
Chapter 3

Fractals

3.1 Examples of Fractals

A fractal is a geometric object which is self-similar, with structure at all levels
of magnification. Rather than try to tighten down on this definition, it is more
useful to generate some examples.

Example 1: In Fig. 3.1(a) we show an interval of length 1. In going from
(a) to (b) we remove the middle half of this interval. This leaves two intervals,
each of equal length 1

4 . This first step is the generating step. The second step,
from (b) to (c), is a repeated application of the generating step. We remove the
middle half of each of the two subintervals. This leaves 4 = 22 intervals, all of
equal length 1

16 = (1
4 )2. We continue in the obvious way. At the nth step we

have 2n intervals, each of length (1
4 )n. This process continues forever.

3.2 Fractal Dimension

A convenient way to define the dimension of a geometric object is to cover it
with boxes whose edge length is ǫ (i.e., small). In Fig. 3.2 we show how this
process works for some familiar geometric objects: two points, a smooth curve,
and a simple area. In these three examples, the number of boxes, N(ǫ), required
to cover the geometric objects behaves like:

Geometric Object N(ǫ)
Points P ∼ K/ǫ0

Smooth Curves C ∼ K/ǫ1

Simple Areas A ∼ K/ǫ2

where K is an unimportant constant. The number of boxes required to cover
the geometric object behaves like ǫ−d, where d is the dimension of the object.
We can turn this observation around, and use this type of computation to define

the dimension of peculiar objects.
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Figure 3.1: A middle half fractal is constructed by repeated application of the
first, generating step. The middle half of the interval of length one (a) is removed
(b). At each succeeding step, the middle half of each interval is removed. This
continues forever.

3.2.1 Definition of Dimension (Box Counting)

Definition: We define the dimension, d, of a geometric in terms of ǫ and N(ǫ)
as follows:

d = lim
ǫ→0

log N(ǫ)

log(1/ǫ)
(3.1)

Example 1 (Continued): At the nth step of the generation process of
the middle half fractal, there are 2n boxes, each of length (1

4 )n. The fractal
dimension is therefore

d = lim
n→∞

log(2n)

log(1/ 1
4 )n

=
log 2

log 4
=

1

2

3.2.2 Dimension of the Middle 1/p Fractal

Example 2: We can generalize this to 1
p

fractals. These are fractals in which

the middle 1
p

of the interval is removed in the generating step. Each interval

obtained during the generating step has length ǫ = p−1
2p

. Then

d =
log 2

log( 2p
p−1 )
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For p = 2, 3, 4, · · · these dimensions are

p Dimension

2 1
2

3 log(2)/ log(3)
4 log(2)/ log(8/3)
5 log(2)/ log(5/2)

We plot the fractal dimension, d, as a function of f = 1/p in Fig. 3.3.

3.2.3 Direct Product Spaces, Direct Sum Dimensions

Fractals in higher dimensional spaces can be built up systematically as direct
products of fractals in lower dimensional spaces. If a fractal is a direct product
of two fractals with dimensions d1 and d2, then its dimension is the (direct) sum
of the dimensions of the two fractals:

d = d1 + d2

As an example, a fractal in the plane can be constructed as the direct product
of the middle half fractal along each of the axes. The dimension of this direct
product fractal is then

d =
1

2
+

1

2
= 1

It is clear from this example that fractals can have integer dimension.

3.3 Two Scale Fractals

3.3.1 Construction

Another way to build up fractals is shown in Fig. 3.4. In the generating
step, an interval of length 1 is reproduced twice, once reduced by the scale
factor λ1, the other time reduced by the scale factor λ2. These reduced in-
tervals are shown on the left and right in Fig. 3.4(b). The process is re-
peated in the second generation. This produces four subintervals, of lengths
λ2

1, λ1λ2, λ2λ1, λ2
2, proceeding from left to right. In the third generation the

distribution is λ3
1, 3λ2

1λ2, 3λ1λ
2
2, λ3

2. You can see the binomial distribution of
lengths emerging from this process, which of course continues forever, as before.

3.3.2 Dimension

The dimension of this two scale fractal can be computed as follows. Assume
that at level k, Nk(ǫ) boxes of length ǫ are required to cover the 2k intervals.
At the next level k + 1, the structure on the left is a scaled down version of the
entire structure at level k. Therefore the number of boxes of length ǫ required
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Figure 3.2: (Ott, p. 70)(a) Two boxes cover two points, no matter how small
the boxes are. (b) The number of boxes required to cover a smooth curve is
proportional to the length of the curve, and inversely proportional to the box
size, that is, N(ǫ) ∼ 1/ǫ. (c) The number of boxes required to cover the area
behaves like N(ǫ) ∼ 1/ǫ2.
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Dimension of Middle 1/p Fractal

Figure 3.3: The dimension of a middle 1/p fractal is plotted as a function of
f = 1/p.
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Figure 3.4: Construction of a two scale fractal proceeds as shown. Each of the
two subintervals in the generating stage (a) → (b) is a replica of the original,
reduced in scale by the scale factors λ1 and λ2. If λ1 is negative, −1 < λ1 < 0,
the orientation of an interval is reversed when scaled down by λ1.

to cover the left half of the structure at level k + 1 is equal to the number of
larger boxes (of length ǫ/λ1) required to cover the structure at level k:

N(k+1)left
(ǫ) = Nk(ǫ/λ1)

A similar argument holds for the half on the right at level k + 1. Thus we have

Nk+1(ǫ) = N(k+1)left
(ǫ) + N(k+1)right

(ǫ) = Nk(ǫ/λ1) + Nk(ǫ/λ2)

If we assume, as usual, that N(ǫ) ∼ Kǫ−d, then Kǫ−d = K(ǫ/λ1)
−d+K(ǫ/λ2)

−d

leads directly to a simple expression defining the fractal dimension d:

λd
1 + λd

2 = 1

Fractals obtained from three or more scaling transformations in the generating
step have dimensions determined by similar expressions.

3.3.3 Feigenbaum Fractal

The Feigenbaum attractor is the fractal which exists at the accumulation point
of the period doubling cascade. Figure 3.5(a) shows the locations of orbits of
periods 1, 2, 4, 8, · · ·. The locations suggest that a scaling exists. This scaling
is reinforced in Fig. 3-5(b), which shows the locations of points in the orbits of
2n. These occur alternately in the left and the right halves of the return plot,
and seem to obey scaling 1/α2 on the left and 1/α on the right.

We now describe how to view the Feigenbaum attractor as a two scale fractal.
Begin by connecting the two points in the period two orbit by a line. Next,
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connect the four points of the period four attractor by two lines. Continue
on in this way, connecting the 2n points in the period 2n orbit by half the
number of lines. This is shown in Fig. 3.6. The transformation from level n
to the next lower level n + 1 is then governed by the two scalings λ1 = 1/α
(since α is negative, this reverses orientation, but this is not important for the
computation to follow) and λ2 = 1/α2. The dimension of this attractor is
therefore determined by

(1/|α|)d + (1/α2)d = 1

The dimension d can easily be computed by the ‘divide and conquer’ strategy.
It lies between 0 and 1. At d = 1 the left hand side is 1+1 = 2. At d = 1 the left
hand side is λ1 +λ2 < 1. This means that there is a zero crossing of λd

1 +λd
2 − 1

between 0 and 1. Evaluate in the middle, move the limits, and evaluate in the
middle again. Continue for as long as you wish (no longer than the bit length
of words in your computer). The snippet of FORTRAN code in Fig. 3.7 finds
the value of d to 25 bits: d = 0.52450 83040 · · ·.

Figure 3.5: (top) (Schuster, Fig. 33, pg. 56) Adjacent pairs of points on the
2n orbit in the period doubling cascade show a scaling relation. (bottom) (Cvi-
tanovic, Fig. 6.1, pg. 22) The Feigenbaum attractor is a two scale fractal. The
scales are λ1 = 1/α and λ2 = 1/α2.
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Figure 3.6: The beginning of the bifurcation diagram is shown. At the bifur-
cation 2n → 2n+1, 2n−1 segments are drawn which connect adjacent points on
the 2n orbit.

3.3.4 Two Scale Fractal Dimensions

Fractal dimension is not generally a constant. To illustrate this idea, we consider
a unit square which is mapped into itself according to the following rules. In
the generating step, two images are created. In the first image, the x axis
y = 0 is mapped to itself, the upper side at y = 1 is mapped to the parabola
y = 0.01 + 2 × (x − 0.7)2. The x-value is unchanged, and y values are linearly
scaled between the boundaries. In the second image, the side y = 1 is mapped
to itself and the side y = 0 is mapped to the straight line y = 0.99−0.80∗x. The
boundaries of these scaling regions are shown with light lines in Fig. 3.8. The
fractal dimension (in the y direction) varies as a function of x. The dimension
is shown by the heavy line in this figure. A histogram of the fractal dimension
distribution for this fractal is shown in Fig. 3.9.

The fractal dimension of the two scale fractal built up by the generating step
shown in Fig. 3 .8 is

Dimension = 1 + 〈d〉 (3.2)

The 1 comes from the x-direction, which is smooth. The fractal structure is
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c program fracdim.f January 30, 2001
c This program computes the fractal dimension of the
c Feigenbaum attractor by the ’divide and conquer’ method.

implicit none
integer i
real*8 lam1,lam2
real*8 alpha,delta,x,y

c begin
alpha = 2.50290 78750 95892 8485 ! input data
delta = 4.66920 16091 029
lam1 = 1.0/alpha ! establish scaling
lam2 = 1.0/alpha**2
dmin = 0.0 ! initialize
dmax = 1.0
do i=1,25 ! begin divide and conquer
d = 0.5*(dmin+dmax)
y=lam1**d + lam2**d - 1
if(y.gt.0.0)dmin=d
if(y.lt.0.0)dmax=d
end do !! end divide and conquer
write(*,’(2x,2f12.8)’)d,y ! output result, error

stop
end

Figure 3.7: This short FORTRAN code computes the fractal dimension of the
Feigenbaum attractor to 25 bits: d = 0.52450 83040... .

only in the y direction. Since the fractal dimension varies along the x-axis, the
average dimension 〈d〉 is taken. The average is computed by interpreting the

histogram in Fig. 3.9 as a probability distribution: 〈d〉 =
∫ 1

0
zρ(z)dz.

3.4 Other Dimensions

A number of other dimensions have been introduced in an attempt to distinguish
geometry from dynamics. Almost all of these are based on the invariant measure
over a strange attractor. Recall that this is defined as

µi = µ(x0, Ci) = lim
T→∞

η(x0, Ci, T )

T
(3.3)

Here x0 is an initial condition for the dynamics, Ci is box i in a very refined
partition of the phase space, T measures the temporal length of a trajectory,
and η measures the total time the trajectory is in cube Ci.

Remark: The quantities µi, or their limits ρ(x), are called measures. They
are invariant measures if ρ(f(x)) = ρ(x) for all x. Invariant measures are closely
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Dimension for Two Scale Fractal

Figure 3.8: The fractal dimension of a two-scale fractal is plotted as a function
of position along the x-axis. The two scales are x-dependent. They are the
distance below the parabola and the distance above the straight line. The third
curve is the fractal dimension.

related to discussions of ergodicity: the equality of time averages with space av-
erages for almost all initial conditions. The ergodic hypothesis is usually assumed
as a foundation for statistical physics. The existence of invariant measures is
a necessary but not sufficient condition for the proof of the ergodic theorem.
Other conditions (“irreducibility” in some sense) are necessary and not usually
met in statistical physics.

3.4.1 Information Dimension

The information dimension is defined as

H = lim
ǫ→0

∑

i

−µi log µi (3.4)
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Figure 3.9: Histogram of the relative occurrence of fractal dimension of the
two scale fractal is plotted as a function of the fractal dimension. The van
Hove singularity is characteristic of a quadratic turn-around, and occurs in one
dimensional Quantum Mechanical lattice models.

This is the Shannon (Boltzmann) entropy function.

3.4.2 Correlation Dimension

The correlation dimension is the fractal dimension which is most often used in
the analysis of data. It is defined as follows. Count the number of points within
a distance ǫ of each other:

N(ǫ) =
∑

i6=j

∑

j

Θ(ǫ − |xi − xj |) (3.5)

In this expression, xi are points on an attractor in an n-dimensional phase space,
Θ(y) is the Heaviside theta function: Θ(y) = 0 if y < 0 and Θ(y) = 1 if y ≥ 0 (it
is the integral of the Dirac delta function: Θ(y) =

∫ y

−∞
δ(x)dx). This number
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Figure 3.10: (BMC ’93, pg. 36) Correlation dimension computations are shown
for the X-ray binary Her X-1/HZ Her (A) and background data (B). The em-
bedding dimension ranges from one (bottom curve, both cases) to 20 (top). The
correlation integral is capable of distinguishing deterministic chaos from noise.

decreases as ǫ decreases. One hopes that this number decreases exponentially,
N(ǫ) ∼ ǫdc . If so, then the ratio

dc = lim
ǫ→0

log N(ǫ)

log(1/ǫ)
(3.6)

should (might) exist. This limit defines the correlation dimension. The correla-
tion dimension is generally not the same as either the box counting dimension
or the information dimension.

Some samples of the use of this statistic are shown in Figs. 3.10 and 3.11.
Fig. 3.10(a) is a correlation dimension calculation for data from the X-ray
binary Her X-1/HZ Her. The scalar time series data are embedded as vectors
in spaces of dimension 1, 2, · · ·, 20 (one curve for each dimension, from bottom
to top). The correlation integral is carried out, and its slope is plotted as a
function of ǫ. Some of the curves converge to a more or less constant slope over
a limited region of the size parameter ǫ. The converged slope is interpreted as
the correlation dimension. In Fig. 3.10(b) the same computation is repeated on
background data, assumed to be gaussian noise. This series of 20 curves behaves
remarkably different. If the correlation dimension computation does not provide
a convincing quantitative value for a dimension, at least it provides a mechanism
to distinguish between processes with low dimensional deterministic structure
and those without.

Fig. 3.11 shows two additional attempts to determine correlation dimen-
sions. In these cases, embeddings of dimensions 1, 2, · · ·, 40 were made. The
curves on the left were computed for numerically generated data from the Lorenz
attractor. The curves on the right were made from data taken on a far infrared
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Figure 3.11: (BMC ’93, pg. 135) Correlation dimension computations are shown
for numerically generated data (Lorenz model) and experimental data (fir laser).
Correlation dimensions are computed using embeddings ranging from dimen-
sions one (bottom line) to 40 (top). The peak on the right is not a signal, since
the dimension is defined in the limit of ǫ (r) small. A reasonable small r limit is
obtained for the numerical data, but not for the experimental data, where the
noise daemon kills the computation.

laser. In both cases the behavior at large ǫ is not useful. The definition in-
volves the ǫ → 0 limit, so the behavior on the right is of little interest, anyway.
Computations based on numerically generated data seem to converge to a value
slightly above 2 in the small ǫ limit. This is not the case for computations based
on experimental data. The problem here is that noise kills the computation.
With results like this, it is not too surprising that theorists demand enormously
long data sets with unbelieveable signal to noise ratios for correlation dimension
computations, while experimentalists view these computations with a jaundiced
eye.

3.4.3 Dq Dimensions

There is an entire one-parameter family of dimensions based on the invariant
measure µi. These dimensions are defined by the limit

Dq =
1

1 − q
lim
ǫ→0

log(
∑

i µq
i )

log(1/ǫ)
(3.7)

Here ǫ is the diameter of the largest box Ci in the partition of the phase space.
Three special cases of this dimension have already been introduced:

D0 Box Counting Dimension
D1 Information Dimension
D2 Correlation Dimension
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The information dimension can be obtained from the definition above by taking
a delicate limit at q → 1.

This family is monotonic decreasing, or at least monotonic non-increasing.
For example, D0 ≥ D1 ≥ D2. A plot of Dq vs. q is shown in Fig. 3.12 for the
Feigenbaum attractor. The scaling function f(α) is shown for this spectrum in
Fig. 3.13.

Figure 3.12: (Schuster, Fig. 84, pg. 130) The one parameter family of dimen-
sions Dq is plotted vs. q for the Feigenbaum attractor.

3.4.4 Multifractal Scaling and f(α)

A fractal for which the spectrum Dq of dimensions is not constant, but depends
on q, is called a multifractal. A formalism has been developed to describe
multifractals. In this formalism, the multifractal scaling function f(α) plays a
prominent role. We introduce this function as follows.

The invariant measure µi scales with the smallness parameter ǫ with some
power law dependence: µi ∼ ǫαi . It is possible to build up a histogram of the
distribution over the exponents α in the usual way. Call this histogram N(α).
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Then the multifractal scaling function f(α) is related to the histogram N(α) as
follows:

f(α) ∼ − log N(α) (3.8)

A theory can be built up more rigorously as follows. Define a function τ
from Dq as follows:

τ = (q − 1)Dq = − lim
ǫ→0

log(
∑

i µq
i )

log(1/ǫ)
(3.9)

Then define α as the slope of τ :

α =
d

dq
[(q − 1)Dq] =

dτ

dq
(3.10)

Finally define f(α) as the Legendre transform of τ :

f(α) = q
dτ

dq
− τ(q) (3.11)

The monotonic decreasing property of Dq translates into a concavity property
on f(α). In Fig. 3.12 we show the monotonic decreasing spectrum of fractal
dimensions for the Feigenbaum attractor. In Fig. 3.13 we show the multifractal
scaling function f(α) for the same attractor. Because of the close relation of the
two (the transformations are invertible), many properties of one are reflected in
the properties of the other, as suggested in Fig. 3.13.

The multifractal scaling function is difficult to determine from experimental
data, and in the end provides little leverage for distinguishing one dynamical
system from another.

3.4.5 Thermodynamic Formalism

There is a 1-1 relationship between the multifractal scaling formalism and clas-
sical thermodynamics which is as breathtaking in its elegance and beauty as it
is useless in distinguishing among different mechanisms for generating fractal
strange attractors, let alone distinguishing among different dynamical systems.

The identifications are shown in the Table below:

Thermodynamics Multi − Fractal Formalism
β q
− logZ = βF τ = (q − 1)Dq

U = ∂
∂β

(− log Z) α = d
dq

(τ)

S = βU + log Z f(α) = qα − τ
∂S
∂U

= β df
dα

= q

Here we use standard nomenclature for the thermodynamic functions: β =
1/kT , Z is the partition function, U is the internal energy, F is the Gibbs free
energy, and S is the entropy.
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3.4.6 Lyapunov Dimension

The most useful of all the dimensions is the Lyapunov dimension. It is not
based on geometery, but rather on dynamics. It is defined in terms of Lyapunov
exponents, which describe the stability of the dynamical system. Since all of the
fractals discussed in this chapter are geometric and have no dynamical origins,
it is not possible to define a Lyapunov dimension for any of them.

Unfortunately, we have not yet reached the point where we are able to define
the Lyapunov exponent of a dynamical system. The definition must wait.
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Figure 3.13: (Schuster, Fig. 84, pg. 130) The scaling function f(α) is plotted
vs. α for the Feigenbaum attractor.


