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All of the unstable periodic orbits in a strange attractar ba placed on a single,
simple geometric structure. This structure has been caieidusly aknot holder
an orbit organizer and atemplate Mathematically, it is a branched manifold. A
branched manifold describes the topological organizadiball the unstable peri-
odic orbits in a strange attractor [83,84]. This means thebrranched manifold for a
strange attractor provides information about the streighind squeezing mechanisms
that generate the strange attractor. Branched manifolidealassified discretely.
This means that a discrete classification exists for lowetligional strange attrac-
tors [85].
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5.1 CLOSED LOOPS

Branched manifolds are central to the classification théorngtrange attractors of
low dimensional dynamical systems. In this section we ohiiee the idea of branched
manifolds in an amusing but very nontrivial way.

5.1.1 Undergraduate Students

Many of usin physics or electrical engineering departmieat® had to teach Maxwell’s
equations in one form or another. One standard problem thatlways give to un-
dergraduates is to compute the magnetic field generated bgrent carrying wire.
Needless to say, the wire is straight and the currentis aohsThe standard approach
is to find a closed loop, or magnetic field line, and perform aisséan type integral
around it. As Fig. 5.1(a) shows, there is a two (continuqueslameter family of
closed field lines around the wire. These are parameterigatistance along the
wire and radius of the loop.

5.1.2 Graduate Students

Through sheer perversity, we always make our students gaudgr another round
of electricity and magnetism in graduate school. The maltégithe same, but the
problems have to be different—and harder. This time arowsdbend the straight
wire into a circular loop and then ask our students to comphéanagnetic field in
its vicinity. As Fig. 5.1(b) shows, there is still a real typarameter family of closed
loops around the current-carrying wire. One parametesstigular distance around
the wire; the other is thperihelionof the closed magnetic field line with respect to
the current-carrying wire. The perihelion is the distantelosest approach. Some
students (the smart ones) choose not to solve the problamthigt approach.

5.1.3 The Ph.D. Candidate

When the poor student finally finishes his (her) thesis, yoy braput on his com-
mittee. If you like the student, you give easy questions.olf gou give impossible
guestions.

Here is one. You take the current-carrying wire and tie ibiatknot: a figure 8
knot, to be specific. Then ask: Are there still closed magrfiid lines? If so, what
are they like?

It turns out that most of the closed field lines of undergradaad graduate days
break when the current-carrying wire is tied into the figuren®t. However, a few
do not break. “Few” is, in fact, a countable infinity—signéitly fewer than a
continuous two-parameter family.

Not only are the closed magnetic field lines countable, treyaso be named.
More surprisingly, they are organized among themselvesrigid and surprisingly
simple way. The organizational mechanism is illustrate&im 5.2. The current-
carrying wire, tied into a figure 8 knot, is shown in Fig. 52(®ne of the closed
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Fig. 5.1 (a) The closed magnetic field lines surrounding a straight warrying a uniform
constant current can be identified by two real continuouarpaters. (b) This remains true if
the wire is deformed into a closed circular loop.

field lines generated by the current in this wire is shown i Ei.2(b). In Fig. 5.2(c)
we show a structure that contains all the information abloeitrganization of all the
closed magnetic field lines generated by the current in tivis.wr his structure is a
branched manifold (or knot-holder, or template).

All of the closed field lines surrounding the Figure 8 knot tendeformedigo-
toped down to lie on this two-dimensional surface without undeéng any self-
intersections. On this surface it is a relatively simple tevatio compute the topolog-
ical invariants of these closed field lines, their linkingmboers. There is a 1:1 corre-
spondence between symbol sequences for closed paths hbhgre-way streets”
(branches) in this branched manifold and the closed magfield lines surrounding
the current-carrying wire. The symbols may identify eittiee branch lines, as en-
countered, or the branches of the branched manifold, asrsed. As a result, the
closed field lines are clearly countable.
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5.1.4 Important Observation

We point out here, forcefully, that this first encounter wittanched manifolds has
occurred for a “conservative” dynamical system.

In the past it seems that there has been a prejudice againeséhof branched
manifolds as a valuable tool for classifying strange attnec  This prejudice had
been brought about by the incorrect assumption that thisisagseful only in the
highly dissipative limit. The central tool for the classét®on theory, the Birman—
Williams theorem, is applicable to dissipative three-disienal dynamical systems
(A1 + A2 + A3 < 0), but these systems need not be highly dissipative.

In the example just discussed, a branched manifold descifilgeorganization of
all the closed magnetic field lines around a current-cagfigure 8 knot. The analog
dynamical system isonservativenot everslightly dissipative

(@)

Fig. 5.2 A current-carrying wire tied into a figure 8 knot (a) genesaséecountable number
of closed magnetic field lines, one of which is shown in pa)t (b) This branched manifold
describes all of the closed field lines generated by the wifa).. It can also be used to label all
these orbits, and to compute their topological invariasiigh as linking numbers. The closed
loop shown in (b) can be identified &sa)3a(b3)3b. Adapted with permission from Birman
and Williams [84].
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5.2 WHAT HAS THIS GOT TO DO WITH DYNAMICAL SYSTEMS?

We are interested in classifying dynamical systems by tfaage attractors that they
generate. When a dynamical systenfiihgenerates a chaotic signal, a large number
of periodic orbits occur in the strange attractor. They aganized among themselves
in a unique way. This organization reflects the stretchirysijueezing mechanisms,
which act to generate chaotic behavior.

There is a theorem, due to Birman and Williams, which guaesithat all these
orbits can be isotoped down to a two-dimensional branchedifoid, preserving
their topological organization. As a result, we can idgnéifdynamical system by
the branched manifold that describes the periodic orbiisistrange attractor.

The Birman-Williams theorem is valid for dissipative dyriaai systems ink?.
The Lyapunov exponents for the strange attractor ohey 0, A\, = 0, andAs < 0,
with A1 + A2 + A3 < 0. The Lyapunov dimension of such an attractorljs =
24+ (A14+A2)/|A3] =2+ €. Whene = \; /| 3| is small, it is easy to discern the shape
of the branched manifold from the numerically computedmsieattractor [cf. Figs.
5.7(c) and 5.8(c)]. However, when~ 1 there is still a branched manifold which
describes the dynamics, even though it may not be easy ttifidéom the strange
attractor.

We emphasize once again that the branched manifold for tlieefig knot de-
scribes the topological organization of the closed fiel@giin a system which has
the properties of a strange attractor wite- 1: the conservative limit.

5.3 GENERAL PROPERTIES OF BRANCHED MANIFOLDS

The branched manifold shown in Fig. 5.2(c) consists of twadki of structures.
These describe stretching and squeezing. The origin oétstesctures is shown in
Fig. 5.3. On the left we show a cube of initial conditions. Enthe stretching
process, the cube is deformed: It stretches in one direatidrcontracts in the other.
Eventually, the flow goes off in two different directions ingse space. In the limit
of very high dissipation, the three-dimensional structueeomes two-dimensional.
This structure describes stretching.

On the right we show two neighborhoods in different partstudge space. Under
the flow they are squeezed together. Between the two defoneigtiborhoods there
is a boundary layer. In the limit of very high dissipationgtthree-dimensional
structure becomes two-dimensional. This structure dessrsqueezing.

Remark: The two-dimensional structures shown at the bottom of Fi3 d®
not depend on the dissipation being large. They, in factyltém projecting the
flow down along the stable direction. We emphasize againtttgatonstruction of
branched manifolds does not depend on the dissipation Ieige.

The most general branched manifold is built up from justétte® building blocks
in Lego fashion. The simple rules are:

Out — in: Every outflow feeds into an inflow.
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Fig. 5.3 Left: A cube of initial conditions (top) is deformed undeetbtretching part of
the flow (middle). A gap begins to form for two parts of the flowalding to different parts
of phase space. Under further shrinking (higher dissipatéotwo-dimensional structure is
formed which is not a manifold because of the tear point, tvtiécan initial condition for
a trajectory to a singular point. Right: Two cubes of initainditions (top) in distant parts
of phase space are squeezed together and deformed by therfiddld). A boundary layer
separates the deformed parallelepipeds at their junctioder more dissipation the two inflow
regions are joined to the outflow region by a branch line.

No free ends: There are no uncoupled outflow or inflow edges.

The two-dimensional branched manifolds that we use to ifjadgnamical sys-
tems are two-dimensional manifoldenosteverywhere. Of the two dimensions: one
dimension corresponds to the flow direction; the other moads to the unstable
invariant manifold of a low-period orbit. The structurel&tio be a manifold because
of singularities. There are two types of singularities:

Zero-dimensional: The splitting points identify stretching mechanisms.
One-dimensional: The branch lines identify squeezing mechanisms.

Itis possible to describe branched manifolds algebrajc@le algebraic descrip-
tion for a branched manifold with branches has three components:

Topological Matrix T:  This is ann x n matrix that describes the topological orga-
nization of the branches. The diagonal eleniEntdescribes the local torsion
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of branchi. This is the signed number of crossings of the two edges oidbra
with each other. The off-diagonal elemeffis = 7;; describe how branches
andj cross. The crossing convention adopted for segments dbdfig. 4.4)
is extended to projections of the branches in an obvious way.

Joining Array A: This is al x n array that describes the order in which branches
are joined at branch lines. A simple convention is: The al@skbranch is to
the observer, the lower the branch number.

Incidence Matrix I: This is ann x n transition or incidence matrix. It describes
which branches flow into which branches. If braridtows into brancly, then
1;; =1, itis zero otherwise.

The algebraic description for the branched manifold shawlfig. 5.2(c) is given in
Fig. 5.4.

We remark here that the algebraic description of a brancleedfold is not unique.
The branched manifold is embeddedif. As such, it can be rotated and projected to
a variety of two-dimensional surfaces. Different projens have different algebraic
representations. This nonuniqueness is the nonuniquehpssjections, discussed
in Section 4.2.1. There are several other ways in which radenanifolds for an
underlying dynamics may not be unique. However, there isiovegiant: They all
describe the same spectrum of periodic orbits with the sapmagical organization.

We also remark here that the algebraic description of bradiaanifolds is ideally
suited for the computation of some topological invariastgh as linking numbers
and relative rotation rates, but is not suitable for commyitither invariants, such as
knot polynomials.

5.4 BIRMAN-WILLIAMS THEOREM

We refer the interested reader to [83] and [84] for proof @& Birman—Williams the-
orem. In the first subsection we introduce the projectionhoétBirman—Williams
projection) that is used to project a flow onto a branched fo&hi In the second
subsection we state the Birman—Williams theorem.

5.4.1 Birman-Williams Projection

Two points,z andy, are defined to bequivalentunder a flow if they have the same
asymptotic future:

T~y if lz(t) — y(t)] =X 0 (5.1)

The Birman—Williams projection (5.1) has the effect of gijng the flow in a strange
attractor down along the stable direction onto a two-dirf@red branched manifold.
The dimensions include the flow direction and part of the aiplst direction. It is
illustrated in Fig. 5.5.
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Fig. 5.4 Algebraic representation of a branched manifold witbranches (a) consists of:
(b) ann x n matrix T' that describes how the branches cross over or under each(offie
diagonal matrix elements) or how they twist about their flousddiagonal matrix elements),
and underneath this matrixlax n array A that describes the order in which the branches join
each other at branch lines, with the convention: The lafgenumber, the farther behind; and
in addition, am x n matrix I (incidence matrix) (c) describes how the branches are atade
to each other. The branches may be labeled by numbers or waiimg) which branch lines
they connect. Adapted with permission from Birman and \abitis [84].

We represent the flow iR? by ®,, so that forr in the basin of the strange attractor
SA, &,(x(0)) = z(t). The flow has a unique future and past; that is, givéh, the
pointsz(¢) are determined uniquely for allin the range-oco < ¢ < +oc.

The Birman—Williams projection maps every poinin the basin ofSA into a
pointz in a branched manifolAM. This projection is illustrated in Fig. 5.6. This
figure shows how a flow that exhibits a stretch and fold medmariFig. 5.6(a)] is
transformed into a pair of branches that meet at a branch[fige 5.6(b)]. The
projection also maps the flod, in the basin 0fS.4 to a semiflowd, on BM. Under
the semiflow, every point € BM has a unique futurg(t). Every pointz also has
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Fig. 5.5 The Birman-Williams projection identifies all points withe same asymptotic
future. This has the effect of projecting the flow in a low-éimsional strange attractor down
onto a two-dimensional manifold almost everywhere.

a unique past up to the first branch line in its past. At the ¢idime, information
about its previous history is lost.

Itis useful to extend each splitting point back to the netdsesnch line in its past,
as shown in Fig. 5.4. Then each branch line is splitinto a remabsegments. Each
branch of the branched manifold can then be labeled by theaets of the branches
that it connects. These two symbols, the first the sourcesghend the sink, can be
used to label the rows and columns of the transition mdtrix

Every point in a branched manifold has a unique future. Itigaar, every point
on a branch line has a unique future. The future may be:

Aperiodic: A nonrepeating, chaotic orbit of infinite period.
Periodic: A periodic or ultimately orbit of finite periog.

Roughly speaking, each branch line can be considered thé#hk closed interval
[0,1]. The points on a branch line that are initial conditions fpe@odic orbits are
like the irrational numbers, and the points on a branch liag &re initial conditions
for periodic or ultimately periodic orbits are like the m@tial numbers. Both point
sets are dense on the interval. We refine this classificaliigitly in Section 5.9.1.

5.4.2 Statement of the Theorem

The Birman-Williams theorem is as follows [83, 84]:
Theorem: Assume that a flowp;:

e OnR3 is dissipativg\; > 0, A2 = 0, A3 < 0 and\; + Az + A3 < 0).
e Generates a hyperbolitrange attracta$.A.
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Fig.5.6 (&) Suspension of the horseshoe map represented as a csntieformation of the
two “vertical” rectangles’, andV; of Fig. 2.19 into the “horizontal” rectangles, and H1,
with time flowing from bottom to top. Top and bottom should teritified. (b) When the flow
is squeezed along the stable direction (i.e., dissipatiégmcreased to infinity), the two prisms
in (a) are transformed into a pair of two-dimensional bratthat meet at a branch line. A
complete branched manifold is obtained by connecting thadir line to the bottom with a flat
ribbon.

The projection (5.1) maps the strange attradtdito a branched manifol8 M and
the flow®, onSA in R to a semiflow®, on BM in R3. The periodic orbits ir5.A
underd; correspond 1:1 with the periodic orbitsi\ under®,, with perhaps one or
two specified exceptions. On any finite subset of periodid®the correspondence
can be taken to be via isotopy.

This means, roughly but accurately, that the fldw on SA can be deformed
continuously to the flowb;, on BM. During this deformation, periodic orbits are
neither created nor destroyed, and orbit segments do nstthasugh each other
(there are no crossings). In addition, their topologicglamization, as described by
their linking numbers, remains invariant.
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5.5 RELAXATION OF RESTRICTIONS

There are two serious restrictions on the Birman—Williaheotem. They have been
underlined in the statement of the theorem. If they were aitiable, they would
render the theorem much less useful for experimental agupdics than it actually is.
In this section we describe how these restrictions can lbemivented.

5.5.1 Strongly Contracting Restriction

The very first application of the Birman—Williams theorenafpohysical system [1] ran
into an unexpected and fortuitous problem. This involvexihalysis of experimental
data taken from a chemical system, the oscillating Belougbabotinskii reaction.
Every theoretical description of this reaction involvedmathan three variables [86].
The Birman—-Williams theorem is valid for three-dimensibsgstems. Knots fall
apart in dimensions higher than 3. So, in principle, it appéaat both the theorem
and knowledge of the periodic orbits of this system are ssele

Despite this, we were able to carry out a successful anadysiee data and deter-
mine a branched manifold which described the organizatiati the periodic orbits
that we were able to extract from the experimental data.

Why?

This success in the face of inapplicable theorems leads éepet understanding
of the Birman—Williams theorem, and more generally of loiménsional strange at-
tractors. First, the data do not care about the theoretesadribtion (such descriptions
are often incorrect, anyway). Suppose that the data are dufeblenn dimensions
and the Lyapunov exponents obey

AL > A =0>A3>--> A, (5.2)
Assume also that the attractorssonglycontracting. By definition, this means that
A+ A2+ A3 <0 (5.3)

Then the Birman—Williams projection can be carried out i teteps. First, the
projectionis carried out along the strongly contractingdiions corresponding toy,
As, - .., An. This has the effect of projecting the flow RI* into a three-dimensional
manifold, ZM. The manifoldZM is called aninertial manifold In this three-
dimensional manifold:

e The conditions of the Birman—Williams theorem are met.
e Thetopological organization of periodic orbits is definkwdts don't fall apart).

The last projection along the least stable directiag) (mnapsSA C ZM down to
a two-dimensional branched manifoiM C ZM and preserves the topological
organization of the unstable periodic orbits in the straaigector.

For strongly contracting flows, the Lyapunov dimension

A
d,=2+-2L <3 (5.4)
| A
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is less than 3. More specifically, i, (z) is the local Lyapunov dimension at €
SA, and ifd(z) < 3 everywhere orSA, the Birman—Williams projection (5.1)
provides a projection af.A C R™ down to a two-dimensional branched manifold
BM c IM? c R", whereZ M? is the three-dimensional manifold that results from
the projection along the strongly stable directionsj =4, ..., n.

5.5.2 Hyperbolic Restriction

We have never encountered a hyperbolic strange attradfoer @ experimental data
or in numerical simulations of ordinary differential eqiasis.

Speaking roughly but accurately once again, the conditfdryperbolicity guar-
antees that the strange attractor is structurally stabieiuperturbations: Periodic
orbits are neither created nor destroyed under pertunbafithe control parameters.
We get around this problem by assuming hyperbolicity for strange attractor of
interest. In doing so, we predict the existence of many mer@gic orbits than ac-
tually exist in the strange attractor. Then we “unfold” theactor. This means that
we find a family of dynamical systems depending on one or (lyguaore control
parameters. The family contains the hyperbolic attraciosbme control parameter
value. Then we change the values of the control parameterdeftthese changes
many periodic orbits can be destroyed. However, the orhis temain during the
unfolding are organized in exactly the same way as in the tingie attractor.

Unfolding comes in two forms. There is a global version andaal version. In
the local version, as control parameters are changed, Hrmecbes in the branched
manifold remain unchanged: It is the spectrum of perioditeron these branches
thatchanges. Infact, the possible changes are restrigtegblogical considerations,
as described in Sections 4.2 and 4.3. If we push the contralnpeters too far,
new branches can come into existence and old branches cantgd existence.
This is seen clearly in the perestroika of the Duffing ostliaand is visible in the
experimental data described in Chapter 7. Unfoldings aseudised extensively in
Chapter 9.

5.6 EXAMPLES OF BRANCHED MANIFOLDS

In this section we classify each of the four dynamical systel@scribed in Section
3.3. Thisis done by integrating the dynamical equationséotain parameter values
and then identifying the branched manifold which descrithes strange attractor
generated by each of these sets of equations. Precisely Hewdéntification is
made is discussed in detail in Chapter 6, which presentsojpedgical analysis
algorithm. We emphasize the fact that the branched manifalgt change as the
control parameters are varied. The possible changes arasdisd more extensively
in Chapter 9, which deals with unfoldings. A large number cfrithed manifolds
are described in [87].
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Fig. 5.7 (a) Rossler equations (3.22). (b)t) andz(¢) after the transients have died out
and the trajectory has relaxed to the strange attractortrGiqarameter valuesfa, b, c) =
(0.398, 2.0,4.0). (c) Projection of the strange attractor onto the, plane. (d) Caricature of
the flow on the attractor. (e) Branched manifold for thisattor. (f) Algebraic representation
of this branched manifold. The topological matrix is showirtree top and the array at the
bottom.

5.6.1 Smale—Rdssler System

The Smale horseshoe mechanism consists of simple strgtahohfolding in phase
space. It occurs very frequently in experiments that exlgibviotic behavior [1, 78,
88-92]. This mechanism is exhibited by thédRler equations.

The classification of the &ssler dynamical system is illustrated in Fig. 5.7 [2].
This figure consists of six parts. The equations of motionsai@vn in Fig. 5.7(a).
These equations were integrated for control parameteeséiu b, ¢) = (0.398, 2.0,
4.0). The traces:(t) andz(t) are recorded in Fig. 5.7(b). They were recorded after
the transients died out. That is, an initial condition in thesin of attraction was
chosen, and the integration was carried out beyond the poimhich the trajectory
relaxed to the strange attractor before the recording wgarmeFigure 5.7(c) shows
the attractor as projected onto they planez = 0. The flow is counterclockwise.
The fold occurs at the 12 o’clock position (these commengsfar analog people
only). During the fold, the outer part of the attractor at #he’clock position folds
over the top of the inner part of the flow.
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A schematic representation of this flow is presented in Fig(dj. It is clear that
Fig. 5.7(d) is not a totally accurate representation of tieagnics shown in Fig.
5.7(c). In Fig. 5.7(d) the outer edge of the flow is reinjedizthe inner edge of the
flow, whereas in Fig. 5.7(c) the outer and inner edges of thedldhe 5 o’clock (or 9
o’clock) position are not squeezed together. As aresdthtanched manifold shown
in Fig. 5.7(d) contains more periodic orbits than actuakiskin the flow shown in
Fig. 5.7(c). However, the periodic orbits that exist in Fig.7(c) are organized in
exactly the same way as they are in Fig. 5.7(d).

The branched manifold is shown in a standdvth{d) representation  in Fig.
5.7(e). In this standard representation, all of the stiatgland squeezing occurs
between the two horizontal lines shown on the left-hand. sitleese two lines are
branch lines—in fact, the same branch line. The flow emerfyomg the branch line
at the bottom is returned to the branch line at the top withunatergoing stretching
and squeezing. It is no exaggeration to claim that all theinear mechanisms
responsible for chaotic motion are expressed between thvesieranch lines.

The algebraic representation for the branched manifoldsgn 5.7(d) and (e) is
givenin Fig. 5.7(f). There are two branches. Each branckesosone period-1 orbit.
The2 x 2 matrixT provides topological information. The diagonal elememisalibe
the torsion of the two branches. The off-diagonal matrixredatsT;; are twice the
linking number of the period-1 orbits in the branchieendj: T;; = 2L(i, j). The
1 x 2 array provides information about how the branches are erdtethen they join
atthe branchline. In this case, the left-hand branch lies the right-hand branch (in
this projection). Its index is lower than the index for thghi-hand branch, according
to the convention adopted. The flow represented by this hiethmanifold is fully

1 1

expansive. The incidence mattxs therefore full: 11

} . When the incidence

matrix is full, it is generally not presented explicitly.

Before leaving this dynamical system, we make a few obsenstbout qualita-
tive behavior. A small change in control parameter valudsgeinerally produce a
small modification in Fig. 5.7(c); that is, there will be ordysmall change in how
the two bands overlap. This results in only a small changberspectrum of unsta-
ble periodic orbits in the attractor. If we continue to pukk tontrol parameters in
an appropriate direction, the attractor will grow biggeheTouter edge will extend
farther from the center, and when folded over, it will comesdr to the center. One
might easily believe that the folded-over region will nekeaich the center. If true, at
some point the approach to the center will reverse itselfelvimis occurs, a second
fold will occur at the inner edge of the attractor. In shorthad branch will be
created. This third branch is connected to the second bfantin Fig. 5.7(f)]. By
continuity arguments, one might expect that its local tovsiould only have values
differing from —1 by +1. We could also expect that the local torsion value would
place constraints on how this new branch could join with the éxisting branches.
These suspicions are true. Itis in this way that the clasgifin of strange attractors
by branched manifolds allows us to make predictions abauibéhavior of nonlinear
dynamical systems under perturbations both small and.large
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5.6.2 Lorenz System

The Lorenz mechanism consists of a tear and a squeeze in gbese It occurs in
experiments that exhibit chaotic behavior and have sométd/igymmetry.

The classification of the Lorenz dynamical system is illatgd in Fig. 5.8 [2].
This figure is identical in structure to Fig. 5.7 for thé$ler system. It consists
of six parts. The Lorenz equations are shown in Fig. 5.8(&esE equations were
integrated for control parameter valugso, r) = (£,10.0,30.0). The traces:(t)
andz(t) are recorded in Fig. 5.8(b) after transients have died agurg 5.8(c) shows
the attractor as projected onto the= y vs. z plane. The flow is clockwise on the
left and counterclockwise on the right. The squeeze anddteaurr in the middle.

(a) Lorenz Equations b X
dx = X +
at C Ty
dy _
ot - Rx-y-xz z
dz
— = -bz+
dt Xy ———t
U] () (d)

Fig. 5.8 (a) Lorenz equations (3.20). (b)¢) andz(¢) plotted after transients have died out
and the trajectory has relaxed to the strange attractortr@lguarameter values(b, o, r) =
(%, 10.0, 30.0). (c) Projection of the strange attractor ontothe- y—z plane. (d) Caricature of
the flow on the attractor. (e) Branched manifold for thisaattor. (f) Algebraic representation
for this branched manifold. The topological matrix is shoatrthe top and the array at the
bottom.

A schematic representation of this flow is presented in Fi§(d and has been
deformed into the branched manifold shown in Fig. 5.8(e)c&amgain, the stretching
and squeezing mechanisms responsible for generatingichab@avior are contained
between the two horizontal lines.

The algebraic representation for the branched manifoldsign 5.8(d) and (e)
is given in Fig. 5.8(f). Neither branch exhibits twist, arftketperiod-1 orbits in
each branch correspond, in fact, to the two unstable foceyTdtearly do not link.
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The topological matrix appears trivial (all matrix elemgiire zero); nevertheless,
it describes highly nontrivial dynamics. The array desesilthe order in which the

two branches are connected. The incidence matrix is fullceting that each branch
flows into both.

Once again, the branched manifold description of this dyioaimtroduces the
possibility of making educated guesses as to the behavierurontrol parameter
variation. That is, one might expect the two outer edgesltbdeer when reinjected
to the interior of the flow on the “opposite side.” When newrliiaes are visited
by the flow (in symmetric pairs), they can only be related t® pheviously existing
branches in a limited number of ways.

5.6.3 Duffing System

The dynamics of the Duffing oscillator are governed by a sargitetch and fold
mechanism, in much the same way as in tlis$ter system. However, unlike the
Rossler oscillator, the Duffing oscillator has a twofold syetrg. As a result, the
dynamics of the Duffing oscillator and its description by meaf branched manifolds
are much richer than those of thé&ssler oscillator.

We describe the Duffing oscillator more thoroughly in Chafit but in principle,
what happensis simple. During the first half of a cycle, plsasee undergoes astretch
and fold. The fold may be simple or may not be simple (i.e. tipld nondegenerate
folds may occur). An identical stretch and fold occurs dgiihe second half of the
cycle. As a result, Duffing dynamics are the “square” @sBler dynamics. More
precisely, they are essentiallyoBsler dynamics twice iterated.

In Fig. 5.9 we present the branched manifold (to be accuvatgthe central part,
between the two horizontal lines in the standard repretienjavhich describes an
extended fold This type of mechanism occurs for thé$ler equations for suitable
control parameter values [2,93]. What we show in this figara branched manifold
with four branches. This branched manifold is obtained dsvi®. A branch line,
shown at the top right, is stretched out by a factor of 4 (£&.,= 4). This stretched
branch line is then rolled up (right, middle) and then sqeeelzack down to the
original interval (right, bottom). The four period-1 orbit these dynamics are shown
by symbols x in this figure. The four branches in this branameaifold are labeled
by their local torsion, which varies systematically fromd03 on going from left to
right. It is relatively simple to verify that the linking numers of the period-1 orbits
in the four branches satisf(i, j) = 1if i« # 0 andj # 0, and are zero otherwise.
These simple calculations define the 16 elements of thedgjmal matrix. The array
can be read off from the scrolling action shown on the rigeé(sspecially the middle
figure on the right). The template and its algebraic repreegiem are shown on the
left in this figure.

In the Duffing oscillator thisscroll and squeeze mechanigrocurs twice. We
illustrate this mechanism in Fig. 5.10 for the case wheresthetch is by a factor
of 3 in each half of a cycle. At the top of Fig. 5.10 we show a btatine. It is
divided into three equal parts, labeled 1, 2, 3. These imgeigelicate twist during
the first half cycle. Each part is further subdivided intoelrequal parts. During
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Fig.5.9 Extended folding, as seen in théssler attractor for some control parameter values.
Right: A branch line (top) is stretched by a factor of 4, rdleround like a jellyroll (middle),
and then squeezed (bottom). The resulting branched mdrieft, top) and its algebraic
representation (left, bottom) are then easily constructed

the first half cycle this branch line is stretched out andelio a configuration as
shown in Fig. 5.9, containing only branches 1, 2, and 3. Thfsmined branch line

is then rotated through radians, and then squeezed. The rotation accounts for the
symmetry(z,y,t) — (—z,—y,t + %T) during half a cycle. This process is then
repeated. The nine branches are conveniently labeled bgywbols: (1,1), (1,2),

.., (2,3),(2,2), .., (3,3). The nine period-1 orbits for this iterated thredfstretch-
and-roll mechanism can be located as indicated in Fig. B®tleeir linking numbers
computed. The ordering of the branches can be identified ¢pgeiction. This leads
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directly to the9d x 9 topological matrix and thé x 9 array given at the bottom of Fig.
5.10.

Although the branched manifold and its algebraic desaiptppear very com-
plicated, both are generated by very simple rules. In pagicit is a simple matter
to predict what happens when suitable control parametergared. New branches
can be added and old branches removed only in a systematredidtable way.

5.6.4 van der Pol System
We discuss a version of the van der Pol equations studied aw £, 95]:

i = —0.7y+z(1 —10y?)

§ = +z—0.25sin(2rt/T) o

The van der Pol oscillator exhibits the same half-period matmy as the Duffing
oscillator: The equations (5.5) are invariant undery.t) — (—z, —y,t + %T),
whereT is the period of the driving term. The strange attractor getesl by these
equations must exhibit the same invariance. We therefesgoup on the description
of this strange attractor in two steps, as we did for the bradcmanifold of the
Duffing oscillator. We first describe what happens during bgberiod. Then we
iterate.

Up to now, the branch lines we have encountered have beewatde-segments
of R'. However, it is only necessary that the branch line be ongedsional. In
the case of the van der Pol oscillator the branch line(s) sganent with endpoints
identified, a circles!. This comes about because the van der Pol oscillator uneergo
a Hopf bifurcation on its way to chaos. The intersection efsétrange attractor with
a Poincag section can be embedded in an annulus. Under the Birmaliaél
projection, the annulus is mapped$d, and under the (semi)flov§! is mapped to
St

Under the flow, stretching takes place. Stretching is foldiy folding. However,
only an even number of folds can occur, because of the glahaidary conditions.
In Fig. 5.11(a) we show both a branched manifold that dessribe flow and a
return map ofS* to itself [Fig. 5.11(b)]. Itis clear from this figure that twolds
must occur (more generally, folds must be paired). The stahtepresentation of
a branched manifold is shown in Fig. 5.11(c). This is obtdibg splitting open
the flow shown in Fig. 5.11(a) and identifying the edges offtb. The algebraic
description for this flow is shown in Fig. 5.11(d). The distionity of local torsion
for contiguous branches, as shown by the diagonal matnrehts of the topological
matrix, is intimately related to the global boundary coiuli (S* instead ofR!).

Figure 5.11 describes a strange attractor generated lgtalsand fold mechanism
acting on an annulus but without the twofold symmetry exeiiby the van der
Pol oscillator [2]. To construct a branched manifold for il der Pol oscillator,
the mechanism shown in Fig. 5.11 must be appropriatelytédraWe illustrate
what happens, in some range of control parameters, in FigR. 5If the pinching
during the first half cycle occurs at the top, the pinchingmigithe second half cycle
must occur at the bottom to account properly for the invergart of the symmetry
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Fig. 5.10 The stretching and squeezing mechanism for the Duffinglatmilis essentially
the second iterate of the stretch and fold mechanism fonttended Smale horseshoe, with
suitable modifications. Stretching and squeezing durimgfitist half cycle is shown on the
left. The second half cycle is shown on the right. (a) A bralimwith three large segments is
shown. Each segment is divided into three smaller segma@iitare labeled as shown. (b) The
branch line is stretched by a factor of 3 and scrolled. (c) §thetched branch line is rotated by
7 radians in the direction of the scroll rotation and squeda@d(e) The squeezed branch line
is again stretched by a factor of 3 and scrolled (f) and rdtater radians (g) and squeezed
(h). The period-1 orbits can be located by the method inditat Fig. 5.9 and their linking
numbers computed. The local torsion of the period-1 orbidugh branchz, j) is: + j. This
information is sufficient to construct the topological niatrArray information can be read
directly from (g) or (h).
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Fig.5.11 What happens during half a cycle in the van der Pol oscillggrThe flow along

the cylinder is pinched out, deformed, and folded back tatfi@der. The branched manifold
is shown on the left. (b) The return map of the branch Bids a circle map. (c) The flow in
(a) is slit open, showing three branches for the branchedfoidn(d) The topological matrix

and array can be determined by inspection. The discongidifiocal torsions for contiguous
branches is a signature that nonlocal boundary conditiarst be imposed.
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[(z,y) — —(z,y)]. Inthis iteration, a total of nine branches is created. itn 5.12
we present a caricature (cartoon) of this van der Pol meshanihich is similar to
that presented in Fig. 5.10 for the mechanism at work in thifiyoscillator.

Fig.5.12 What happens during each half of a full cycle in the van deroBolllator in terms
of return maps. The flow along the cylinder is pinched outpdeid, and folded back to the
cylinder during each half cycle. The deformations occur ppasite sides of the cylinder to
respect the symmetriy, y,t) — (—z, —y,t + 37). Each iterated stretch (by a factor of 3)
and squeeze creates a total of nine branches.

As control parameters vary, the size of the pinched regibasges. It is possible
to predict how new branches must be added to describe theickigaamics as the
pinched region becomes enlarged.
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5.7 UNIQUENESS AND NONUNIQUENESS

Flow dynamics are conveniently represented by limits, etomas. This cartoon is
a branched manifold. Branched manifolds were originaltyaduced to describe the
unigue organization of all the unstable periodic orbitsypérbolic strange attractors.
They also succinctly describe the stretching and squeezéedhanisms that generate
strange attractors.

Many apparently different branched manifolds predict thmes spectrum of or-
bits and the same topological organization (spectrum &idip numbers) of these
orbits. Thus, thereis nota 1:1 correspondence betweewheamanifolds and flow
dynamics. This is somewhat analogous to the representdt@mry of groups. A
single group can have many different inequivalent 1:1 Itfai) representations. In
some sense, the group is fundamental and the matrix repeatiess are simply a
convenient means of performing computations. In the samg thia dynamics is
fundamental and branched manifolds are convenient waydoiag calculations and
classifying dynamics.

Definition: Two branched manifolds aftow equivalentif they predict the same
spectrum of periodic orbits and these orbits have the sapwdgical organization.

Atthe simplestlevel, a single branched manifold can haveydéferent algebraic
representations. An algebraic representation is obtdiyeprojecting a branched
manifold BM C R? onto a planeR? C R>. Different projections give different
algebraic representations.

Definition: Two branched manifolds aprojection equivalent if their algebraic
representation differs only through their projection.

More generally, branched manifolds for the same flow can bexggrically differ-
ent structures. The geometric differences can be due ¢dtharal moves or to global
moves. A theory seems to exist to describe the equivalengeahetrically distinct
branched manifolds under local moves. At present, thermsde be no theory to
describe the equivalence of geometrically distinct bradcmanifolds under global
moves.

Inthe first subsection we describe the local moves that caséeto transform one
branched manifold into a geometrically different but floguésalent branched mani-
fold. In the second subsection we describe three flow-etgrivAranched manifolds
that differ by global moves.

5.7.1 Local Moves

Knots and links remain invariant under a small number of Beidister moves. Braids
remain invariant under the two types of braid relations thefine braid groups. In
the same way, branched manifolds remain invariant underad sramber of local
moves. These moves are:

e Branch line twists

o Writhe—twist exchange
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e Branch line reversal
e Concatenation of inflows or outflows
e Branch line splitting

These moves are illustrated in Fig. 5.13.

In Fig. 5.13(a) we show two inflow branches joined at a bramhto an outflow
branch. If the branch line is given half a twist in the clockedirection, as shown in
the middle of Fig. 5.13(a), the two inflow branches have tlueial torsion changed
by +1 and the outflow branch will have its local torsion changed-iy In addition,
the order in which the two inflow branches are joined at thexbindine is reversed.
If an additional half twist is given to the branch line (rigghthe local torsion of the
incoming and outgoing branches is again changedtby the order of joining is
again reversed, and in addition the two incoming branches tieeir linking number
increased by+-1. Thus, the effect of a full twist on a branch line is that thedb
torsion of the incoming branches is changed#/and that of the outgoing branch
is changed by-2, the linking number of the two incoming branches is changed b
+1, and the order in which the incoming branches is joined athitaach line is
unchanged. Twisting in the opposite direction changesgtiss

Figure 5.13(b) shows how writhe and twist can be exchandgsintas described
earlier. In Fig. 5.13(c) we show how interchanging the spasition of two branch
lines will force a full twist into a branch connecting thesarch lines. The direction
of the twist depends on whether brancmoves in front of or behind branch

In Fig. 5.13(d) and (e) we show that orbit organization isharged by the con-
catenation of inflows with inflows or outflows with outflows. Fig. 5.13(d) we show
how the order of two branch lines can be exchanged. In faist sibmetimes conve-
nient to draw the branched manifold with degenerate brainels | as shown. In Fig.
5.13(e) we show that splitting points can also be concageindthis representation is
convenient when the stretch in a local region of phase spdeeger than a factor of
2. Infact, it is useful to show a branch line feedipgp()\1)] + 1 branches in regions
of phase space where the maximum local Lyapunov exponent(is] is the integer
part of z).

In Fig. 5.13(f) we extend the inflow to the splitting point Bdieyond the nearest
branch line into the two inflows that join at the branch lindisldoes not affect any
periodic orbits, since no inverse image of any splittingnbdies on a periodic orbit.

5.7.2 Global Moves

In Fig. 5.14 we show three geometrically inequivalent brettmanifolds that are
flow equivalent. The first is the branched manifold that haldithe closed magnetic
field lines produced by a current flowing in a wire tied into sirape of a figure 8 knot.
This branched manifold holds aesthetic appeal since it festhj exhibits a rotation
symmetry. This branched manifold has eight branches, witiaia be labeled.«,
ab, and so on. The incidence matrix shows the connectivity eé¢hbranches; for
examplea3 is not an allowed transition.
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Fig.5.13 Branched manifolds are flow equivalent under the followimgal moves. (a) The
branch line is given a half twist. The inflow branches havértioeal torsion changed by-1,
the outflow branch local torsion is changed-by, and the order in which the inflow branches
are joined at the branch line is reversed. When the branehidigiven a full twist, the order
of joining is unchanged. However, the local torsion of thBow and outflow branches is
changed by+2 and —2, and in addition the inflow branches link each other with &itig
number+1. (b) Writhe and twist can be exchanged. (c) Interchangiegdbation of branch
lines introduces a full twist into branches connecting theih) Topological organization is
respected by interchanging the order of inflows. It is somes convenient to make the
branch line degenerate. (e) Concatenated splitting chartde treated the same way. This

is convenient when the local Lyapunov exponent is largan th&. (f) The splitting point is
extended backward beyond the nearest branch line in its past
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Table 5.1 Linking numbers for orbits to period 3 on the three repreataon of figure 8 flow
dynamics

af aa (b aaaf «aba ofBba  aBbB  Bbab
ab Baab

T,Y,2 TY Yz 22y xy?  wyr Pz y2?
0,1,2 01 12 0%1 012 012 122 122
0,1,2 0 0 0 0 0 0 0 0
01 0 -1 0 -1 -1 -1 0 0
12 0 0 1 0 0 1 1 1
0%1 0 -1 0 -2 -1 -1 0 0
012 0 -1 0 -1 -2 0 0 0
012 0 -1 1 -1 -1 0 1 1
12| 0 0 1 0 0 12 1
122 0 0 1 0 0 1 1 2

The second branched manifold shown in Fig. 5.14 was comput&d]. There
are again eight branches. The incidence matrix shows tleaptiy transition not
allowed iszz. The third branched manifold is flow equivalent to the se¢dath
have the same spectrum of periodic orbits with the same égedl organization.
However, this third representation of the flow dynamics hdmwle in the middle.
This feature automates the computation of linking numbers.

With two exceptions, there is a 1:1 correspondence betweepdriodic orbits of
the branched manifolds in Fig. 5.14(a) and (b). The two erbit andab correspond
to the three period-1 orbits y, andz, while the two orbitsy5ba andBaab correspond
to the single period-3 orbityz. There is a 1:1 correspondence between the periodic
orbits of the two branched manifolds shown in Fig. 5.14(lg) @). Table 5.1 provides
the linking numbers for the closed orbits up to period 3 oséthree flow-equivalent
branched manifolds.

For some purposes, it is convenient to simplify the desionpdf the dynamics by
expressing the branched manifold shown in Fig. 5.14(c) adbhranched manifold
of one showing dull shift. This idea is illustrated in Fig. 5.15. In the full-shift egs
all periodic orbits based on three symbols are possibléudeg orbits containing
the symbol sequence- 02 - -- . Such orbits do not occur in the branched manifold
shown in Fig. 5.15(a).

For convenience, we show the return map for four branchedfoldain Fig. 5.16.
Figure 5.16(a) provides the return map (tent map) for a Srhafeeshoe template.
Figure 5.16(b) and (c) provide the return maps for the twmbhed manifolds shown
in Fig. 5.15. Figure 5.16(d) provides the return map for anbheed manifold with
four branches, of which branch 1 is orientation reversimgedch case the expansion
is uniform. In three cases the branched manifold is fullyaging: case (b) is not.
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Fig.5.14 (a) The branched manifold that describes the organizafialhthe closed magnetic
field lines generated by a current-carrying wire tied inte ehape of a figure 8 knot has eight
branches. In this representation it manifests the rotatisgmmetry of the figure 8 knot.
(b) The direct model of this branched manifold is simpler &aldwith. The two branched
manifolds are flow equivalent. With two exceptions, thera ik.1 correspondence between
periodic orbits on these two branched manifolds. (c) Thigltbranched manifold is flow
equivalent to the first two. It has a hole in the middle. Thisagly simplifies the problem of
computing the linking numbers for all the periodic orbitslire flow. The incidence matrices
are given for each of these branched manifolds. The algetesicription of the third is given
explicitly. Adapted with permission from Birman and Willres [84].

5.8 STANDARD FORM

By using the moves described in Section 5.3, any branchedfotchoan be trans-
formed, after projection tdz?, into the standard form shown in Fig. 5.17 [96, 97].
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Fig. 5.15 The branched manifold (a) is a subtemplate of the one in (bneSorbits on the
right-hand branched manifold do not exist on the left-haamdglate. Those that exist on the
subtemplate are organized in exactly the same way as thaitexparts on the right.

@ (b)

(©) (d)

Fig.5.16 Return maps for four branched manifolds. In each case thenskpn is uniform.
(a) The two branch Smale horseshoe template has a returrhiaigip & tent map. (c) The three
branch template shown in Fig. 5.15(b) is fully expandingevaas (b) the subtemplate shown
in Fig. 5.15(a) is not. (d) The four-branch template has arentation-reversing branch.
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Fig. 5.17 Useful standard form for branched manifolds. All twistingcars in region Al
and all crossing occurs in region A2. This information is saamnized in a topological matrix
T. All squeezing occurs in region B. This information is sunmized in an arrayd. A Markov
transition matrix (shown on the left for this template) slsdwow the branches are connected.

Each branch line is divided into segments by locating pregiesaf each tear point on
the branch lines. The return flow from each branch line (bojtteeds the segments
of the branch lines (top). The stretch and squeeze mecharnighgenerate chaos
are described as follows:

e Branchestwistbutdo notcrossin the region labeled Al. Ws$ are assigned
integervaluesGt1,+2, ... inthe same way as for knots: The twist of a branch
is the signed number of crossings of the edges of that branch.

e Branches cross but do not twist in the region labeled A2. Trbesings are
assignedintegervaluesf], +2, ... inthe same way as for knots by shrinking
each branch down to a single curve. The information conthimeegions Al
and A2 is summarized algebraically by a topological mairix

e Branches are squeezed together in the region labeled B. @nertion is
that the integers indicating ordering are larger the farfnem the observer
(i.e., increasing from top to bottom). The information cained in region B is
summarized in array.

e A Markov transition matrix is introduced to identify whichdnches are con-
nected to which.
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5.9 TOPOLOGICAL INVARIANTS

Linking numbers for any pair of periodic orbits on a brancheahifold can be com-
puted. The computation depends only on the algebraic ¢tiseriof the branched
manifold. The computations simplify considerably whenbhanched manifold has
a hole in the middle. That is, much simplification occurs wheseries of local or
global moves can be exploited to transform the branchedfwidno a form in which
all the stretching and squeezing is represented betweenramah lines that are iden-
tified by a return flow which neither stretches nor squeezéss representation for a
branched manifold is particularly convenient because &@chround the hole in the
middle correspondsto one period. Such a flow has one P@seation, which can be
taken as the branch line. We describe the systematics afigmumber computations
for branched manifolds of this type below.

5.9.1 Kneading Theory

When only one branch line is present, it is possible to defm@raer along this
branch line. We adopt the convention that the order incsefieen left to right. We
assume that the branched manifold hdsanches, labele@ 1,2, ..., n—1 from left
to right, for lack of imagination. We also assume for coneegie that the incidence
matrix is full (cf. Fig. 5.15). This causes no problem: We sanply ignore periodic
orbits that are forbidden by the original incidence matrix.

Under these conditions every orbit of minimal perjoid represented by a symbol
sequencéoiosy - 0,) >, Of

010%---0p 01090y -
After one period the symbol sequence advances to
0'2...0'1)0'1 0'2...0'1)0'1
Advancing by a period amounts to cyclic permutation of thekgls €ymbolic dy-
namics.
We now wish to locate periodic orbits on the branched madifaéMe do this by
computing the “address,” or “zip code,” along the branch,dach of thep initial

conditions of a periog orbit.
The address along the branch line is computed as follows:

1. Write out the symbol code for one of the initial conditioR®r example:

0'10'2...0'p 0'10'2...0'1)

2. Conjugate each symbol following passage through an tatien-reversing
branch. Orientation-reversing branches are branches#fsitthrough an odd
multiple of 7 radians. These branches have negative parity, where tltg par
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of branchi is defined a? (i) = (—1)T# andT;; is the appropriate element of
the topological matrix. The conjugate @f is &;, where

o,+o,=n—1 (5.6)

3. Thisprocess producesa symbol sequence of period ith@p, depending on
whether the orbit goes through an even or odd number of @iim-reversing
branches. The symbol sequence is the address, in normarticahweder, for
the initial condition along the branch line.

4. This process is repeated for the remaining initial coodg of the periods
orbit.

Example: Assume that we have a template with four branches 0, 1, 2,@, an
branch 1 is orientation reversing [cf. Fig. 5.16(d)]. To ftheé address of 0213 along
the branch line, we perform the following simple calculatio

021302130213 --- — 02130213 0213---

— 021031230210 --- (5.7)

This is repeated three more times for the additional thraéironditions. The four
addresses for the passage of this period-4 orbit throudbrtimehs of this four-branch
manifold have period 8:

Initial Fraction
Condition Address Base 10 Decimal
0213 02103123 9435/65535 0.143969 (5.8)

2130 21031230 37740/65535 0.575875
1302 10312302 19890/65535 0.303502
3021 30210312 51510/65535 0.785992

Every point on a branch line is the address for an initial ¢towl for some orbit
through the branched manifold. The address may be repezsbgta symbol string:
aiasas - -- . Two possibilities arise:

Irrational: The symbol string is never repeating. Such symbol stringsesent
irrational numbers and nonrepeating (chaotic) orbits.

Rational: The symbol string is eventually repeating. Such symbohggirepre-
sent rational numbers and orbits that are either periodidgfior eventually
periodic.

Periodic orbits of periodp are described by a repeating sequencg symbols
(o102 ---0p), as described above. The address is a symbol sequence @d peri
or 2p. We compute the rational fraction for a single case, thesgmethe general
result. On the Smale horseshoe template with orientatresgoving branch 0 and
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orientation-reversing branch 1, the period-3 orttit 1) has a period-3 address
(010)°°. The rational fraction for this address is

010010010 -+ — 4+ g+ + g+ +tas+or+mtost -
= (0x22+4+1x20+0x2%) (& + o5+ o5 +--+)
0x22+1x24+0x22 010
o 1x241x2041x22 111
(5.9)
This calculation has been done in the binary system. To l&lgtaccurate, we
should write the exponen®s 3,4,5,... as10, 11,100, 101, ... . Conversion to the
more familiar decimal system is simple:
010 0x22+1x24+0x22 2
— =—=0.285714 285714 ... (5.10)

111 1x2241x2+1x2?2 7

For the more general case, of a periodic address anlranched manifold, the
result proceeds in a similar fashion. The-imal” rational fraction address for the
period-4 orbin213 described above ($2103123) /(3333 3333), where3333 3333 =
48 — 1. This fraction is easily converted to base 10 and its decegalvalent:

0210 3123 9435
—
3333 3333 65535

These results are summarized for the four initial condgiofthis orbit in Eq. (5.8).

Finite orbits are orbits that reach a splitting point on a branch after égfimimber
of periods. Splitting points are initial conditions for flewo a fixed point. The address
for a finite orbit is a finite symbol sequence. Splitting psifdr templates with two,
three, and four branches are shownin Fig. 5.16. For the thllgexpansive branched
manifolds shown in this figure, with two, three, and four lrlaes, the addresses of
the splitting points ard; £ andZ; and1, 2, and2; respectively. For the nonfully
expanding template, the addresseséemd%.

We illustrate the basic idea by computing the itinerary effthite orbit3212 on the
four-branch manifold discussed above, whose return mapoas in Fig. 5.16(d).

0213 — 0210 3123 — — 0.1439688716 (5.11)

Initial Condition Address Fraction

3212 211 F+3+p+x

212 211 % M (5.12)
12 11 7 + =

2 2 =

Eventually periodic orbits are represented by symbol sequences that eventually
become periodic. As an example, the orbit with symbol seqeé )?(011)>° on
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the Smale horseshoe template settles down to a period-t3adtdyifour periods. The
address for this initial condition is

0101011011 --- — 0110010010010
e A R R R

0110 4 _1_010
10000 " T0000 111

= S+ 420392857147
(5.13)
We summarize these results now for a branched manifold mithanches, a full
incidence matrix, and uniform expansion along the brantis.convenient to express
results in a number system basedroand the correspondingimal fractions in the
interval [0, 1] of the branch line.

1. There is a 1:1 correspondence between irrational number#nétial conditions
for chaotic orbits.

2a. Thereis a 1:1 correspondence betweemal fractions of the form

integer integer

-1 o1 (5.14)
and initial conditions for orbits of periog.
2b. Thereis a 1:1 correspondence betwaemal fractions of the form
inte;:ger (5.15)
nk

and initial conditions for finite orbits of periods.

2c. There is a 1:1 correspondence between all otheral fractions, which have the
form

integer 1 integer integer 1 integer

Tk TpF S e—1 O TR TR S hw g
These fractions describe orbits that settle down to pepiodbits afterk tran-
sient periods.

(5.16)

The irrationals are dense on the interval. So also are (atgg) all fractions of
the form (5.14), (5.15), and (5.16). As a result:

1. Chaotic orbits are dense on branched manifolds.

2a. Periodic orbits are dense on branched manifolds.

2b. Finite orbits are dense on branched manifolds.

2c. Eventually periodic orbits are dense on branched manifolds

These denseness statements hold when the branched mésifbdevn back up
to the original strange attractor.
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5.9.2 Linking Numbers

Once the locations of periodic orbits on a branched manifale been determined,
computation of the linking numbers is simply a matter of cingncrossings. We
illustrate by computing the linking number of the orbiis and011 on a Smale
horseshoe template. The results of the computation arershmokig. 5.18.

2 2

if‘%ﬁy
’ AN

2

Fig.5.18 Initial conditions for period-2 orbit 01 and period-3 orBit1 on the Smale horse-
shoe template are computed in Eq. (5.18). These two orldtdraped over the interesting part
of this branched manifold. The linking and self-linking nbens are computed by counting
crossings. For these orbitSL(01) = +1, SL(011) = 42, andL(01, 011) = +2.

The period-2 orbi61 goes through the orientation reversing branch 1 once. There
fore the addresses of its two initial conditions have pedodThe period-3 saddle
011 goesthrough the orientation-reversing branch twizésghree initial conditions
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have period 3. The addresses, and corresponding decirotibfra, are:

Initial Decimal
Condition Address Fraction
01 0110 6/15
10 1100  12/15 (5.17)
011 010 2/7
110 100 4/7
101 110 6/7

These five addresses are shown along the branch line of thHe Baraeshoe template.
The order of these initial conditions is simple to read ofirfr either the binary
representation or the decimal fraction:

010 0110 100 1100 110
27 S 2/5 S 41 S 45 S 67 (5.18)
Computing the linking numbers is now simply a matter of cinoptrossings. The
self-linking numbers of the period-2 and period-3 orbite 87Z.(01) = +1 and
SL(011) = +2. The computation is shown at the bottom of Fig. 5.17. The asmp
tation of the linking number,(01,011) = (1 + 1+ 1+ 1) = 42 is also shown
at the bottom of Fig. 5.18. Computation of linking numbersboanched manifolds
with a hole in the middle have been reduced to a FORTRAN cob&ws available
at the authors’ Web site.

5.9.3 Relative Rotation Rates

Computation of relative rotation rates follows a very samilgorithm. Two orbits of
periodsp4 andpp are draped over a branched manifold. Two initial conditiares
joined by an oriented line segment, and the number of halfteathat this segment
undergoes as it evolves through x pp periods is counted. This integer is divided
by 2 x pa x pp. This calculation is repeated for all other initial condits. This
bookkeeping has also been reduced to a FORTRAN code, whraigble at the
Web site listed above. The inputs are the same as for thatimkimber computation.
The output is a table of relative rotation rates.

The computation can be simplified using the procedure inited in Section 4.3.2.
Thatis, itis sufficient to constructi@ 4 +pg) X (pa + pg) crossing matrixC which
summarizes the crossing information in the nontrivial dthe branched manifold.
A cyclic permutation matrixP? must also be constructed. This indicates how the
initial conditions from one period are mapped to the initiahditions for the next.
Then it is sufficient to construct the matrix [cf. Fig. 4.17].

PAXpB
1

RRR=— P~FCp* 5.19
2Xpa XpB ; ( )
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The p? matrix elements of the upper diagonal x p. matrix are the self-relative
rotation rates for orbitd, and similarly for orbitB. Thep 4 x pp matrix elements of
either of the two off-diagonal matrices are the relativeatiain rates of orbitd with
orbit B.

5.10 ADDITIONAL PROPERTIES

Branched manifolds have a number of additional propertias wve have not yet
discussed. We describe a number of these properties below.

5.10.1 Period as Linking Number

Itis often a simple matter to define the period of a closedtoRunr example, in driven
dynamical systems the (dynamical) period of a closed ostani integer multiple of
the driving period. Specifically, it is the number of distimatersections of the orbit
with a Poincag section. This remains true when the phase space has theigtraf
atorus:R? x S*.

In more complicated cases it is not quite so obvious how toddfie period of
a closed orbit. For example, what is the period of a closedt orbthe Figure 8
branched manifold?

The period of a nontrivial closed orbit must always be a posinteger. There is
a natural way to construct integers from closed orbits. Thislves computation of
linking numbers. Thus, it should be no surprise that it issglgvpossible to define
a topological period of a closed orbit on a branched maniéalthe linking number
of that orbit with some reference closed orbit which doesinigtrsect the branched
manifold.  Then the topological period of a closed orHitwith respect to the
reference loop is [84]

topological period(A4) = LN (Ref, A) (5.20)

where Ref is the reference loop. For the figure 8 branchedfidnbne reference

loop may be taken as the figure 8 knot itself. Other referenopd can also be used.
On the figure 8 branched manifold shown in Fig. 5.19, the clasbitsab anda3

each have topological period 1, while the closed loapsndb s each have period 2.

5.10.2 EBK-like Expression for Periods

Computing the topological period of a closed orbit on therég@ibranched manifold
can be simplified by deforming the reference loop. Such ard&iton is shown in
Fig. 5.19. The reference loop consists of the figure 8 kneffitg he deformed loop
consists of a union of four loops. One each surrounds thechrlimesb and 3, one
each surrounds the branchesandaa. Then the period of any closed loop is the sum
of the linking numbers of that loop with the four loops resutfrom deformation of
the figure 8 knot.
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Fig.5.19 Thefigure 8 knot is deformed to the union of four much simpdepls. This greatly
simplifies computation of the topological period of any ed®rbit on the branched manifold
of the figure 8 knot. Adapted with permission from Birman andlidms [84].

This argument is general. We can deform the reference asbiaifiy branched
manifold and write it as the union of “fundamental loopRef — U;C;. We can
then write the topological period of any closed orHitas the sum of the linking
numbers ofd with each of the fundamental loogs:

period(A) = LN (Ui=1C;, A) = > LN(C;, A) (5.21)
=1

This result is very similar to the Einstein—Brillouin—Ketl (EBK) quantization
formula. The phase change of a single-valued wavefunctiomal any closed loop
in its configuration space must be an integer multipleef The phase change is an
action integral, so that

%pdq:% pdqzz:mi]{ p dq (5.22)
The integrals around the closed loggsare themselves quantized:
L]{ d —n»+lb" (5.23)
orh fo, DT T g '

Here bothn; andg; are integers. The integek; is the Maslov index for the loop.
The integers:; have a natural interpretation as quantum numbers.
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The loop<”; in (5.21) must be chosen as a basis set in the sense that évesy c
orbit A satisfiesL N (C;, A) > 0, at least one of these linking numbers is positive for
eachA, and inequivalent closed orbits and B have inequivalent linking numbers
with the basis loop§’;.

5.10.3 Poincar é Section

Poincaé introduced an ingenious idea to reduce the study-dimensional flows to
the study of(n — 1)-dimensional maps. The idea is to introdge- 1)-dimensional
surface(s) into the phase space. The surfaces are calledsigithePoincaré surface
the surface of sectionthe Poincaré sectionand so on. These surfaces have the
property that the flow is transverse to the surface, alwaystsrtbe surface from the
same side, and almost all initial conditions meet the serfsfcsection a countable
number of times.

Itis possible to define a Poin@surface for any flow that satisfies the conditions of
the Birman—Williams theorem. We first define the Poirgcsection for the semiflow
®, on the branched manifold M. The Poinca& section is simply the union of the
branch lines:

Poincaé section= U branch lines (5.24)

Forthe figure 8 branched manifold the Poircaection is the union of the four branch
linesa, b, 3, anda: Poincaé section=aUbU B U a.

To construct the Poincarsection for the original flow, we “undo” the original
Birman—-Williams projection. This blowing-up process issdebed in more detail
below. Briefly, each branch line is expanded against thdes@ditection to form a
disk or rectangle. The expansion must be sufficient to enthaiethe flow under
®, in the neighborhood of the branch line intersects the dislectangle. Then the
Poincaé section for the original flow is the union of the disks ob¢airby blowing
up the branch lines a8 M.

5.10.4 Blow-Up of Branched Manifolds

Itis often useful to “inflate” or “blow up” a branched manitbih order to get a better
approximation of the original dynamics. This is done by exiag the branch lines
to “branch rectangles” against the strongly contractingation. In a sense, this
reverses the Birman—Williams projection.

We illustrate this processin Fig. 5.20. To do this, the niegdtyapunov exponent,
whose limit is—oo in the construction of the branched manifold, is allowed ¢o b
finite. The stretch and squeeze factors for the tRap— R? are theru = +e*t and
v =+e’s, with |u| > 1> |v| > 0.

Periodic orbits in the ma®? — R? can be located by a method somewhat more
involved than the kneading theory construction. Forwaditzeckward iterates of the
map are constructed. Their intersection defines a fract&finThis construction is
carried out explicitly for the two-branch mapping assaeiatvith a Smale horseshoe
in Section 2.10. The intersections of the forward and bac#vii@rates provide
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A B 1A H
V1
To
dc
V2
D C TB
e —

Fig. 5.20 A two-branch template is inflated by expanding against threrecting direction.
The result provides an invertible ma® — RZ.

addresses for all orbits in the flow and map. Needless to spgldgical invariants
remain invariant under inflation.

We should point out here, forcefully, that the fractal strwe of a strange attractor
comes about from repetition of the stretching and and sdnggzocesses in phase
space. If one knows the topological structure of the attraets exemplified by its
branched manifold, it is possible to compute geometric ¢tias such as Lyapunov
dimension and fractal dimensions, simply by inputting thsifive and negative Lya-
punov exponentsd; and s, or else a distribution of values for the local Lyapunov
exponent\; (x) and\s(x). In this sense, the topological structure (branched mani-
fold) is fundamental, the Lyapunov exponents are inputs gdirgeometric invariants
are derived quantities. From the geometric quantities glanis not possible to
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make any statements about stretching and squeezing mestsgmuch less about
the branched manifold, which defines and classifies the digzam

5.10.5 Branched-Manifold Singularities

A two-dimensional branched manifold has two types of siagties. These are of
dimension 0 and 1. The zero-dimensional singularity is @tspl point. This point
describes stretching mechanisms. The one-dimensiomgilgirity is the branch line.
This line describes squeezing mechanisms. Between the&se tivo singularities
describe the processes that build up a strange attracfot.in

Things are not quite as simple in higher dimensions. Fotegrthere is no
Birman—Williams theorem. However, it is still possible tary out a Birman—
Williams projection (5.1). In the simple case where > X2 > A3 = 0 > A4 and
A1+ A2+ A3 + Ay < 0, the identification (5.1) maps the flow to a three-dimendiona
structure. This is a manifold almost everywhere. Its thrieeations correspond to
the two stretching directions and the flow direction. Howreites not a manifold
because it contains singularities. Singularities occuinwimension 0, 1, and 2. We
do not have a clearcut identification of singularities with stretching and squeezing
processes.

5.10.6 Constructing a Branched Manifold from a Map

It is sometimes necessary to reconstruct properties of adlowly from a return
map. We illustrate how this can be done, using a simple exampl

We consider here a map that has a period-3 orbit. The intiosscof this orbit
with a Poincag section ar@, s», s3, and under the flow; — s3 — s9 — s1. The
map, and the folding that it forces, are shown in Fig. 5.21(a)

Other representations of this flow are possible. A seconade/a in Fig. 5.21(b).
Here the cyclic permutation is expressed as the compositidwo interchanges:
(s1,82,83) — (s2,51,83) — (s2,s3,s1). The branched manifold that describes this
process is shown in Fig. 5.21(c). A return map on the intefvadsss) is given in
Fig. 5.21(d).

5.10.7 Topological Entropy

The incidence matrix provides information about the cotimyg of a branched man-
ifold. Equivalently, it provides information about whiclaghs through the branched
manifold are allowed and which are not. It is very useful tbelathe rows
and columns of the incidence matrix by branch lines. This e@se to describe the
connectivity of the branched manifold for the figure 8 knoterms of a4 x 4 matrix
[cf. Fig. 5.14(a)]. Although this is sometimes useful, itoffen inadequate. For
example, the Smale horseshoe template has one branch leh would yield a
1 x 1 incidence matrix. Whais sufficient is the following. Extend each splitting
point back to the nearest branch line in its past. Then eaahcbrline is the union
of a small number of pieces. Under this construction, thedhdine for the Smale
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Fig.5.21 Two ways to construct a branched manifold from a map. (a) Eferthation of
the line joining the three points of the period-3 orbit iswsho (b) The deformation of the line
segment is carried out in two steps. The first interchangesds:, the second interchanges
s1 andss. (c) This branched manifold describes the deformation.T{ return map for the
branch line onto itself is shown. Adapted with permissi@nirBirman and Williams [84].

horseshoe template has two pieces, while each of the foncbtmes in Fig. 5.14(a)
has two components. The incidence matrix for the Smale Bbaseis the fulk x 2
matrix 1 1 , and that for the template of the figure 8 knot is a sp&rse8
matrix. In general, we adopt the smallest suitable incidematrix.

The matrix element/?);;, describes the number of distinct ways it is possible to
travel from branch to branchk in two steps,

(I)ir =Y LijLix (5.25)
J
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For the branched manifold in Fig. 5.14(c),

11 0)\° 2 2 1
111 =3 3 2 (5.26)
111 3 3 2

This shows, for example, that there are two ways to go fromdhrg to branch::

y — T —=z No
y — Yy —z Yes (5.27)
y — z —z Yes

More generally(I?);; is the number of distinct ways of going frohto & in p distinct
steps. Ifi = k, (I?);; is the number of distinct ways of starting and ending at binanc
1 in p distinct steps.

If each step is one period, théf¥),; is the number of distinct ways of starting and
ending at branchin p periods. For the matriX? above, we find seven ways of going
around the branched manifold and getting back to the stapiint in two periods:

T—=T T Y—Tr—yY
T—oYy—oxT Y—oy—y z2—Y—z (5.28)
Yy—z—oy 22—z

Three of these involve period-1 orbits iterated twice. Témaining four paths are

r—y—x and y—xr—y (5.29)

y—z—y and z—y—z

The two pathst — y — z andy — z — y belong to the single period-2 orbit
(zy)°°. Similarly for the pathg) — 2 — y andz — y — z, which are the paths of
(yz)°° through the branched manifold starting from the two initiahditions. The
number of distinct period-2 orbits on this branched mauxiis!

1 1
N(2) = 3 [tr(1?) — N(1)] = 5(7 -3)=2 (5.30)
whereN (1) = 3 is the number of period-1 orbitsV (1) = tr(I).

The number of orbits of minimal perigd N (p), is given by

pN(p) =tr(I*) = Y kN(k) (5.31)

k divides p

The subtraction removes orbits that are of pegidmit not ofminimalperiodp. Such
orbits are of periogh which “go around”m times, where/k = m (integer,;m > 2).

This algorithm is simple to implement. The only input is atahle incidence
matrix. In Table 5.2 we show the number of distinct closedtsrisf minimal period
p, N(p), for the Smale horseshoe template and the two branchedaids:éhown in
Fig. 5.15.
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Caution: This spectrum is sometimes presented differently. Maniiodbperiod
p are saddle node pairs. Such pairs are often counted as a sirwf (type). In the
Smale horseshoe template the period-3 saddle nod®@aeand011 is counted as
one orbit type. The period-4 saddle node g#if1l and0011 is counted as one,
while the orbit0111, period-doubled daughter 61, is counted as another. Since 5
is prime, the six period-5 orbits are counted as three sagidke pairs. At period
6, one orbit(001 011) is the period-doubled daughter 061; the remaining eight
comprise four saddle-node pairs. The number 7 is prime endtiperiod 8 there are
the daughter o#001 and the daughter @f111 (itself the daughter of1, .. .), giving
2+ %(30 —2) = 16 orbit (types) of period 8. With this type of counting, the sfsam
of orbit types of periodg, 2, 3,4,5,6,7,8,... on the Smale horseshoe template is
1,1,1,2,3,5,9,16,... .

Inspection of Table 5.2 reveals that the number of orbitserfqu p increases
rapidly with p. In fact, the increase is exponential. We can write

N(p) ~ Pt (5.32)

wherehr is the topological entropy. This number can be estimatestdir from the
incidence matrix.
Here is how. If the eigenvalues éfareA; > Ao > --- > \,, then

tI‘(I) = M+t - + A,
(I?) = M 4N o AP (5.33)
Forp large and\; > X2, A7 > M and, to a good approximatiot;(7?) ~ A}. In
addition, the term& N (k) which are subtracted from(/7) in (5.31) are of the order
of (\1)¥, k < p/2. As a result, they can be neglected, and

N(p) ~ l(Al)p o~ ePhT (5.34)
p
Taking logarithms, we find that
1 oo
hr =1n(Ay) — = In(p) == In(\) (5.35)
p

We provide the approximatiof\)? /p for orbits up to period 9 for the three cases
discussedin Table 5.2. Forthe two fully expanding temglate incidence matrix has
rank 1, with eigenvalues 0 and3, 0, 0. Inthese case® (p) ~ 27 /pand3?/p. Inthe
third case, the incidence matrix has rank 2 with two nonzigerealues; (3 + /5).
ThenN(p) ~ (2.618)?/p. In this case it is seen that the correction of the second
eigenvalue tar(1?) = M} + X” — (2.618)? + (0.382)? becomes insignificant as
becomes largep(= 2, for example). Itis also clear that the subtractie®~ kN (k)
has the smallest effect farprime (i.e.,p = 3,5, 7) and the largest effect whenis
the smallest number with the largest number of prime factdtaus, N (p) ~ AP /p
is a worse approximation fgr = 8 = 23 than forp = 9 = 32.
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Table 5.2 Number of closed orbits up to period 9 in three different loteed manifold$

Incidence

Matrix 1 2 3 4 5 6 7 8 9
11 2 1 2 3 6 9 18 30 56
11 20 20 2.7 4.0 6.4 10.7 18.3 32.0 56.9

1 1 0 3 2 5 10 24 50 120 270 640

11 26 34 6.0 11.7 24.6 53.7 1204 2759 642.0

11

111 3 3 8 18 48 116 312 810 2184

11 3.0 45 9.0 20.2 486 121.5 312.4 820.1 2187.0

aTop row, exact; bottom rowA? /p.

5.11 SUBTEMPLATES

Topologicalinvariants of orbits and orbit pairs are unaeehunder control parameter
variation as long as the orbits exist. However, as controhpeters are varied,

periodic orbits are created and/or annihilated. Therefibie not obvious that the

topological description of a strange attractor is invariander control parameter
variation.

5.11.1 Two Alternatives

In fact, there are two options, which will be illustrated miespect to both thedgsler
and Lorenz attractors. Suppose that thiss&er equations are integrated for control
parameter values for which there is a strange attractotfatall the unstable periodic
orbits in the attractor are constructed from an alphabéet wito symbols, 0 and 1.
If every possible symbol sequence is allowed, the attrastbyperbolic. We have
never encountered such an attractor, either in simulatbdssipative systems or in
the analysis of experimental data. In our experience, iMsys the case that some
symbol sequences are forbidden.

Forexample, if the symbol sequence 00 is the only symbolesszpithat is forbid-
den, every periodic orbit is constructed from a vocabulaitp the two words: = 01
andb = 1. The flow, projected down onto a standard Smale horseshoeled
manifold, does not extend over the entire branched maniésddan be seen in Fig.
5.22(a). The Markov transition matrix for the original tietter alphabet consisting
of 0 and 1 changes
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from M:{ii] to M:[(l)}} (5.36)

The part of the Smale horseshoe template that is not travessthe projection of
the flow (the semiflow) is shown shaded in Fig. 5.22(a). It isstucted by observing
that the flow must never enter the left quarter of the branwhdihown at the top, for
this encodes 00. Therefore, the two preimages of this paneohranch line must be
removed, as well as all the preimages of their preimages.t\Wnaains is a fractal
subset of the original branched manifold.

An alternative representation of this dynamics is givenh®ykiranched manifold
shown in Fig. 5.22(b). This is subtemplateof the original two-branch template
shown in Fig. 5.22(a). The two branches= 01 andb = 1 represent flows through
(a) branches 0 followed by 1 in the Smale horseshoe templat(b) through branch
linthattemplate. All possible sequences involving thewweodsa andb are allowed.
The Markov transition matrix for this subtemplate is fulloWever, constructing the
subtemplate of Fig. 5.22(b) from the original shown in Fig2Za) is not easy—it
borders on nightmarish even for this simple case.

The subtemplate of Fig. 5.22(b) describes dynamics at #sion of the period-3
orbit 3;. For other parameter values other vocabularies and grasdescribe the
dynamics. In general, the number of words required grows thié wordlength. For
example, to wordlength 4 the required words might be 01, @ad,0111. In general,
as longer and longer symbol sequences occur, new inadteisgfuences appear.
We can take this into account by increasing the number of svisrdhe vocabulary.
Then in this representation of the dynamics:

e The subtemplate can in principle be constructed from thgirwad template.
e It typically has an infinite number of branches.

e The number of branches corresponding to words of finite keigfinite.

e Every possible sequence of words is allowed.

We are faced with a similar choice with another branched folhi The flow
generated by the Shimizu—Morioka equations [2, 98] is siro the flow generated
by the Lorenz equations [cf. Fig. 5.8(c) with Fig. 8.5]. Ha&g the former occupies
a subtemplate of the latter. The restriction of the ShimMuorioka flow on a Lorenz
template is shown in Fig. 5.23(a). On the original Lorenzptate, some periodic
orbits are allowed and others forbidden. This correspomttetfact that some symbol
sequences are forbidden in the Shimizu—Morioka flow. Onaipd#y is to restrict
the projection of the flow to the part of the branched manitbht is shaded. Another
is to construct a subtemplate representing a vocabularjafed words which can
occur in arbitrary order. Such a subtemplate is shown in Bi@3(b). Once again,
constructing this simple subtemplate from the originaldror template borders on
the nightmarish.
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(a) (b)
0—0

Forbidden

Fig. 5.22 (a) When the only forbidden symbol sequence 00, the flow isicesd to the
unshaded part of the Smale horseshoe template. Some orbtteeriginal template are
allowed; others are forbidden. The forbidden region cdasid all preimages of the left
quarter of the upper branch. (b) The flow can be representgdidgubtemplate of the Smale
horseshoe template when only the symbol sequence 00 sl étnbi

(a) (b)

L R
L R a+b b'+a’
L=a+b( 2 2 ? LR
R=bxa’ \ 2 2

Fig. 5.23 (a) The flow generated by the Shimizu—Morioka equations s¢ricged to the
shaded subset of the Lorenz template. (b) All orbits in then&tu—Morioka strange attractor
can be represented by this subtemplate of the original lzoiemplate.
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5.11.2 A Choice

The two alternatives for representing dynamics that hawa pgesented above are
summarized as follows:

1. As control parameters are varied, the basic templateirenaad describes all

the unstable periodic orbits in the strange attractor, had some. Some of the
orbits predicted to exist by the template do not exist—thayehbeen “pruned
away.” All that remain are organized as they were in the higpke limit.

As control parameters are varied, the dynamics is reptedeby a series of
subtemplates. The vocabulary changes from one controhpetea to another,
as does the template. In general, the subtemplates havéirdteinumber of

branches, but all possible word sequences are allowed.

Of these two alternatives, we adopt the first without hesitaffor the following
reasons:

The template is invariant, or at least robust, under comp@oameter variation.

It is much easier to see how the flow gets “pushed around” onmgpltge
than to work out how one subtemplate metamorphoses intdnanas control
parameters vary.

With only one template to work with, the topological invaria of all orbits
need to be computed only once. As long as those orbits remaristence
as the attractor changes with the control parameters, tpgsetities remain
invariant.

It makes no sense to force an interpretation in terms of sojpi&es to pre-
serve an idea of hyperbolicity or full-shift dynamics whéistis nongeneric in
dissipative physical systems in the first place.

The global organization of a flow is largely determined byfiked points and
their insets and outsets, and by some low-period orbits heil stable and
unstable manifolds. Since these are robust under largatiars in param-
eter values, we also want the caricature (template) to bestalinder these
variations.

With this interpretation, templates are topological inaats under change of co-
ordinates and initial conditions. They are robust undengeeof control parameter
values. Thatis, they can remain unchanged under large eBarighe control param-
eter values. However, under sufficiently large changes irtrobparameter values,
they can change (cf. Chapter 9). They can change by addindrevehes. They
can change also if the flow ceases to visit branches. In ary ttas template must
change when the basic alphabet required for a symbolic émgad the dynamics
undergoes a change.
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The changing nature of the dynamics over a fixed template eaescribed as fol-
lows, using the Lorenz template as an example. The two segraktine branch lines
L andR are divided intaz; andns segments.q, Lo, ..., L,, andR;, Ra, ..., R,,.
Then the linking numbers (topology) depend only on the symbme CRLL - --),
but the dynamics depend on the, + ns) x (n1 + ne) Markov transition matrix.
This matrix describes, to some extent (the better the latgemdns) which orbits
are allowed in the flow and which have been pruned from the flow.

5.11.3 Topological Entropy

The problem of computing topological entropy for a map or en{gflow over a
branched manifold is simple when the Markov transition imatescribes allowed and
forbidden period-1 processes. Specifically, the topolaigiatropy is the logarithm
of the largest real root of this matrix.

If time steps of varying length are the basic units, the pgoblf computing
topological entropy becomes more interesting. Since éhdghamics is described
interms of letters, vocabularies, and grammars, it migledtpeected that there is some
nontrivial relation between the concepts of chaos and tbbsemmunication. This
hope is not in vain: There is a strong connection. Many of tlagonproblems were
formulated and answered by Shannon in his seminal conimifisito communications
theory [44,45]. We first present Shannon’s results for comigation channels. Then
we map these results to dynamical systems theory.

The capacity of a transmission channel is

. 1
HereN(T) is the number of allowed signals of duratidrandlog is to base:. First,
assume that an alphabet containsymbolsS,, Ss, ..., S, of lengthsty, o, ..., t,,
and that every possible symbol sequence is allowed. The eumfibymbol sequences
of lengtht is

N(t)=N(t—t1) + Nt —t2) + -+ N(t —tn)

A well-known result from the theory of finite difference edjioas states thav (¢) is
asymptotic toA X, whereA is a constant and, is the largest real solution of the
characteristic equation

Xt — thtl +Xt7t2 4 _’_tht“

or, equivalently,
l=X""4X"2p. X

We assume that all words in the vocabulary have integer lteagtl that there are
w(1) words of length 10(2) words of length 2 (i.e., they are two symbols long in
the original alphabet), and so on. Then the characterigtiagon for this vocabulary
and grammar is
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1= "“;gj) (5.37)
p=1
The topological entropy is the logarithm of the largest realt of this equation.

In many grammars, not all symbol sequences are allowed (@Kisut qv is
KO). In such cases, assume that thereastated,, bo, . . ., b,,. FOr each state only
certain symbols from the sét, Ss, ..., S, can be transmitted (different subsets for
different states). The transmission of symisglfrom stateb; to stateb; (b; may be
the same as;) takes timetgf). This process is illustrated by a graph such as that
shown in Fig. 2.17.

Theorem: The channel capacity is log X, whereX| is the largest real root of
them x m determinantal equation

Sox — gy

k

det =0 (5.38)

We now translate these results into statements useful fopating the topological
entropy for a dynamical system. The table that effects thentgphism between
topological entropy for dynamical systems and channelcpfor communication
systems is

Communication Systems  Dynamical Systems

Graph Branched manifold
S; Branch

t Period

b; Branch line

Channel capacity Topological entropy

Remark: Assume that a dynamical system is described by a brancheifatdan
with m branches and incidence matrlx Transit through each branch takes one
period. Then (5.38) becomes

1
det |:in3‘ - 5#] = X""det [;; — X0;5] =0

As a result, in this case the topological entropy is the laigar of the largest real
eigenvalue of the incidence mattix

In the following two subsections we consider a series ofigppbns of the expres-
sions (5.37) and (5.38) for topological entropy to subteatgd of the Smale horseshoe
template and subtemplates involving branches descrihmmgynamics seen in circle
maps.

5.11.4 Subtemplates of the Smale Horseshoe

In the following three examples the alphabet has the twertle@ and 1. The grammar
is full. Itis just the words that differ from one example tathext.
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Example 1: There are two wordsS; = 0 andS; = 1,t; = t2 = 1, and (5.37)

becomes
1= 1 n 1
X X

The solution isXy = 2, hr = log2 = 0.693147.

Example 2: There are again two words; = 1 andS; = 01. Thent; = 1 and

to = 2,50 (5.37) becomes
1 1

X xe
The solution isXy = 1 (1 + v/5), hy = 0.481212.
Example 3: There are four words01, 011, 0111, and01111. All combinations
of these symbol sequences are allowed, and (5.37) becomes
1 1 1 1
Xty Txitx
The solution isXy = 1.534158, hr = 0.427982.

1

1

5.11.5 Subtemplates Involving Tongues

Some dynamical systems do not follow a simple stretch artirfmlite to chaos as
exhibited by the Rssler system. The best known of these is the van der Polladscil
but it is one of many dissipative systems that follow an aliive route. In this route
a Hopf bifurcation occurs, followed eventually by some kofdransition to chaos.
The inertial manifold has the topology of a hollow dongf! x S*) x S* In this
topology the second® parameterizes a periodic driving term. A PoirEaection
is easily defined. In a Poindasection the intersectiol x S is topologically an
annulus {* is an interval). By the Birman—Williams theorem this prdgdown to a
one-dimensional set that is topologically a circf2). The return map is then a map
of the circle to itself. The properties of the circle map wetenmarized in Section
2.12.

Invertibility is lost when the circle folds over on itself dog the return map.
Because of the boundary conditions! (is topologically different fromR!), two
folds must occur. The flow froms! to its folded over image is described by a three-
branch manifold. Branchebs and R are orientation preserving. On branéhthe
rotation angle increases by less ttean on branchR it increases by more thahr.
BranchC occurs between the two folds and is orientation reversing.

While the circle map is still invertible, mode locking ocsurEach mode-locked
region is characterized by a rational fraction= p/q, with 0 < w < 1 for the case
of zero global torsion. In the rational fractionis the number of times the orbit goes
around the long circumference of a torus and the number of times it goes around
the short circumferencey is the period ang is the winding number.

The symbol sequence of the saddle-node pair in the Arnofidiep/q is W (1)
W(2)---W(q), where

W(i):[ix]ﬂ—{(i—l)xg]Z(?>_’<%Egzé)
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where(z] is the integer part of. Forp/q = 2, W(L)W(2)W(3)W (4)W (5) —
LRLRR. The partner orbit is obtained by replacing the penultinsstabol byC
(e.9.,.LRLCR).

Chaotic behavior occurs when the map loses the invergibilibperty and the
Arnol'd tongues begin to overlap. We describe the chaotlalv®r when tongues
described by rational fractions; = p1/¢1 andws = pa/qgo just begin to overlap.
We assume that; < wy and

q1 42
At this point the behavior is chaotic and the vocabulary aorg three words. These

are:
A The symbol sequence for the left-hand tonguég;

B The symbol sequence for the right-hand tongué;e
B The partner of3
Not every symbol sequence is allowed, fBrmust be preceded byl. Each
word labels a branch in a branched manifold. This is a subl&mpf the branched
manifold that describes the dynamics in the fully expansase (, R, andC have
a fully expansive incidence matrix). The incidence matdxthe three wordsl, B,
A
B

andB is
1 11
1 1 0
B 1 1 0
Applying this information to Eq. (5.38), we find that

1 -1 1 1
X Xa X a1
det [ = -1 0 ] =0

det[pl pﬂ:ﬂ

1 1 -1

This reduces to
1 1 1
qG1t+q2 _ Y91 _ Y92 _ 1 — —
AT - X - X 1=0 or X111+XQ2+XQ1+112_1
Example 1. Compute the vocabulary and the topological entropy for trenge

attractors that occur when the tongyagq; andps/g- just overlap, for the pairs
(3:3): (3, 2), (3, %)

B

pi/a p2lee A B Xo hr

1 2 LR LRR 1.429108 0.357051
LCR

1 ¢ LR LRLRR 1.307395 0.268037
LRLCR

LRLRR LRR 1.252073 0.224801
LCR

3
5

win
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Example 2: Compute the topological entropy for the low-period Arndlishgues
for whichp,g2 — ¢1p2 = £1. Solution The results depend only on the periads
andge. To period 9, here they are. Entries for which the periodsmaterelatively
prime have been left blank.

|3 4 5 6 7 8 9

2 | 0.357051 0.268037 0.219131 0.187366
3 0.253442 0.224801 0.186002 0.172048

4 0.196620 0.164136 0.142458
5 0.160664 0.148188 0.137920 0.129277
6 0.135847

7 0.117680 0.110713
8 0.103803

5.12 SUMMARY

Branched manifolds were introduced by Birman and WilliaB% B4] as a simple tool
to describe completely the organization of all the unstpbheodic orbits in the Lorenz
dynamical system [83]. Their theorem guarantees that Imhenanifolds can be
used to describe the organization of unstable periodi¢oifany three-dimensional
dissipative dynamical system with a (hyperbolic) strantimetor. However, one
of the first branched manifolds discussed in detail by Birmaad Williams, the
figure 8 knot-holder, describes the topological organaratif all the closed magnetic
field lines generated by a constant current flowing in a wiretted into a figure 8
shape [84]. This is a conservative dynamical system. Iticlear that the Birman—
Williams theorem can be appliexhly to dissipative systems.

As stated, the Birman—Williams theorem is not immediatelgful for the analysis
of chaotic data. Two of the input assumptions are too rdsteic Both assumptions
(hyperbolicity, three-dimensional flow) can be relaxed. c®these modifications
were made, the Birman—Williams theorem became a key cormpanehe topological
analysis of chaotic data and the classification of stranmecabrs.

We have described the branched manifolds for the four staneatbeds of dy-
namical systems theory: the Duffing, van der Pol, Lorenz, Rasisler attractors.
Each branched manifold has an algebraic representatigrrmstof three matrices.
The topological matrix” determines how the various branches twist and cross each
other. The joining array identifies the order in which two or more branches are
joined at a branch line. The transition or incidence mafridetermines the flow
ordering: which branches flow into which other branches.

The location of periodic orbits on branched manifolds caddtermined by knead-
ing theory. Once orbits have been located, their linking bars and relative rotation
rates can be determined algorithmically. The inputs to tigeréghm are the two
matrices” and A. Conversely, a symbolic coding of the orbits in a flow deteresi
1, and information about the linking numbers of these orlats lse used to construct
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the two matriced” and A. The result is that branched manifolds can be identified on
the basis of properties of unstable periodic orbits ideatifn the flow.



