inequivalent period-3 orbits (at A ∼ 0.4
and A ∼ 2.45) there is really only one pair of period-3 orbits, the other pair
being components of a snake.

Topological tools (relative rotation rates; Solari and Gilmore) were first de-
veloped to determine which orbits might be equivalent, or components of a
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snake, and which are not. Components of a snake have the same topological
invariants (cf. Chapter 4). These tools suggested that the Smale horseshoe
mechanism was responsible for generating the nonlinear phenomena observed
in both the experiments and the simulations. This mechanism predicts that
additional inequivalent subharmonics of period n can exist for n ≥ 5. Since the
size of a basin of attraction decreases rapidly with n, a search was made for
additional inequivalent basins of attraction of period 5. Two additional stable
period-5 orbits (besides P5) were located in simulations. Their locations are
shown in Fig. 1.3 at A ∼ 0.6 and A ∼ 2.45. One was also located experimen-
tally. The other may also have been seen, but its basin was too small to be
certain of its existence.

Bifurcation diagrams had been observed for a variety of physical systems
at that time: other lasers; electric circuits; a biological model; and a bouncing
ball. Their bifurcation diagrams are similar but not identical to those shown
above. This raised the question of whether similar processes were governing the
description of this large variety of physical systems.

During these analyses, it became clear that the standard tools for analyzing
chaotic data—estimates of the spectrum of Lyapunov exponents and estimates of
the various fractal dimensions—were not sufficient for a satisfying understanding
of the stretching and squeezing processes that occur in phase space and which
are responsible for generating chaotic behavior. In the laser we found many
coexisting basins of attraction, some containing a periodic attractor, others
containing a strange attractor. The rapid alternation between periodic and
chaotic behavior as control parameters (e.g., A and Ω) were changed meant
that Lyapunov exponents and fractal dimensions depended on the basins and
varied at least as rapidly.

For this reason we sought to develop additional tools for the analysis of data
generated by dynamical systems that exhibit chaotic behavior. The objective
was to develop measures that were invariant under control parameter changes.

1.2 Objectives of a New Analysis Procedure

In view of the experiments just described and the data that they generated,
we hoped to develop a procedure for analyzing data that achieved a number of
objectives. These included an ability to answer the following questions:

1. Is it possible to develop a procedure for understanding dynamical systems
and their evolution (perestroikas) as the control parameters (e.g., k0, m,
γ, or A, Ω, ǫ1, ǫ2) change?

2. Is it possible to identify a dynamical system by means of topological in-
variants, following suggestions proposed by Poincaré?

3. Can selection rules be constructed under which it is possible to determine
the order in which periodic orbits can be created and/or annihilated by
standard bifurcations? Or when different orbits might belong to a single
snake?
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4. Is it possible to determine when two strange attractors are (a) equivalent
in the sense that one can be transformed into the other without creating or
annihilating orbits; or (b) adiabatically equivalent (one can be deformed
into the other by changing parameters to create or annihilate only a small
number of orbit pairs below any period); or (c) inequivalent (there is no
way to transform one into the other)?

1.3 Preview of Results

A new topological analysis procedure was developed in response to the questions
asked of the data initially. These questions are summarized in Section 1.2. The
remarkable result is that there is now a positive and constructive answer to the
question: How can I look at experimental data, such as shown in Fig. 1.2 or
1.5, and extract useful information, let alone information about stretching and
squeezing, let alone a small set of integers?

This new analysis procedure answered more questions than were asked orig-
inally. It also raised a great many additional questions. This is one of the ways
we know that we are on the right track.

The results of this new topological analysis procedure are presented through-
out this book. Below we provide a succinct preview of the major accomplish-
ments of this topological analysis tool.

• It is possible to classify low-dimensional strange attractors. These are
strange attractors that exist in three-dimensional spaces.

• This classification is topological in nature.

• This classification exists at two levels: a macroscopic level and a micro-
scopic level.

• It is discrete at both levels. Thus, there exists a doubly discrete classifi-
cation for low-dimensional strange attractors.

• This doubly discrete classification depends in an essential way on the (un-
stable) periodic orbits, which are embedded in strange attractors.

• At the macro level the classification is by means of a geometric structure
that describes the topological organization of all the unstable periodic
orbits that exist in a hyperbolic strange attractor. This geometric structure
is called variously a (two-dimensional) branched manifold, knot-holder, or
template.

• Branched manifolds can be identified by a set of integers. Thus, at the
macro level the classification is discrete.

• At the micro level the classfication is by means of a set of orbits in a
nonhyperbolic strange attractor whose existence implies the presence of all
the other orbits that can be found in the nonhyperbolic strange attractor.
This subset of orbits is called a basis set of orbits.
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• To any given period, a basis set of orbits is also discrete.

• As control parameters change, the basis set of orbits changes. The changes
that are allowed are limited by topological arguments.

• Each different sequence of basis sets describing the transition from the
laminar to the hyperbolic limit describes a different route to chaos. Each
different route to chaos is a different path in a forcing diagram, shown in
Fig. 9.8.

• During this transition the underlying branched manifold is robust: It gen-
erally does not change.

• Large changes in control parameter values can cause changes in the un-
derlying branched manifold.

• These changes occur by adding branches to or removing branches from the
branched manifold. The branch changes that are allowed are also limited
by topological and continuity arguments.

• The information required for this doubly discrete classification of strange
attractors can be extracted from experimental data.

• The data requirements are not heavy. Data sets of limited length are
required.

• The data need not be exceptionally clean. Only a modest signal-to-noise
level is required. The analysis method degrades gracefully with noise.
Specifically, as the noise level degrades the data, it becomes more difficult
to identify the higher-period orbits, which are the least important for this
analysis. The most important orbits, those of lowest period, persist longest
with increasing noise. As a result, “Murphy is on vacation” (author of the
famous law).

• The data analysis method comes endowed with a rejection criterion.

• The branched manifold identifies the stretching and squeezing mechanisms
that generate chaotic behavior.

• Thus, this doubly discrete classification describes “how to model the dy-
namics.”


