
5
Branched Manifolds

5.1 Closed Loops 166
5.3 What Has This Got to Do with Dynamical Systems? 169
5.3 General Properties of Branched Manifolds 169
5.4 Birman–Williams Theorem 171
5.5 Relaxation of Restrictions 175
5.6 Examples of Branched Manifolds 176
5.7 Uniqueness and Nonuniqueness 186
5.8 Standard Form 190
5.9 Topological Invariants 193
5.10 Additional Properties 199
5.11 Subtemplates 207
5.12 Summary 215

All of the unstable periodic orbits in a strange attractor can be placed on a single,
simple geometric structure. This structure has been calledvariously aknot holder,
an orbit organizer, and atemplate. Mathematically, it is a branched manifold. A
branched manifold describes the topological organizationof all the unstable peri-
odic orbits in a strange attractor [83,84]. This means that the branched manifold for a
strange attractor provides information about the stretching and squeezing mechanisms
that generate the strange attractor. Branched manifolds can be classified discretely.
This means that a discrete classification exists for low-dimensional strange attrac-
tors [85].
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5.1 CLOSED LOOPS

Branched manifolds are central to the classification theoryfor strange attractors of
low dimensional dynamical systems. In this section we introduce the idea of branched
manifolds in an amusing but very nontrivial way.

5.1.1 Undergraduate Students

Many of us in physics orelectricalengineeringdepartmentshave had to teachMaxwell’s
equations in one form or another. One standard problem that we always give to un-
dergraduates is to compute the magnetic field generated by a current carrying wire.
Needless to say, the wire is straight and the current is constant. The standard approach
is to find a closed loop, or magnetic field line, and perform a Gaussian type integral
around it. As Fig. 5.1(a) shows, there is a two (continuous)-parameter family of
closed field lines around the wire. These are parameterized by distance along the
wire and radius of the loop.

5.1.2 Graduate Students

Through sheer perversity, we always make our students go through another round
of electricity and magnetism in graduate school. The material is the same, but the
problems have to be different—and harder. This time around,we bend the straight
wire into a circular loop and then ask our students to computethe magnetic field in
its vicinity. As Fig. 5.1(b) shows, there is still a real two-parameter family of closed
loops around the current-carryingwire. One parameter is the angular distance around
the wire; the other is theperihelionof the closed magnetic field line with respect to
the current-carrying wire. The perihelion is the distance of closest approach. Some
students (the smart ones) choose not to solve the problem with this approach.

5.1.3 The Ph.D. Candidate

When the poor student finally finishes his (her) thesis, you may be put on his com-
mittee. If you like the student, you give easy questions. If not, you give impossible
questions.

Here is one. You take the current-carrying wire and tie it into a knot: a figure 8
knot, to be specific. Then ask: Are there still closed magnetic field lines? If so, what
are they like?

It turns out that most of the closed field lines of undergraduate and graduate days
break when the current-carrying wire is tied into the figure 8knot. However, a few
do not break. “Few” is, in fact, a countable infinity—significantly fewer than a
continuous two-parameter family.

Not only are the closed magnetic field lines countable, they can also be named.
More surprisingly, they are organized among themselves in arigid and surprisingly
simple way. The organizational mechanism is illustrated inFig. 5.2. The current-
carrying wire, tied into a figure 8 knot, is shown in Fig. 5.2(a). One of the closed
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Fig. 5.1 (a) The closed magnetic field lines surrounding a straight wire carrying a uniform
constant current can be identified by two real continuous parameters. (b) This remains true if
the wire is deformed into a closed circular loop.

field lines generated by the current in this wire is shown in Fig. 5.2(b). In Fig. 5.2(c)
we show a structure that contains all the information about the organization of all the
closed magnetic field lines generated by the current in this wire. This structure is a
branched manifold (or knot-holder, or template).

All of the closed field lines surrounding the Figure 8 knot canbe deformed (iso-
toped) down to lie on this two-dimensional surface without undergoing any self-
intersections. On this surface it is a relatively simple matter to compute the topolog-
ical invariants of these closed field lines, their linking numbers. There is a 1:1 corre-
spondence between symbol sequences for closed paths along the “one-way streets”
(branches) in this branched manifold and the closed magnetic field lines surrounding
the current-carrying wire. The symbols may identify eitherthe branch lines, as en-
countered, or the branches of the branched manifold, as traversed. As a result, the
closed field lines are clearly countable.
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5.1.4 Important Observation

We point out here, forcefully, that this first encounter withbranched manifolds has
occurred for a “conservative” dynamical system.

In the past it seems that there has been a prejudice against the use of branched
manifolds as a valuable tool for classifying strange attractors. This prejudice had
been brought about by the incorrect assumption that this tool is useful only in the
highly dissipative limit. The central tool for the classification theory, the Birman–
Williams theorem, is applicable to dissipative three-dimensional dynamical systems
(λ1 + λ2 + λ3 < 0), but these systems need not be highly dissipative.

In the example just discussed, a branched manifold describes the organization of
all the closed magnetic field lines around a current-carryingfigure 8 knot. The analog
dynamical system isconservative, not evenslightly dissipative.

Fig. 5.2 A current-carrying wire tied into a figure 8 knot (a) generates a countable number
of closed magnetic field lines, one of which is shown in part (b). (c) This branched manifold
describes all of the closed field lines generated by the wire in (a). It can also be used to label all
these orbits, and to compute their topological invariants,such as linking numbers. The closed
loop shown in (b) can be identified as(aα)3a(bβ)3b. Adapted with permission from Birman
and Williams [84].
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5.2 WHAT HAS THIS GOT TO DO WITH DYNAMICAL SYSTEMS?

We are interested in classifying dynamical systems by the strange attractors that they
generate. When a dynamical system inR3 generates a chaotic signal, a large number
of periodic orbits occur in the strange attractor. They are organizedamong themselves
in a unique way. This organization reflects the stretching and squeezing mechanisms,
which act to generate chaotic behavior.

There is a theorem, due to Birman and Williams, which guarantees that all these
orbits can be isotoped down to a two-dimensional branched manifold, preserving
their topological organization. As a result, we can identify a dynamical system by
the branched manifold that describes the periodic orbits inits strange attractor.

The Birman–Williams theorem is valid for dissipative dynamical systems inR3.
The Lyapunov exponents for the strange attractor obeyλ1 > 0, λ2 = 0, andλ3 < 0,
with λ1 + λ2 + λ3 < 0. The Lyapunov dimension of such an attractor isdL =
2+(λ1 +λ2)/|λ3| = 2+ ǫ. Whenǫ = λ1/|λ3| is small, it is easy to discern the shape
of the branched manifold from the numerically computed strange attractor [cf. Figs.
5.7(c) and 5.8(c)]. However, whenǫ ≃ 1 there is still a branched manifold which
describes the dynamics, even though it may not be easy to identify from the strange
attractor.

We emphasize once again that the branched manifold for the figure 8 knot de-
scribes the topological organization of the closed field lines in a system which has
the properties of a strange attractor withǫ = 1: the conservative limit.

5.3 GENERAL PROPERTIES OF BRANCHED MANIFOLDS

The branched manifold shown in Fig. 5.2(c) consists of two kinds of structures.
These describe stretching and squeezing. The origin of these structures is shown in
Fig. 5.3. On the left we show a cube of initial conditions. Under the stretching
process, the cube is deformed: It stretches in one directionand contracts in the other.
Eventually, the flow goes off in two different directions in phase space. In the limit
of very high dissipation, the three-dimensional structurebecomes two-dimensional.
This structure describes stretching.

On the right we show two neighborhoods in different parts of phase space. Under
the flow they are squeezed together. Between the two deformedneighborhoods there
is a boundary layer. In the limit of very high dissipation, the three-dimensional
structure becomes two-dimensional. This structure describes squeezing.

Remark: The two-dimensional structures shown at the bottom of Fig. 5.3 do
not depend on the dissipation being large. They, in fact, result from projecting the
flow down along the stable direction. We emphasize again thatthe construction of
branched manifolds does not depend on the dissipation beinglarge.

The most general branched manifold is built up from just these two building blocks
in Lego fashion. The simple rules are:

Out → in: Every outflow feeds into an inflow.
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Fig. 5.3 Left: A cube of initial conditions (top) is deformed under the stretching part of
the flow (middle). A gap begins to form for two parts of the flow heading to different parts
of phase space. Under further shrinking (higher dissipation) a two-dimensional structure is
formed which is not a manifold because of the tear point, which is an initial condition for
a trajectory to a singular point. Right: Two cubes of initialconditions (top) in distant parts
of phase space are squeezed together and deformed by the flow (middle). A boundary layer
separates the deformed parallelepipeds at their junction.Under more dissipation the two inflow
regions are joined to the outflow region by a branch line.

No free ends: There are no uncoupled outflow or inflow edges.

The two-dimensional branched manifolds that we use to classify dynamical sys-
tems are two-dimensional manifoldsalmosteverywhere. Of the two dimensions: one
dimension corresponds to the flow direction; the other corresponds to the unstable
invariant manifold of a low-period orbit. The structure fails to be a manifold because
of singularities. There are two types of singularities:

Zero-dimensional: The splitting points identify stretching mechanisms.

One-dimensional: The branch lines identify squeezing mechanisms.

It is possible to describe branched manifolds algebraically. The algebraic descrip-
tion for a branched manifold withn branches has three components:

Topological Matrix T: This is ann × n matrix that describes the topological orga-
nization of the branches. The diagonal elementTii describes the local torsion
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of branchi. This is the signed number of crossings of the two edges of branchi
with each other. The off-diagonal elementsTij = Tji describe how branchesi
andj cross. The crossing convention adopted for segments of orbits (Fig. 4.4)
is extended to projections of the branches in an obvious way.

Joining Array A: This is a1 × n array that describes the order in which branches
are joined at branch lines. A simple convention is: The closer a branch is to
the observer, the lower the branch number.

Incidence Matrix I: This is ann × n transition or incidence matrix. It describes
which branches flow into which branches. If branchi flows into branchj, then
Iij = 1; it is zero otherwise.

The algebraic description for the branched manifold shown in Fig. 5.2(c) is given in
Fig. 5.4.

We remark here that the algebraic description of a branched manifold is not unique.
The branched manifold is embedded inR3. As such, it can be rotated and projected to
a variety of two-dimensional surfaces. Different projections have different algebraic
representations. This nonuniqueness is the nonuniquenessof projections, discussed
in Section 4.2.1. There are several other ways in which branched manifolds for an
underlying dynamics may not be unique. However, there is oneinvariant: They all
describe the same spectrum of periodic orbits with the same topological organization.

We also remark here that the algebraic description of branched manifolds is ideally
suited for the computation of some topological invariants,such as linking numbers
and relative rotation rates, but is not suitable for computing other invariants, such as
knot polynomials.

5.4 BIRMAN–WILLIAMS THEOREM

We refer the interested reader to [83] and [84] for proof of the Birman–Williams the-
orem. In the first subsection we introduce the projection method (Birman–Williams
projection) that is used to project a flow onto a branched manifold. In the second
subsection we state the Birman–Williams theorem.

5.4.1 Birman–Williams Projection

Two points,x andy, are defined to beequivalentunder a flow if they have the same
asymptotic future:

x ∼ y if |x(t) − y(t)| t→∞−→ 0 (5.1)

The Birman–Williams projection (5.1) has the effect of projecting the flow in a strange
attractor down along the stable direction onto a two-dimensional branched manifold.
The dimensions include the flow direction and part of the unstable direction. It is
illustrated in Fig. 5.5.
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Fig. 5.4 Algebraic representation of a branched manifold withn branches (a) consists of:
(b) ann × n matrix T that describes how the branches cross over or under each other (off-
diagonal matrix elements) or how they twist about their flow axis (diagonal matrix elements),
and underneath this matrix a1× n arrayA that describes the order in which the branches join
each other at branch lines, with the convention: The larger the number, the farther behind; and
in addition, ann×n matrixI (incidence matrix) (c) describes how the branches are connected
to each other. The branches may be labeled by numbers or by indicating which branch lines
they connect. Adapted with permission from Birman and Williams [84].

We represent the flow inR3 byΦt, so that forx in the basin of the strange attractor
SA, Φt(x(0)) = x(t). The flow has a unique future and past; that is, givenx(0), the
pointsx(t) are determined uniquely for allt in the range−∞ < t < +∞.

The Birman–Williams projection maps every pointx in the basin ofSA into a
point x̄ in a branched manifoldBM. This projection is illustrated in Fig. 5.6. This
figure shows how a flow that exhibits a stretch and fold mechanism [Fig. 5.6(a)] is
transformed into a pair of branches that meet at a branch line[Fig. 5.6(b)]. The
projection also maps the flowΦt in the basin ofSA to a semiflowΦ̄t onBM. Under
the semiflow, every point̄x ∈ BM has a unique futurēx(t). Every pointx̄ also has
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Fig. 5.5 The Birman–Williams projection identifies all points with the same asymptotic
future. This has the effect of projecting the flow in a low-dimensional strange attractor down
onto a two-dimensional manifold almost everywhere.

a unique past up to the first branch line in its past. At the branch line, information
about its previous history is lost.

It is useful to extend each splitting point back to the nearest branch line in its past,
as shown in Fig. 5.4. Then each branch line is split into a number of segments. Each
branch of the branched manifold can then be labeled by the segments of the branches
that it connects. These two symbols, the first the source, thesecond the sink, can be
used to label the rows and columns of the transition matrixI.

Every point in a branched manifold has a unique future. In particular, every point
on a branch line has a unique future. The future may be:

Aperiodic: A nonrepeating, chaotic orbit of infinite period.

Periodic: A periodic or ultimately orbit of finite periodp.

Roughly speaking, each branch line can be considered to be like the closed interval
[0, 1]. The points on a branch line that are initial conditions for aperiodic orbits are
like the irrational numbers, and the points on a branch line that are initial conditions
for periodic or ultimately periodic orbits are like the rational numbers. Both point
sets are dense on the interval. We refine this classification slightly in Section 5.9.1.

5.4.2 Statement of the Theorem

The Birman–Williams theorem is as follows [83,84]:
Theorem: Assume that a flowΦt:

• OnR3 is dissipative(λ1 > 0, λ2 = 0, λ3 < 0 andλ1 + λ2 + λ3 < 0).

• Generates a hyperbolicstrange attractorSA.



174 BRANCHED MANIFOLDS
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Fig. 5.6 (a) Suspension of the horseshoe map represented as a continous deformation of the
two “vertical” rectanglesV0 andV1 of Fig. 2.19 into the “horizontal” rectanglesH0 andH1,
with time flowing from bottom to top. Top and bottom should be identified. (b) When the flow
is squeezed along the stable direction (i.e., dissipation is increased to infinity), the two prisms
in (a) are transformed into a pair of two-dimensional branches that meet at a branch line. A
complete branched manifold is obtained by connecting the branch line to the bottom with a flat
ribbon.

The projection (5.1) maps the strange attractorSA to a branched manifoldBMand
the flowΦt onSA in R3 to a semiflowΦ̄t onBM in R3. The periodic orbits inSA
underΦt correspond1:1 with the periodic orbits inBMunderΦ̄t, with perhaps one or
two specified exceptions. On any finite subset of periodic orbits the correspondence
can be taken to be via isotopy.

This means, roughly but accurately, that the flowΦt on SA can be deformed
continuously to the flow̄Φt on BM. During this deformation, periodic orbits are
neither created nor destroyed, and orbit segments do not pass through each other
(there are no crossings). In addition, their topological organization, as described by
their linking numbers, remains invariant.
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5.5 RELAXATION OF RESTRICTIONS

There are two serious restrictions on the Birman–Williams theorem. They have been
underlined in the statement of the theorem. If they were unavoidable, they would
render the theorem much less useful for experimental applications than it actually is.
In this section we describe how these restrictions can be circumvented.

5.5.1 Strongly Contracting Restriction

The very first application of the Birman–Williams theorem toa physical system [1] ran
into an unexpected and fortuitous problem. This involved the analysis of experimental
data taken from a chemical system, the oscillating Belousov–Zhabotinskii reaction.
Every theoretical description of this reaction involved more than three variables [86].
The Birman–Williams theorem is valid for three-dimensional systems. Knots fall
apart in dimensions higher than 3. So, in principle, it appears that both the theorem
and knowledge of the periodic orbits of this system are useless.

Despite this, we were able to carry out a successful analysisof the data and deter-
mine a branched manifold which described the organization of all the periodic orbits
that we were able to extract from the experimental data.

Why?
This success in the face of inapplicable theorems leads to a deeper understanding

of the Birman–Williams theorem, and more generally of low-dimensional strange at-
tractors. First, the data do not care about the theoretical description (such descriptions
are often incorrect, anyway). Suppose that the data are embedded inn dimensions
and the Lyapunov exponents obey

λ1 > λ2 = 0 > λ3 > · · · > λn (5.2)

Assume also that the attractor isstronglycontracting. By definition, this means that

λ1 + λ2 + λ3 < 0 (5.3)

Then the Birman–Williams projection can be carried out in two steps. First, the
projection is carried out along the strongly contracting directions corresponding toλ4,
λ5, . . . , λn. This has the effect of projecting the flow inRn into a three-dimensional
manifold, IM. The manifoldIM is called aninertial manifold. In this three-
dimensional manifold:

• The conditions of the Birman–Williams theorem are met.

• The topological organizationof periodic orbits is defined (knots don’t fall apart).

The last projection along the least stable direction (λ3) mapsSA ⊂ IM down to
a two-dimensional branched manifoldBM ⊂ IM and preserves the topological
organization of the unstable periodic orbits in the strangeattractor.

For strongly contracting flows, the Lyapunov dimension

dL = 2 +
λ1

|λ3|
< 3 (5.4)
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is less than 3. More specifically, ifdL(x) is the local Lyapunov dimension atx ∈
SA, and if dL(x) < 3 everywhere onSA, the Birman–Williams projection (5.1)
provides a projection ofSA ⊂ Rn down to a two-dimensional branched manifold
BM ⊂ IM3 ⊂ Rn, whereIM3 is the three-dimensional manifold that results from
the projection along the strongly stable directionsλj , j = 4, . . . , n.

5.5.2 Hyperbolic Restriction

We have never encountered a hyperbolic strange attractor, either in experimental data
or in numerical simulations of ordinary differential equations.

Speaking roughly but accurately once again, the condition of hyperbolicity guar-
antees that the strange attractor is structurally stable under perturbations: Periodic
orbits are neither created nor destroyed under perturbation of the control parameters.
We get around this problem by assuming hyperbolicity for thestrange attractor of
interest. In doing so, we predict the existence of many more periodic orbits than ac-
tually exist in the strange attractor. Then we “unfold” the attractor. This means that
we find a family of dynamical systems depending on one or (usually) more control
parameters. The family contains the hyperbolic attractor for some control parameter
value. Then we change the values of the control parameters. Under these changes
many periodic orbits can be destroyed. However, the orbits that remain during the
unfolding are organized in exactly the same way as in the hyperbolic attractor.

Unfolding comes in two forms. There is a global version and a local version. In
the local version, as control parameters are changed, the branches in the branched
manifold remain unchanged: It is the spectrum of periodic orbits on these branches
that changes. In fact, the possible changes are restricted by topological considerations,
as described in Sections 4.2 and 4.3. If we push the control parameters too far,
new branches can come into existence and old branches can go out of existence.
This is seen clearly in the perestroika of the Duffing oscillator and is visible in the
experimental data described in Chapter 7. Unfoldings are discussed extensively in
Chapter 9.

5.6 EXAMPLES OF BRANCHED MANIFOLDS

In this section we classify each of the four dynamical systems described in Section
3.3. This is done by integrating the dynamical equations forcertain parameter values
and then identifying the branched manifold which describesthe strange attractor
generated by each of these sets of equations. Precisely how the identification is
made is discussed in detail in Chapter 6, which presents the topological analysis
algorithm. We emphasize the fact that the branched manifoldmay change as the
control parameters are varied. The possible changes are discussed more extensively
in Chapter 9, which deals with unfoldings. A large number of branched manifolds
are described in [87].
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Fig. 5.7 (a) Rössler equations (3.22). (b)x(t) andz(t) after the transients have died out
and the trajectory has relaxed to the strange attractor. Control parameter values:(a, b, c) =
(0.398, 2.0, 4.0). (c) Projection of the strange attractor onto thex–y plane. (d) Caricature of
the flow on the attractor. (e) Branched manifold for this attractor. (f) Algebraic representation
of this branched manifold. The topological matrix is shown at the top and the array at the
bottom.

5.6.1 Smale–Rössler System

The Smale horseshoe mechanism consists of simple stretching and folding in phase
space. It occurs very frequently in experiments that exhibit chaotic behavior [1, 78,
88–92]. This mechanism is exhibited by the Rössler equations.

The classification of the R̈ossler dynamical system is illustrated in Fig. 5.7 [2].
This figure consists of six parts. The equations of motion areshown in Fig. 5.7(a).
These equations were integrated for control parameter values(a, b, c) = (0.398, 2.0,
4.0). The tracesx(t) andz(t) are recorded in Fig. 5.7(b). They were recorded after
the transients died out. That is, an initial condition in thebasin of attraction was
chosen, and the integration was carried out beyond the pointat which the trajectory
relaxed to the strange attractor before the recording was begun. Figure 5.7(c) shows
the attractor as projected onto thex–y planez = 0. The flow is counterclockwise.
The fold occurs at the 12 o’clock position (these comments are for analog people
only). During the fold, the outer part of the attractor at the5 o’clock position folds
over the top of the inner part of the flow.
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A schematic representation of this flow is presented in Fig. 5.7(d). It is clear that
Fig. 5.7(d) is not a totally accurate representation of the dynamics shown in Fig.
5.7(c). In Fig. 5.7(d) the outer edge of the flow is reinjectedto the inner edge of the
flow, whereas in Fig. 5.7(c) the outer and inner edges of the flow at the 5 o’clock (or 9
o’clock) position are not squeezed together. As a result, the branched manifold shown
in Fig. 5.7(d) contains more periodic orbits than actually exist in the flow shown in
Fig. 5.7(c). However, the periodic orbits that exist in Fig.5.7(c) are organized in
exactly the same way as they are in Fig. 5.7(d).

The branched manifold is shown in a standard (braid) representation in Fig.
5.7(e). In this standard representation, all of the stretching and squeezing occurs
between the two horizontal lines shown on the left-hand side. These two lines are
branch lines—in fact, the same branch line. The flow emergingfrom the branch line
at the bottom is returned to the branch line at the top withoutundergoing stretching
and squeezing. It is no exaggeration to claim that all the nonlinear mechanisms
responsible for chaotic motion are expressed between thesetwo branch lines.

The algebraic representation for the branched manifolds inFig. 5.7(d) and (e) is
given in Fig. 5.7(f). There are two branches. Each branch contains one period-1orbit.
The2×2 matrixT provides topological information. The diagonal elements describe
the torsion of the two branches. The off-diagonal matrix elementsTij are twice the
linking number of the period-1 orbits in the branchesi andj: Tij = 2L(i, j). The
1× 2 array provides information about how the branches are ordered when they join
at the branch line. In this case, the left-hand branch lies over the right-hand branch (in
this projection). Its index is lower than the index for the right-hand branch, according
to the convention adopted. The flow represented by this branched manifold is fully

expansive. The incidence matrixI is therefore full:

[

1 1
1 1

]

. When the incidence

matrix is full, it is generally not presented explicitly.
Before leaving this dynamical system, we make a few observations about qualita-

tive behavior. A small change in control parameter values will generally produce a
small modification in Fig. 5.7(c); that is, there will be onlya small change in how
the two bands overlap. This results in only a small change in the spectrum of unsta-
ble periodic orbits in the attractor. If we continue to push the control parameters in
an appropriate direction, the attractor will grow bigger. The outer edge will extend
farther from the center, and when folded over, it will come closer to the center. One
might easily believe that the folded-over region will neverreach the center. If true, at
some point the approach to the center will reverse itself. When this occurs, a second
fold will occur at the inner edge of the attractor. In short, athird branch will be
created. This third branch is connected to the second branch[−1 in Fig. 5.7(f)]. By
continuity arguments, one might expect that its local torsion could only have values
differing from −1 by ±1. We could also expect that the local torsion value would
place constraints on how this new branch could join with the two existing branches.
These suspicions are true. It is in this way that the classification of strange attractors
by branched manifolds allows us to make predictions about the behavior of nonlinear
dynamical systems under perturbations both small and large.
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5.6.2 Lorenz System

The Lorenz mechanism consists of a tear and a squeeze in phasespace. It occurs in
experiments that exhibit chaotic behavior and have some twofold symmetry.

The classification of the Lorenz dynamical system is illustrated in Fig. 5.8 [2].
This figure is identical in structure to Fig. 5.7 for the Rössler system. It consists
of six parts. The Lorenz equations are shown in Fig. 5.8(a). These equations were
integrated for control parameter values(b, σ, r) = (8

3 , 10.0, 30.0). The tracesx(t)
andz(t) are recorded in Fig. 5.8(b) after transients have died out. Figure 5.8(c) shows
the attractor as projected onto thex = y vs. z plane. The flow is clockwise on the
left and counterclockwise on the right. The squeeze and tearoccur in the middle.

Fig. 5.8 (a) Lorenz equations (3.20). (b)x(t) andz(t) plotted after transients have died out
and the trajectory has relaxed to the strange attractor. Control parameter values:(b, σ, r) =
( 8

3
, 10.0, 30.0). (c) Projection of the strange attractor onto thex = y–z plane. (d) Caricature of

the flow on the attractor. (e) Branched manifold for this attractor. (f) Algebraic representation
for this branched manifold. The topological matrix is shownat the top and the array at the
bottom.

A schematic representation of this flow is presented in Fig. 5.8(d) and has been
deformed into the branched manifold shown in Fig. 5.8(e). Once again, the stretching
and squeezing mechanisms responsible for generating chaotic behavior are contained
between the two horizontal lines.

The algebraic representation for the branched manifolds inFig. 5.8(d) and (e)
is given in Fig. 5.8(f). Neither branch exhibits twist, and the period-1 orbits in
each branch correspond, in fact, to the two unstable foci. They clearly do not link.
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The topological matrix appears trivial (all matrix elements are zero); nevertheless,
it describes highly nontrivial dynamics. The array describes the order in which the
two branches are connected. The incidence matrix is full, indicating that each branch
flows into both.

Once again, the branched manifold description of this dynamics introduces the
possibility of making educated guesses as to the behavior under control parameter
variation. That is, one might expect the two outer edges to fold over when reinjected
to the interior of the flow on the “opposite side.” When new branches are visited
by the flow (in symmetric pairs), they can only be related to the previously existing
branches in a limited number of ways.

5.6.3 Duffing System

The dynamics of the Duffing oscillator are governed by a simple stretch and fold
mechanism, in much the same way as in the Rössler system. However, unlike the
Rössler oscillator, the Duffing oscillator has a twofold symmetry. As a result, the
dynamics of the Duffing oscillator and its description by means of branchedmanifolds
are much richer than those of the Rössler oscillator.

We describe the Duffing oscillator more thoroughly in Chapter 10, but in principle,
what happens is simple. During the first half of a cycle, phasespaceundergoes astretch
and fold. The fold may be simple or may not be simple (i.e., multiple nondegenerate
folds may occur). An identical stretch and fold occurs during the second half of the
cycle. As a result, Duffing dynamics are the “square” of Rössler dynamics. More
precisely, they are essentially Rössler dynamics twice iterated.

In Fig. 5.9 we present the branched manifold (to be accurate,only the central part,
between the two horizontal lines in the standard representation) which describes an
extended fold. This type of mechanism occurs for the Rössler equations for suitable
control parameter values [2,93]. What we show in this figure is a branched manifold
with four branches. This branched manifold is obtained as follows. A branch line,
shown at the top right, is stretched out by a factor of 4 (i.e.,eλ1 = 4). This stretched
branch line is then rolled up (right, middle) and then squeezed back down to the
original interval (right, bottom). The fourperiod-1 orbits in these dynamics are shown
by symbols x in this figure. The four branches in this branchedmanifold are labeled
by their local torsion, which varies systematically from 0 to 3 on going from left to
right. It is relatively simple to verify that the linking numbers of the period-1 orbits
in the four branches satisfyL(i, j) = 1 if i 6= 0 andj 6= 0, and are zero otherwise.
These simple calculations define the 16 elements of the topological matrix. The array
can be read off from the scrolling action shown on the right (see especially the middle
figure on the right). The template and its algebraic representation are shown on the
left in this figure.

In the Duffing oscillator thisscroll and squeeze mechanismoccurs twice. We
illustrate this mechanism in Fig. 5.10 for the case where thestretch is by a factor
of 3 in each half of a cycle. At the top of Fig. 5.10 we show a branch line. It is
divided into three equal parts, labeled 1, 2, 3. These integers indicate twist during
the first half cycle. Each part is further subdivided into three equal parts. During
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Fig. 5.9 Extended folding, as seen in the Rössler attractor for some control parameter values.
Right: A branch line (top) is stretched by a factor of 4, rolled around like a jellyroll (middle),
and then squeezed (bottom). The resulting branched manifold (left, top) and its algebraic
representation (left, bottom) are then easily constructed.

the first half cycle this branch line is stretched out and rolled to a configuration as
shown in Fig. 5.9, containing only branches 1, 2, and 3. This deformed branch line
is then rotated throughπ radians, and then squeezed. The rotation accounts for the
symmetry(x, y, t) → (−x,−y, t + 1

2T ) during half a cycle. This process is then
repeated. The nine branches are conveniently labeled by twosymbols: (1,1), (1,2),
. . . , (2,3), (2,2),. . . , (3,3). The nine period-1 orbits for this iterated threefold stretch-
and-roll mechanism can be located as indicated in Fig. 5.9, and their linking numbers
computed. The ordering of the branches can be identified by inspection. This leads
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directly to the9×9 topological matrix and the1×9 array given at the bottom of Fig.
5.10.

Although the branched manifold and its algebraic description appear very com-
plicated, both are generated by very simple rules. In particular, it is a simple matter
to predict what happens when suitable control parameters are varied. New branches
can be added and old branches removed only in a systematic andpredictable way.

5.6.4 van der Pol System

We discuss a version of the van der Pol equations studied by Shaw [94,95]:

ẋ = −0.7y + x(1 − 10y2)
ẏ = +x − 0.25 sin(2πt/T )

(5.5)

The van der Pol oscillator exhibits the same half-period symmetry as the Duffing
oscillator: The equations (5.5) are invariant under(x, y, t) → (−x,−y, t + 1

2T ),
whereT is the period of the driving term. The strange attractor generated by these
equations must exhibit the same invariance. We therefore creep up on the description
of this strange attractor in two steps, as we did for the branched manifold of the
Duffing oscillator. We first describe what happens during half a period. Then we
iterate.

Up to now, the branch lines we have encountered have been intervals—segments
of R1. However, it is only necessary that the branch line be one-dimensional. In
the case of the van der Pol oscillator the branch line(s) is a segment with endpoints
identified, a circleS1. This comes about because the van der Pol oscillator undergoes
a Hopf bifurcation on its way to chaos. The intersection of the strange attractor with
a Poincaŕe section can be embedded in an annulus. Under the Birman–Williams
projection, the annulus is mapped toS1, and under the (semi)flow,S1 is mapped to
S1.

Under the flow, stretching takes place. Stretching is followed by folding. However,
only an even number of folds can occur, because of the global boundary conditions.
In Fig. 5.11(a) we show both a branched manifold that describes the flow and a
return map ofS1 to itself [Fig. 5.11(b)]. It is clear from this figure that twofolds
must occur (more generally, folds must be paired). The standard representation of
a branched manifold is shown in Fig. 5.11(c). This is obtained by splitting open
the flow shown in Fig. 5.11(a) and identifying the edges of theflow. The algebraic
description for this flow is shown in Fig. 5.11(d). The discontinuity of local torsion
for contiguous branches, as shown by the diagonal matrix elements of the topological
matrix, is intimately related to the global boundary conditions (S1 instead ofR1).

Figure 5.11 describes a strange attractor generated by a stretch and fold mechanism
acting on an annulus but without the twofold symmetry exhibited by the van der
Pol oscillator [2]. To construct a branched manifold for thevan der Pol oscillator,
the mechanism shown in Fig. 5.11 must be appropriately iterated. We illustrate
what happens, in some range of control parameters, in Fig. 5.12. If the pinching
during the first half cycle occurs at the top, the pinching during the second half cycle
must occur at the bottom to account properly for the inversion part of the symmetry



EXAMPLES OF BRANCHED MANIFOLDS 183

Fig. 5.10 The stretching and squeezing mechanism for the Duffing oscillator is essentially
the second iterate of the stretch and fold mechanism for the extended Smale horseshoe, with
suitable modifications. Stretching and squeezing during the first half cycle is shown on the
left. The second half cycle is shown on the right. (a) A branchline with three large segments is
shown. Each segment is divided into three smaller segments.All are labeled as shown. (b) The
branch line is stretched by a factor of 3 and scrolled. (c) Thestretched branch line is rotated by
π radians in the direction of the scroll rotation and squeezed(d). (e) The squeezed branch line
is again stretched by a factor of 3 and scrolled (f) and rotated by π radians (g) and squeezed
(h). The period-1 orbits can be located by the method indicated in Fig. 5.9 and their linking
numbers computed. The local torsion of the period-1 orbit through branch(i, j) is i + j. This
information is sufficient to construct the topological matrix. Array information can be read
directly from (g) or (h).



184 BRANCHED MANIFOLDS

Fig. 5.11 What happens during half a cycle in the van der Pol oscillator. (a) The flow along
the cylinder is pinched out, deformed, and folded back to thecylinder. The branched manifold
is shown on the left. (b) The return map of the branch lineS1 is a circle map. (c) The flow in
(a) is slit open, showing three branches for the branched manifold. (d) The topological matrix
and array can be determined by inspection. The discontinuity of local torsions for contiguous
branches is a signature that nonlocal boundary conditions must be imposed.
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[(x, y) → −(x, y)]. In this iteration, a total of nine branches is created. In Fig. 5.12
we present a caricature (cartoon) of this van der Pol mechanism which is similar to
that presented in Fig. 5.10 for the mechanism at work in the Duffing oscillator.

Fig. 5.12 What happens during each half of a full cycle in the van der Poloscillator in terms
of return maps. The flow along the cylinder is pinched out, deformed, and folded back to the
cylinder during each half cycle. The deformations occur on opposite sides of the cylinder to
respect the symmetry(x, y, t) → (−x,−y, t + 1

2
T ). Each iterated stretch (by a factor of 3)

and squeeze creates a total of nine branches.

As control parameters vary, the size of the pinched regions changes. It is possible
to predict how new branches must be added to describe the chaotic dynamics as the
pinched region becomes enlarged.
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5.7 UNIQUENESS AND NONUNIQUENESS

Flow dynamics are conveniently represented by limits, or cartoons. This cartoon is
a branched manifold. Branched manifolds were originally introduced to describe the
unique organization of all the unstable periodic orbits in hyperbolic strange attractors.
They also succinctly describe the stretching and squeezingmechanisms that generate
strange attractors.

Many apparently different branched manifolds predict the same spectrum of or-
bits and the same topological organization (spectrum of linking numbers) of these
orbits. Thus, there is not a 1:1 correspondence between branched manifolds and flow
dynamics. This is somewhat analogous to the representationtheory of groups. A
single group can have many different inequivalent 1:1 (faithful) representations. In
some sense, the group is fundamental and the matrix representations are simply a
convenient means of performing computations. In the same way, the dynamics is
fundamental and branched manifolds are convenient ways fordoing calculations and
classifying dynamics.

Definition: Two branched manifolds areflow equivalent if they predict the same
spectrum of periodic orbits and these orbits have the same topological organization.

At the simplest level, a single branchedmanifold can have many different algebraic
representations. An algebraic representation is obtainedby projecting a branched
manifoldBM ⊂ R3 onto a planeR2 ⊂ R3. Different projections give different
algebraic representations.

Definition: Two branched manifolds areprojection equivalent if their algebraic
representation differs only through their projection.

More generally, branched manifolds for the same flow can be geometrically differ-
ent structures. The geometric differences can be due eitherto local moves or to global
moves. A theory seems to exist to describe the equivalence ofgeometrically distinct
branched manifolds under local moves. At present, there seems to be no theory to
describe the equivalence of geometrically distinct branched manifolds under global
moves.

In the first subsection we describe the local moves that can beused to transform one
branched manifold into a geometrically different but flow-equivalent branched mani-
fold. In the second subsection we describe three flow-equivalent branched manifolds
that differ by global moves.

5.7.1 Local Moves

Knots and links remain invariant undera small number of Reidemeister moves. Braids
remain invariant under the two types of braid relations thatdefine braid groups. In
the same way, branched manifolds remain invariant under a small number of local
moves. These moves are:

• Branch line twists

• Writhe–twist exchange
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• Branch line reversal

• Concatenation of inflows or outflows

• Branch line splitting

These moves are illustrated in Fig. 5.13.
In Fig. 5.13(a) we show two inflow branches joined at a branch line to an outflow

branch. If the branch line is given half a twist in the clockwise direction, as shown in
the middle of Fig. 5.13(a), the two inflow branches have theirlocal torsion changed
by +1 and the outflow branch will have its local torsion changed by−1. In addition,
the order in which the two inflow branches are joined at the branch line is reversed.
If an additional half twist is given to the branch line (right), the local torsion of the
incoming and outgoing branches is again changed by±1, the order of joining is
again reversed, and in addition the two incoming branches have their linking number
increased by+1. Thus, the effect of a full twist on a branch line is that the local
torsion of the incoming branches is changed by+2 and that of the outgoing branch
is changed by−2, the linking number of the two incoming branches is changed by
+1, and the order in which the incoming branches is joined at thebranch line is
unchanged. Twisting in the opposite direction changes all signs.

Figure 5.13(b) shows how writhe and twist can be exchanged; this was described
earlier. In Fig. 5.13(c) we show how interchanging the spatial position of two branch
lines will force a full twist into a branch connecting these branch lines. The direction
of the twist depends on whether brancha moves in front of or behind branchb.

In Fig. 5.13(d) and (e) we show that orbit organization is unchanged by the con-
catenation of inflows with inflows or outflows with outflows. InFig. 5.13(d) we show
how the order of two branch lines can be exchanged. In fact, itis sometimes conve-
nient to draw the branched manifold with degenerate branch lines, as shown. In Fig.
5.13(e) we show that splitting points can also be concatenated. This representation is
convenient when the stretch in a local region of phase space is larger than a factor of
2. In fact, it is useful to show a branch line feeding[exp(λ1)]+1 branches in regions
of phase space where the maximum local Lyapunov exponent isλ1 ([x] is the integer
part ofx).

In Fig. 5.13(f) we extend the inflow to the splitting point back beyond the nearest
branch line into the two inflows that join at the branch line. This does not affect any
periodic orbits, since no inverse image of any splitting point lies on a periodic orbit.

5.7.2 Global Moves

In Fig. 5.14 we show three geometrically inequivalent branched manifolds that are
flow equivalent. The first is the branched manifold that holdsall the closed magnetic
field lines produced by a current flowing in a wire tied into theshape of a figure 8 knot.
This branched manifold holds aesthetic appeal since it manifestly exhibits a rotation
symmetry. This branched manifold has eight branches, whichmay be labeledaα,
ab, and so on. The incidence matrix shows the connectivity of these branches; for
example,aβ is not an allowed transition.
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Fig. 5.13 Branched manifolds are flow equivalent under the following local moves. (a) The
branch line is given a half twist. The inflow branches have their local torsion changed by+1,
the outflow branch local torsion is changed by−1, and the order in which the inflow branches
are joined at the branch line is reversed. When the branch line is given a full twist, the order
of joining is unchanged. However, the local torsion of the inflow and outflow branches is
changed by+2 and−2, and in addition the inflow branches link each other with a linking
number+1. (b) Writhe and twist can be exchanged. (c) Interchanging the location of branch
lines introduces a full twist into branches connecting them. (d) Topological organization is
respected by interchanging the order of inflows. It is sometimes convenient to make the
branch line degenerate. (e) Concatenated splitting chartscan be treated the same way. This
is convenient when the local Lyapunov exponent is larger than ln 2. (f) The splitting point is
extended backward beyond the nearest branch line in its past.
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Table 5.1 Linking numbers for orbits to period 3 on the three representation of figure 8 flow
dynamics

αβ αa βb αaαβ αaba αβba αβbβ βbab
ab βαab

x, y, z xy yz x2y xy2 xyz y2z yz2

0, 1, 2 01 12 021 012 012 122 122

0, 1, 2 0 0 0 0 0 0 0 0
01 0 −1 0 −1 −1 −1 0 0
12 0 0 1 0 0 1 1 1

021 0 −1 0 −2 −1 −1 0 0
012 0 −1 0 −1 −2 0 0 0
012 0 −1 1 −1 −1 0 1 1
122 0 0 1 0 0 1 2 1
122 0 0 1 0 0 1 1 2

The second branched manifold shown in Fig. 5.14 was computedin [84]. There
are again eight branches. The incidence matrix shows that the only transition not
allowed isxz. The third branched manifold is flow equivalent to the second; both
have the same spectrum of periodic orbits with the same topological organization.
However, this third representation of the flow dynamics has ahole in the middle.
This feature automates the computation of linking numbers.

With two exceptions, there is a 1:1 correspondence between the periodic orbits of
the branched manifolds in Fig. 5.14(a) and (b). The two orbitsαβ andab correspond
to the three period-1 orbitsx,y, andz, while the two orbitsαβba andβαab correspond
to the single period-3 orbitxyz. There is a 1:1 correspondence between the periodic
orbits of the two branched manifolds shown in Fig. 5.14(b) and (c). Table 5.1 provides
the linking numbers for the closed orbits up to period 3 on these three flow-equivalent
branched manifolds.

For some purposes, it is convenient to simplify the description of the dynamics by
expressing the branched manifold shown in Fig. 5.14(c) as a subbranched manifold
of one showing afull shift. This idea is illustrated in Fig. 5.15. In the full-shift case,
all periodic orbits based on three symbols are possible, including orbits containing
the symbol sequence· · · 02 · · · . Such orbits do not occur in the branched manifold
shown in Fig. 5.15(a).

For convenience,we show the return map for fourbranchedmanifolds in Fig. 5.16.
Figure 5.16(a) provides the return map (tent map) for a Smalehorseshoe template.
Figure 5.16(b) and (c) provide the return maps for the two branched manifolds shown
in Fig. 5.15. Figure 5.16(d) provides the return map for a branched manifold with
four branches, of which branch 1 is orientation reversing. In each case the expansion
is uniform. In three cases the branched manifold is fully expanding: case (b) is not.
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Fig. 5.14 (a) The branched manifold that describes the organization of all the closed magnetic
field lines generated by a current-carrying wire tied into the shape of a figure 8 knot has eight
branches. In this representation it manifests the rotational symmetry of the figure 8 knot.
(b) The direct model of this branched manifold is simpler to deal with. The two branched
manifolds are flow equivalent. With two exceptions, there isa 1:1 correspondence between
periodic orbits on these two branched manifolds. (c) This third branched manifold is flow
equivalent to the first two. It has a hole in the middle. This greatly simplifies the problem of
computing the linking numbers for all the periodic orbits inthe flow. The incidence matrices
are given for each of these branched manifolds. The algebraic description of the third is given
explicitly. Adapted with permission from Birman and Williams [84].

5.8 STANDARD FORM

By using the moves described in Section 5.3, any branched manifold can be trans-
formed, after projection toR2, into the standard form shown in Fig. 5.17 [96, 97].
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Fig. 5.15 The branched manifold (a) is a subtemplate of the one in (b). Some orbits on the
right-hand branched manifold do not exist on the left-hand template. Those that exist on the
subtemplate are organized in exactly the same way as their counterparts on the right.

Fig. 5.16 Return maps for four branched manifolds. In each case the expansion is uniform.
(a) The two branch Smale horseshoe template has a return map that is a tent map. (c) The three
branch template shown in Fig. 5.15(b) is fully expanding, whereas (b) the subtemplate shown
in Fig. 5.15(a) is not. (d) The four-branch template has one orientation-reversing branch.
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Fig. 5.17 Useful standard form for branched manifolds. All twisting occurs in region A1
and all crossing occurs in region A2. This information is summarized in a topological matrix
T . All squeezing occurs in region B. This information is summarized in an arrayA. A Markov
transition matrix (shown on the left for this template) shows how the branches are connected.

Each branch line is divided into segments by locating preimages of each tear point on
the branch lines. The return flow from each branch line (bottom) feeds the segments
of the branch lines (top). The stretch and squeeze mechanisms that generate chaos
are described as follows:

• Branches twist but do not cross in the region labeled A1. The twists are assigned
integer values 0,±1,±2, . . . in the same way as for knots: The twist of a branch
is the signed number of crossings of the edges of that branch.

• Branches cross but do not twist in the region labeled A2. The crossings are
assigned integer values 0,±1,±2, . . . in the same way as for knots by shrinking
each branch down to a single curve. The information contained in regions A1
and A2 is summarized algebraically by a topological matrixT .

• Branches are squeezed together in the region labeled B. One convention is
that the integers indicating ordering are larger the farther from the observer
(i.e., increasing from top to bottom). The information contained in region B is
summarized in arrayA.

• A Markov transition matrix is introduced to identify which branches are con-
nected to which.
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5.9 TOPOLOGICAL INVARIANTS

Linking numbers for any pair of periodic orbits on a branchedmanifold can be com-
puted. The computation depends only on the algebraic description of the branched
manifold. The computations simplify considerably when thebranched manifold has
a hole in the middle. That is, much simplification occurs whena series of local or
global moves can be exploited to transform the branched manifold to a form in which
all the stretching and squeezing is represented between twobranch lines that are iden-
tified by a return flow which neither stretches nor squeezes. This representation for a
branched manifold is particularly convenient because eachtrip around the hole in the
middle corresponds to one period. Such a flow has one Poincaré section, which can be
taken as the branch line. We describe the systematics of linking number computations
for branched manifolds of this type below.

5.9.1 Kneading Theory

When only one branch line is present, it is possible to define an order along this
branch line. We adopt the convention that the order increases from left to right. We
assume that the branched manifold hasn branches, labeled0, 1, 2, . . . , n−1 from left
to right, for lack of imagination. We also assume for convenience that the incidence
matrix is full (cf. Fig. 5.15). This causes no problem: We cansimply ignore periodic
orbits that are forbidden by the original incidence matrix.

Under these conditions every orbit of minimal periodp is represented by a symbol
sequence(σ1σ2 · · ·σp)

“∞” , or

σ1σ2 · · ·σp σ1σ2 · · ·σp · · ·

After one period the symbol sequence advances to

σ2 · · ·σpσ1 σ2 · · ·σpσ1 · · ·

Advancing by a period amounts to cyclic permutation of the symbols (symbolic dy-
namics).

We now wish to locate periodic orbits on the branched manifold. We do this by
computing the “address,” or “zip code,” along the branch, for each of thep initial
conditions of a periodp orbit.

The address along the branch line is computed as follows:

1. Write out the symbol code for one of the initial conditions. For example:

σ1σ2 · · ·σp σ1σ2 · · ·σp · · ·

2. Conjugate each symbol following passage through an orientation-reversing
branch. Orientation-reversing branches are branches thattwist through an odd
multiple of π radians. These branches have negative parity, where the parity
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of branchi is defined asP(i) = (−1)Tii andTii is the appropriate element of
the topological matrix. The conjugate ofσi is σ̄i, where

σi + σ̄i = n − 1 (5.6)

3. This process producesa symbol sequence of period eitherp or2p, depending on
whether the orbit goes through an even or odd number of orientation-reversing
branches. The symbol sequence is the address, in normal numerical order, for
the initial condition along the branch line.

4. This process is repeated for the remaining initial conditions of the period-p
orbit.

Example: Assume that we have a template with four branches 0, 1, 2, 3, and
branch 1 is orientation reversing [cf. Fig. 5.16(d)]. To findthe address of 0213 along
the branch line, we perform the following simple calculation:

0213 0213 0213 · · · → 0213̄ 0̄2̄1̄¯̄3 0213̄ · · ·
= 0210 3123 0210 · · · (5.7)

This is repeated three more times for the additional three initial conditions. The four
addresses for the passage of this period-4 orbit through thebranchs of this four-branch
manifold have period 8:

Initial Fraction
Condition Address Base 10 Decimal

0213 0210 3123 9435/65535 0.143969
2130 2103 1230 37740/65535 0.575875
1302 1031 2302 19890/65535 0.303502
3021 3021 0312 51510/65535 0.785992

(5.8)

Every point on a branch line is the address for an initial condition for some orbit
through the branched manifold. The address may be represented by a symbol string:
a1a2a3 · · · . Two possibilities arise:

Irrational: The symbol string is never repeating. Such symbol strings represent
irrational numbers and nonrepeating (chaotic) orbits.

Rational: The symbol string is eventually repeating. Such symbol strings repre-
sent rational numbers and orbits that are either periodic, finite, or eventually
periodic.

Periodic orbits of periodp are described by a repeating sequence ofp symbols
(σ1σ2 · · ·σp)

∞, as described above. The address is a symbol sequence of period p
or 2p. We compute the rational fraction for a single case, then present the general
result. On the Smale horseshoe template with orientation-preserving branch 0 and
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orientation-reversing branch 1, the period-3 orbit(011)∞ has a period-3 address
(010)∞. The rational fraction for this address is

010 010 010 · · · → 0
2 + 1

22 + 0
23 + 0

24 + 1
25 + 0

26 + 0
27 + 1

28 + 0
29 + · · ·

→
(

0 × 22 + 1 × 21 + 0 × 20
) (

1
23 + 1

26 + 1
29 + · · ·

)

=
0 × 22 + 1 × 21 + 0 × 22

1 × 22 + 1 × 21 + 1 × 22
=

010

111
(5.9)

This calculation has been done in the binary system. To be strictly accurate, we
should write the exponents2, 3, 4, 5, . . . as10, 11, 100, 101, . . . . Conversion to the
more familiar decimal system is simple:

010

111
→

0 × 22 + 1 × 21 + 0 × 22

1 × 22 + 1 × 21 + 1 × 22
=

2

7
= 0.285714 285714 . . . (5.10)

For the more general case, of a periodic address on ann-branched manifold, the
result proceeds in a similar fashion. The “n-imal” rational fraction address for the
period-4 orbit0213describedabove is(02103123)/(3333 3333),where3333 3333 =
48 − 1. This fraction is easily converted to base 10 and its decimalequivalent:

0213 → 0210 3123 → 0210 3123

3333 3333
→ 9435

65535
→ 0.1439688716 (5.11)

These results are summarized for the four initial conditions of this orbit in Eq. (5.8).
Finite orbits are orbits that reach a splitting point on a branch after a finite number

of periods. Splitting points are initial conditions for flows to a fixed point. The address
for a finite orbit is a finite symbol sequence. Splitting points for templates with two,
three, and fourbranches are shown in Fig. 5.16. For the threefully expansive branched
manifolds shown in this figure, with two, three, and four branches, the addresses of
the splitting points are12 ; 1

3 and 2
3 ; and 1

4 , 2
4 , and 3

4 ; respectively. For the nonfully
expanding template, the addresses are2

8 and 5
8 .

We illustrate the basic idea by computing the itinerary of the finite orbit3212on the
four-branch manifold discussed above, whose return map is shown in Fig. 5.16(d).

Initial Condition Address Fraction

3212 3211 3
41 + 2

42 + 1
43 + 1

44

212 211 2
41 + 1

42 + 1
43

12 11 1
41 + 1

42

2 2 2
41

(5.12)

Eventually periodic orbits are represented by symbol sequences that eventually
become periodic. As an example, the orbit with symbol sequence(01)2(011)∞ on
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the Smale horseshoe template settles down to a period-3 orbit after four periods. The
address for this initial condition is

01 01 011 011 · · · → 01 10 010 010 010

→ 0
21 + 1

22 + 1
23 + 0

24 + 0
25 + 1

26 + 0
27 + 0

28 + 1
29 + 0

210 + · · ·

= 0110
10000 + 1

10000
010
111

= 6
24 + 1

24
2
7 → 0.39285714

∞

(5.13)
We summarize these results now for a branched manifold withn branches, a full

incidence matrix, and uniform expansion along the branch. It is convenient to express
results in a number system based onn and the correspondingn-imal fractions in the
interval[0, 1] of the branch line.

1. There is a 1:1 correspondence between irrational numbers and initial conditions
for chaotic orbits.

2a. There is a 1:1 correspondence betweenn-mal fractions of the form

integer

np − 1
or

integer

n2p − 1
(5.14)

and initial conditions for orbits of periodp.

2b. There is a 1:1 correspondence betweenn-mal fractions of the form

integer

nk
(5.15)

and initial conditions for finite orbits ofk periods.

2c. There is a 1:1 correspondence between all othern-mal fractions, which have the
form

integer

nk
+

1

nk
× integer

np − 1
or

integer

nk
+

1

nk
× integer

n2p − 1
(5.16)

These fractions describe orbits that settle down to period-p orbits afterk tran-
sient periods.

The irrationals are dense on the interval. So also are (separately) all fractions of
the form (5.14), (5.15), and (5.16). As a result:

1. Chaotic orbits are dense on branched manifolds.

2a. Periodic orbits are dense on branched manifolds.

2b. Finite orbits are dense on branched manifolds.

2c. Eventually periodic orbits are dense on branched manifolds.

These denseness statements hold when the branched manifoldis blown back up
to the original strange attractor.
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5.9.2 Linking Numbers

Once the locations of periodic orbits on a branched manifoldhave been determined,
computation of the linking numbers is simply a matter of counting crossings. We
illustrate by computing the linking number of the orbits01 and 011 on a Smale
horseshoe template. The results of the computation are shown in Fig. 5.18.

Fig. 5.18 Initial conditions for period-2 orbit 01 and period-3 orbit011 on the Smale horse-
shoe template are computed in Eq. (5.18). These two orbits are draped over the interesting part
of this branched manifold. The linking and self-linking numbers are computed by counting
crossings. For these orbits,SL(01) = +1, SL(011) = +2, andL(01, 011) = +2.

The period-2 orbit01 goes through the orientation reversing branch 1 once. There-
fore the addresses of its two initial conditions have period4. The period-3 saddle
011 goes through the orientation-reversingbranch twice, so its three initial conditions
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have period 3. The addresses, and corresponding decimal fractions, are:

Initial Decimal
Condition Address Fraction

01 01 10 6/15
10 11 00 12/15
011 010 2/7
110 100 4/7
101 110 6/7

(5.17)

These five addresses are shown along the branch line of the Smale horseshoe template.
The order of these initial conditions is simple to read off from either the binary
representation or the decimal fraction:

010
2/7

<
01 10
2/5

<
100
4/7

<
11 00
4/5

<
110
6/7

(5.18)

Computing the linking numbers is now simply a matter of counting crossings. The
self-linking numbers of the period-2 and period-3 orbits are SL(01) = +1 and
SL(011) = +2. The computation is shown at the bottom of Fig. 5.17. The compu-
tation of the linking numberL(01, 011) = 1

2 (1 + 1 + 1 + 1) = +2 is also shown
at the bottom of Fig. 5.18. Computation of linking numbers onbranched manifolds
with a hole in the middle have been reduced to a FORTRAN code, which is available
at the authors’ Web site.

5.9.3 Relative Rotation Rates

Computation of relative rotation rates follows a very similar algorithm. Two orbits of
periodspA andpB are draped over a branched manifold. Two initial conditionsare
joined by an oriented line segment, and the number of half twists that this segment
undergoes as it evolves throughpA × pB periods is counted. This integer is divided
by 2 × pA × pB. This calculation is repeated for all other initial conditions. This
bookkeeping has also been reduced to a FORTRAN code, which isavailable at the
Web site listed above. The inputs are the same as for the linking number computation.
The output is a table of relative rotation rates.

The computation can be simplified using the procedure introduced in Section 4.3.2.
That is, it is sufficient to construct a(pA +pB)× (pA +pB) crossing matrixC which
summarizes the crossing information in the nontrivial partof the branched manifold.
A cyclic permutation matrixP must also be constructed. This indicates how the
initial conditions from one period are mapped to the initialconditions for the next.
Then it is sufficient to construct the matrix [cf. Fig. 4.17].

RRR =
1

2 × pA × pB

pA×pB
∑

k=1

P−kCP k (5.19)
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Thep2
a matrix elements of the upper diagonalpA × pA matrix are the self-relative

rotation rates for orbitA, and similarly for orbitB. ThepA × pB matrix elements of
either of the two off-diagonal matrices are the relative rotation rates of orbitA with
orbit B.

5.10 ADDITIONAL PROPERTIES

Branched manifolds have a number of additional properties that we have not yet
discussed. We describe a number of these properties below.

5.10.1 Period as Linking Number

It is often a simple matter to define the period of a closed orbit. For example, in driven
dynamical systems the (dynamical) period of a closed orbit is an integer multiple of
the driving period. Specifically, it is the number of distinct intersections of the orbit
with a Poincaŕe section. This remains true when the phase space has the structure of
a torus:R2 × S1.

In more complicated cases it is not quite so obvious how to define the period of
a closed orbit. For example, what is the period of a closed orbit on the Figure 8
branched manifold?

The period of a nontrivial closed orbit must always be a positive integer. There is
a natural way to construct integers from closed orbits. Thisinvolves computation of
linking numbers. Thus, it should be no surprise that it is always possible to define
a topological period of a closed orbit on a branched manifoldas the linking number
of that orbit with some reference closed orbit which does notintersect the branched
manifold. Then the topological period of a closed orbitA with respect to the
reference loop is [84]

topological period(A) = LN(Ref, A) (5.20)

where Ref is the reference loop. For the figure 8 branched manifold, one reference
loop may be taken as the figure 8 knot itself. Other reference loops can also be used.

On the figure 8 branched manifold shown in Fig. 5.19, the closed orbitsab andαβ
each have topological period 1, while the closed loopsaα andbβ each have period 2.

5.10.2 EBK–like Expression for Periods

Computing the topological period of a closed orbit on the figure 8 branched manifold
can be simplified by deforming the reference loop. Such a deformation is shown in
Fig. 5.19. The reference loop consists of the figure 8 knot itself. The deformed loop
consists of a union of four loops. One each surrounds the branch linesb andβ, one
each surrounds the branchesaα andαa. Then the period of any closed loop is the sum
of the linking numbers of that loop with the four loops resulting from deformation of
the figure 8 knot.
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Fig. 5.19 The figure 8 knot is deformed to the union of four much simpler loops. This greatly
simplifies computation of the topological period of any closed orbit on the branched manifold
of the figure 8 knot. Adapted with permission from Birman and Williams [84].

This argument is general. We can deform the reference orbit for any branched
manifold and write it as the union of “fundamental loops”:Ref → ∪iCi. We can
then write the topological period of any closed orbitA as the sum of the linking
numbers ofA with each of the fundamental loopsCi:

period(A) = LN(∪i=1Ci, A) =
∑

i=1

LN(Ci, A) (5.21)

This result is very similar to the Einstein–Brillouin–Keller (EBK) quantization
formula. The phase change of a single-valued wavefunction around any closed loop
in its configuration space must be an integer multiple of2π. The phase change is an
action integral, so that

∮

L

p dq =

∮

P

i miCi

p dq =
∑

i

mi

∮

Ci

p dq (5.22)

The integrals around the closed loopsCi are themselves quantized:

1

2π~

∮

Ci

p dq = ni +
1

4
βi (5.23)

Here bothni andβi are integers. The integerβi is the Maslov index for the loop.
The integersni have a natural interpretation as quantum numbers.
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The loopsCi in (5.21) must be chosen as a basis set in the sense that every closed
orbit A satisfiesLN(Ci, A) ≥ 0, at least one of these linking numbers is positive for
eachA, and inequivalent closed orbitsA andB have inequivalent linking numbers
with the basis loopsCi.

5.10.3 Poincar é Section

Poincaŕe introduced an ingenious idea to reduce the study ofn-dimensional flows to
the study of(n−1)-dimensional maps. The idea is to introduce(n−1)-dimensional
surface(s) into the phase space. The surfaces are called variously thePoincaré surface,
the surface of section, the Poincaré section, and so on. These surfaces have the
property that the flow is transverse to the surface, always meets the surface from the
same side, and almost all initial conditions meet the surface of section a countable
number of times.

It is possible to define a Poincaré surface for any flow that satisfies the conditions of
the Birman–Williams theorem. We first define the Poincaré section for the semiflow
Φ̄t on the branched manifoldBM. The Poincaŕe section is simply the union of the
branch lines:

Poincaŕe section= ∪ branch lines (5.24)

For the figure 8 branched manifold the Poincaré section is the union of the four branch
linesa, b, β, andα: Poincaŕe section= a ∪ b ∪ β ∪ α.

To construct the Poincaré section for the original flow, we “undo” the original
Birman–Williams projection. This blowing-up process is described in more detail
below. Briefly, each branch line is expanded against the stable direction to form a
disk or rectangle. The expansion must be sufficient to ensurethat the flow under
Φt in the neighborhood of the branch line intersects the disk orrectangle. Then the
Poincaŕe section for the original flow is the union of the disks obtained by blowing
up the branch lines ofBM.

5.10.4 Blow-Up of Branched Manifolds

It is often useful to “inflate” or “blow up” a branched manifold in order to get a better
approximation of the original dynamics. This is done by expanding the branch lines
to “branch rectangles” against the strongly contracting direction. In a sense, this
reverses the Birman–Williams projection.

We illustrate this process in Fig. 5.20. To do this, the negative Lyapunov exponent,
whose limit is−∞ in the construction of the branched manifold, is allowed to be
finite. The stretch and squeeze factors for the mapR2 → R2 are thenµ = ±eλ1 and
ν = ±eλ3 , with |µ| > 1 > |ν| > 0.

Periodic orbits in the mapR2 → R2 can be located by a method somewhat more
involved than the kneading theory construction. Forward and backward iterates of the
map are constructed. Their intersection defines a fractal inR2. This construction is
carried out explicitly for the two-branch mapping associated with a Smale horseshoe
in Section 2.10. The intersections of the forward and backward iterates provide
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Fig. 5.20 A two-branch template is inflated by expanding against the contracting direction.
The result provides an invertible mapR2

→ R2.

addresses for all orbits in the flow and map. Needless to say, topological invariants
remain invariant under inflation.

We should point out here, forcefully, that the fractal structure of a strange attractor
comes about from repetition of the stretching and and squeezing processes in phase
space. If one knows the topological structure of the attractor, as exemplified by its
branched manifold, it is possible to compute geometric quantities such as Lyapunov
dimension and fractal dimensions, simply by inputting the positive and negative Lya-
punov exponentsλ1 andλ3, or else a distribution of values for the local Lyapunov
exponentλ1(x) andλ3(x). In this sense, the topological structure (branched mani-
fold) is fundamental, the Lyapunov exponents are inputs, and all geometric invariants
are derived quantities. From the geometric quantities alone, it is not possible to
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make any statements about stretching and squeezing mechanisms, much less about
the branched manifold, which defines and classifies the dynamics.

5.10.5 Branched-Manifold Singularities

A two-dimensional branched manifold has two types of singularities. These are of
dimension 0 and 1. The zero-dimensional singularity is a splitting point. This point
describes stretching mechanisms. The one-dimensional singularity is the branch line.
This line describes squeezing mechanisms. Between them, these two singularities
describe the processes that build up a strange attractor inR3.

Things are not quite as simple in higher dimensions. For starters, there is no
Birman–Williams theorem. However, it is still possible to carry out a Birman–
Williams projection (5.1). In the simple case whereλ1 > λ2 > λ3 = 0 > λ4 and
λ1 + λ2 + λ3 + λ4 < 0, the identification (5.1) maps the flow to a three-dimensional
structure. This is a manifold almost everywhere. Its three directions correspond to
the two stretching directions and the flow direction. However, it is not a manifold
because it contains singularities. Singularities occur with dimension 0, 1, and 2. We
do not have a clearcut identification of singularities with the stretching and squeezing
processes.

5.10.6 Constructing a Branched Manifold from a Map

It is sometimes necessary to reconstruct properties of a flowsimply from a return
map. We illustrate how this can be done, using a simple example.

We consider here a map that has a period-3 orbit. The intersections of this orbit
with a Poincaŕe section ares1, s2, s3, and under the flows1 → s3 → s2 → s1. The
map, and the folding that it forces, are shown in Fig. 5.21(a).

Other representations of this flow are possible. A second is shown in Fig. 5.21(b).
Here the cyclic permutation is expressed as the compositionof two interchanges:
(s1, s2, s3) → (s2, s1, s3) → (s2, s3, s1). The branched manifold that describes this
process is shown in Fig. 5.21(c). A return map on the interval(s1s2s3) is given in
Fig. 5.21(d).

5.10.7 Topological Entropy

The incidence matrix provides information about the connectivity of a branched man-
ifold. Equivalently, it provides information about which paths through the branched
manifold are allowed and which are not. It is very useful to label the rows
and columns of the incidence matrix by branch lines. This wasdone to describe the
connectivity of the branched manifold for the figure 8 knot interms of a4× 4 matrix
[cf. Fig. 5.14(a)]. Although this is sometimes useful, it isoften inadequate. For
example, the Smale horseshoe template has one branch line, which would yield a
1 × 1 incidence matrix. Whatis sufficient is the following. Extend each splitting
point back to the nearest branch line in its past. Then each branch line is the union
of a small number of pieces. Under this construction, the branch line for the Smale
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Fig. 5.21 Two ways to construct a branched manifold from a map. (a) The deformation of
the line joining the three points of the period-3 orbit is shown. (b) The deformation of the line
segment is carried out in two steps. The first interchangess1 ands2, the second interchanges
s1 ands3. (c) This branched manifold describes the deformation. (d)The return map for the
branch line onto itself is shown. Adapted with permission from Birman and Williams [84].

horseshoe template has two pieces, while each of the four branch lines in Fig. 5.14(a)
has two components. The incidence matrix for the Smale horseshoe is the full2 × 2

matrix

(

1 1
1 1

)

, and that for the template of the figure 8 knot is a sparse8 × 8

matrix. In general, we adopt the smallest suitable incidence matrix.
The matrix element(I2)ik describes the number of distinct ways it is possible to

travel from branchi to branchk in two steps,

(I2)ik =
∑

j

IijIjk (5.25)
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For the branched manifold in Fig. 5.14(c),





1 1 0
1 1 1
1 1 1





2

=





2 2 1
3 3 2
3 3 2



 (5.26)

This shows, for example, that there are two ways to go from branchy to branchz:

y → x → z No
y → y → z Yes
y → z → z Yes

(5.27)

More generally,(Ip)ik is the number of distinct ways of going fromi tok in p distinct
steps. Ifi = k, (Ip)ii is the number of distinct ways of starting and ending at branch
i in p distinct steps.

If each step is one period, then(Ip)ii is the number of distinct ways of starting and
ending at branchi in p periods. For the matrixI2 above, we find seven ways of going
around the branched manifold and getting back to the starting point in two periods:

x → x → x y → x → y
x → y → x y → y → y z → y → z

y → z → y z → z → z
(5.28)

Three of these involve period-1 orbits iterated twice. The remaining four paths are

x → y → x and y → x → y
y → z → y and z → y → z

(5.29)

The two pathsx → y → x andy → x → y belong to the single period-2 orbit
(xy)∞. Similarly for the pathsy → z → y andz → y → z, which are the paths of
(yz)∞ through the branched manifold starting from the two initialconditions. The
number of distinct period-2 orbits on this branched manifold is

N(2) =
1

2

[

tr(I2) − N(1)
]

=
1

2
(7 − 3) = 2 (5.30)

whereN(1) = 3 is the number of period-1 orbits:N(1) = tr(I).
The number of orbits of minimal periodp, N(p), is given by

pN(p) = tr(Ip) −
∑

k divides p

kN(k) (5.31)

The subtraction removes orbits that are of periodp but not ofminimalperiodp. Such
orbits are of periodp which “go around”m times, wherep/k = m (integer,m ≥ 2).

This algorithm is simple to implement. The only input is a suitable incidence
matrix. In Table 5.2 we show the number of distinct closed orbits of minimal period
p, N(p), for the Smale horseshoe template and the two branched manifolds shown in
Fig. 5.15.
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Caution: This spectrum is sometimes presented differently. Many orbits of period
p are saddle node pairs. Such pairs are often counted as a single orbit (type). In the
Smale horseshoe template the period-3 saddle node pair001 and011 is counted as
one orbit type. The period-4 saddle node pair0001 and0011 is counted as one,
while the orbit0111, period-doubled daughter of01, is counted as another. Since 5
is prime, the six period-5 orbits are counted as three saddle-node pairs. At period
6, one orbit(001 011) is the period-doubled daughter of001; the remaining eight
comprise four saddle-node pairs. The number 7 is prime, while at period 8 there are
the daughter of0001 and the daughter of0111 (itself the daughter of01, . . . ), giving
2+ 1

2 (30−2) = 16 orbit (types) of period 8. With this type of counting, the spectrum
of orbit types of periods1, 2, 3, 4, 5, 6, 7, 8, . . . on the Smale horseshoe template is
1, 1, 1, 2, 3, 5, 9, 16, . . . .

Inspection of Table 5.2 reveals that the number of orbits of period p increases
rapidly withp. In fact, the increase is exponential. We can write

N(p) ∼ ephT (5.32)

wherehT is the topological entropy. This number can be estimated directly from the
incidence matrix.

Here is how. If the eigenvalues ofI areλ1 > λ2 > · · · > λn, then

tr(I) = λ1 + λ2 + · · · + λn

tr(Ip) = λp
1 + λp

2 + · · · + λp
n

(5.33)

For p large andλ1 > λ2, λp
1 ≫ λp

2 and, to a good approximation,tr(Ip) ∼ λp
1. In

addition, the termskN(k) which are subtracted fromtr(Ip) in (5.31) are of the order
of (λ1)

k, k ≤ p/2. As a result, they can be neglected, and

N(p) ≃ 1

p
(λ1)

p ≃ ephT (5.34)

Taking logarithms, we find that

hT = ln(λ1) −
1

p
ln(p)

p→∞−→ ln(λ1) (5.35)

We provide the approximation(λ)p/p for orbits up to period 9 for the three cases
discussed in Table 5.2. For the two fully expanding templates, the incidence matrix has
rank 1, with eigenvalues2, 0 and3, 0, 0. In these cases,N(p) ∼ 2p/p and3p/p. In the
third case, the incidence matrix has rank 2 with two nonzero eigenvalues12 (3±

√
5).

ThenN(p) ∼ (2.618)p/p. In this case it is seen that the correction of the second
eigenvalue totr(Ip) = λp

+ + λp
−
→ (2.618)p + (0.382)p becomes insignificant asp

becomes large (p = 2, for example). It is also clear that the subtraction−∑

kN(k)
has the smallest effect forp prime (i.e.,p = 3, 5, 7) and the largest effect whenp is
the smallest number with the largest number of prime factors. Thus,N(p) ≃ λp/p
is a worse approximation forp = 8 = 23 than forp = 9 = 32.
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Table 5.2 Number of closed orbits up to period 9 in three different branched manifoldsa

Incidence
Matrix 1 2 3 4 5 6 7 8 9

(

1 1
1 1

)

2
2.0

1
2.0

2
2.7

3
4.0

6
6.4

9
10.7

18
18.3

30
32.0

56
56.9





1 1 0
1 1 1
1 1 1





3
2.6

2
3.4

5
6.0

10
11.7

24
24.6

50
53.7

120
120.4

270
275.9

640
642.0





1 1 1
1 1 1
1 1 1





3
3.0

3
4.5

8
9.0

18
20.2

48
48.6

116
121.5

312
312.4

810
820.1

2184
2187.0

aTop row, exact; bottom row,λp/p.

5.11 SUBTEMPLATES

Topological invariants of orbits and orbit pairs are unchangedunder control parameter
variation as long as the orbits exist. However, as control parameters are varied,
periodic orbits are created and/or annihilated. Therefore, it is not obvious that the
topological description of a strange attractor is invariant under control parameter
variation.

5.11.1 Two Alternatives

In fact, there are two options, which will be illustrated with respect to both the R̈ossler
and Lorenz attractors. Suppose that the Rössler equations are integrated for control
parameter values for which there is a strange attractor,andthat all the unstable periodic
orbits in the attractor are constructed from an alphabet with two symbols, 0 and 1.
If every possible symbol sequence is allowed, the attractoris hyperbolic. We have
never encountered such an attractor, either in simulationsof dissipative systems or in
the analysis of experimental data. In our experience, it is always the case that some
symbol sequences are forbidden.

For example, if the symbol sequence 00 is the only symbol sequence that is forbid-
den, every periodic orbit is constructed from a vocabulary with the two wordsa = 01
andb = 1. The flow, projected down onto a standard Smale horseshoe branched
manifold, does not extend over the entire branched manifold, as can be seen in Fig.
5.22(a). The Markov transition matrix for the original two-letter alphabet consisting
of 0 and 1 changes
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from M =

[

1 1
1 1

]

to M =

[

0 1
1 1

]

(5.36)

The part of the Smale horseshoe template that is not traversed by the projection of
the flow (the semiflow) is shown shaded in Fig. 5.22(a). It is constructed by observing
that the flow must never enter the left quarter of the branch line shown at the top, for
this encodes 00. Therefore, the two preimages of this part ofthe branch line must be
removed, as well as all the preimages of their preimages. What remains is a fractal
subset of the original branched manifold.

An alternative representation of this dynamics is given by the branched manifold
shown in Fig. 5.22(b). This is asubtemplateof the original two-branch template
shown in Fig. 5.22(a). The two branchesa = 01 andb = 1 represent flows through
(a) branches 0 followed by 1 in the Smale horseshoe template,and (b) through branch
1 in that template. All possible sequences involving the twowordsa andb are allowed.
The Markov transition matrix for this subtemplate is full. However, constructing the
subtemplate of Fig. 5.22(b) from the original shown in Fig. 5.22(a) is not easy—it
borders on nightmarish even for this simple case.

The subtemplate of Fig. 5.22(b) describes dynamics at the creation of the period-3
orbit 31. For other parameter values other vocabularies and grammars describe the
dynamics. In general, the number of words required grows with the wordlength. For
example, to wordlength 4 the required words might be 01, 011,and 0111. In general,
as longer and longer symbol sequences occur, new inadmissible sequences appear.
We can take this into account by increasing the number of words in the vocabulary.
Then in this representation of the dynamics:

• The subtemplate can in principle be constructed from the original template.

• It typically has an infinite number of branches.

• The number of branches corresponding to words of finite length is finite.

• Every possible sequence of words is allowed.

We are faced with a similar choice with another branched manifold. The flow
generated by the Shimizu–Morioka equations [2,98] is similar to the flow generated
by the Lorenz equations [cf. Fig. 5.8(c) with Fig. 8.5]. However, the former occupies
a subtemplate of the latter. The restriction of the Shimizu–Morioka flow on a Lorenz
template is shown in Fig. 5.23(a). On the original Lorenz template, some periodic
orbits are allowed and others forbidden. This corresponds to the fact that some symbol
sequences are forbidden in the Shimizu–Morioka flow. One possibility is to restrict
the projection of the flow to the part of the branched manifoldthat is shaded. Another
is to construct a subtemplate representing a vocabulary of allowed words which can
occur in arbitrary order. Such a subtemplate is shown in Fig.5.23(b). Once again,
constructing this simple subtemplate from the original Lorenz template borders on
the nightmarish.
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Fig. 5.22 (a) When the only forbidden symbol sequence 00, the flow is restricted to the
unshaded part of the Smale horseshoe template. Some orbits on the original template are
allowed; others are forbidden. The forbidden region consists of all preimages of the left
quarter of the upper branch. (b) The flow can be represented bythis subtemplate of the Smale
horseshoe template when only the symbol sequence 00 is forbidden.

Fig. 5.23 (a) The flow generated by the Shimizu–Morioka equations is restricted to the
shaded subset of the Lorenz template. (b) All orbits in the Shimizu–Morioka strange attractor
can be represented by this subtemplate of the original Lorenz template.
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5.11.2 A Choice

The two alternatives for representing dynamics that have been presented above are
summarized as follows:

1. As control parameters are varied, the basic template remains and describes all
the unstable periodic orbits in the strange attractor, and then some. Some of the
orbits predicted to exist by the template do not exist—they have been “pruned
away.” All that remain are organized as they were in the hyperbolic limit.

2. As control parameters are varied, the dynamics is represented by a series of
subtemplates. The vocabulary changes from one control parameter to another,
as does the template. In general, the subtemplates have an infinite number of
branches, but all possible word sequences are allowed.

Of these two alternatives, we adopt the first without hesitation, for the following
reasons:

• The template is invariant, or at least robust, under controlparameter variation.

• It is much easier to see how the flow gets “pushed around” on a template
than to work out how one subtemplate metamorphoses into another as control
parameters vary.

• With only one template to work with, the topological invariants of all orbits
need to be computed only once. As long as those orbits remain in existence
as the attractor changes with the control parameters, thesequantities remain
invariant.

• It makes no sense to force an interpretation in terms of subtemplates to pre-
serve an idea of hyperbolicity or full-shift dynamics when this is nongeneric in
dissipative physical systems in the first place.

• The global organization of a flow is largely determined by itsfixed points and
their insets and outsets, and by some low-period orbits and their stable and
unstable manifolds. Since these are robust under large variations in param-
eter values, we also want the caricature (template) to be robust under these
variations.

With this interpretation, templates are topological invariants under change of co-
ordinates and initial conditions. They are robust under change of control parameter
values. That is, they can remain unchanged under large changes of the control param-
eter values. However, under sufficiently large changes in control parameter values,
they can change (cf. Chapter 9). They can change by adding newbranches. They
can change also if the flow ceases to visit branches. In any case, the template must
change when the basic alphabet required for a symbolic encoding of the dynamics
undergoes a change.
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The changing nature of the dynamics over a fixed template can be described as fol-
lows, using the Lorenz template as an example. The two segments of the branch lines
L andR are divided inton1 andn2 segmentsL1, L2, . . . , Ln1 andR1, R2, . . . , Rn2 .
Then the linking numbers (topology) depend only on the symbol name (LRLL · · · ),
but the dynamics depend on the(n1 + n2) × (n1 + n2) Markov transition matrix.
This matrix describes, to some extent (the better the largern1 andn2) which orbits
are allowed in the flow and which have been pruned from the flow.

5.11.3 Topological Entropy

The problem of computing topological entropy for a map or a (semi)flow over a
branched manifold is simple when the Markov transition matrix describes allowed and
forbidden period-1 processes. Specifically, the topological entropy is the logarithm
of the largest real root of this matrix.

If time steps of varying length are the basic units, the problem of computing
topological entropy becomes more interesting. Since chaotic dynamics is described
in terms of letters, vocabularies, and grammars, it might beexpected that there is some
nontrivial relation between the concepts of chaos and thoseof communication. This
hope is not in vain: There is a strong connection. Many of the major problems were
formulated and answered by Shannon in his seminal contributions to communications
theory [44,45]. We first present Shannon’s results for communication channels. Then
we map these results to dynamical systems theory.

The capacity of a transmission channel is

C = lim
T→∞

1

T
log N(T )

HereN(T ) is the number of allowed signals of durationT andlog is to basee. First,
assume that an alphabet containsn symbolsS1, S2, . . . , Sn of lengthst1, t2, . . . , tn,
and that every possible symbol sequence is allowed. The number of symbol sequences
of lengtht is

N(t) = N(t − t1) + N(t − t2) + · · · + N(t − tn)

A well-known result from the theory of finite difference equations states thatN(t) is
asymptotic toAXt

0, whereA is a constant andX0 is the largest real solution of the
characteristic equation

Xt = Xt−t1 + Xt−t2 + · · · + Xt−tn

or, equivalently,
1 = X−t1 + X−t2 + · · · + X−tn

We assume that all words in the vocabulary have integer length and that there are
w(1) words of length 1,w(2) words of length 2 (i.e., they are two symbols long in
the original alphabet), and so on. Then the characteristic equation for this vocabulary
and grammar is
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1 =
∞
∑

p=1

w(p)

Xp
(5.37)

The topological entropy is the logarithm of the largest realroot of this equation.
In many grammars, not all symbol sequences are allowed (qu isOK but qv is

KO). In such cases, assume that there arem statesb1, b2, . . . , bm. For each state only
certain symbols from the setS1, S2, . . . , Sn can be transmitted (different subsets for
different states). The transmission of symbolSk from statebi to statebj (bi may be

the same asbj) takes timet(k)
ij . This process is illustrated by a graph such as that

shown in Fig. 2.17.
Theorem: The channel capacityC is log X0, whereX0 is the largest real root of

them × m determinantal equation

det

∣

∣

∣

∣

∣

∑

k

X−t
(k)
ij − δij

∣

∣

∣

∣

∣

= 0 (5.38)

We now translate these results into statements useful for computing the topological
entropy for a dynamical system. The table that effects the isomorphism between
topological entropy for dynamical systems and channel capacity for communication
systems is

Communication Systems Dynamical Systems

Graph Branched manifold
Si Branch
ti Period
bj Branch line
Channel capacity Topological entropy

Remark: Assume that a dynamical system is described by a branched manifold
with m branches and incidence matrixI. Transit through each branch takes one
period. Then (5.38) becomes

det

[

1

X
Iij − δij

]

= X−m det [Iij − Xδij ] = 0

As a result, in this case the topological entropy is the logarithm of the largest real
eigenvalue of the incidence matrixI.

In the following two subsections we consider a series of applications of the expres-
sions (5.37)and (5.38) for topologicalentropy to subtemplates of the Smale horseshoe
template and subtemplates involving branches describing the dynamics seen in circle
maps.

5.11.4 Subtemplates of the Smale Horseshoe

In the following three examples the alphabet has the two letters 0 and 1. The grammar
is full. It is just the words that differ from one example to the next.
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Example 1: There are two words:S1 = 0 andS2 = 1, t1 = t2 = 1, and (5.37)
becomes

1 =
1

X
+

1

X
The solution isX0 = 2, hT = log 2 = 0.693147.

Example 2: There are again two words,S1 = 1 andS2 = 01. Thent1 = 1 and
t2 = 2, so (5.37) becomes

1 =
1

X
+

1

X2

The solution isX0 = 1
2 (1 +

√
5), hT = 0.481212.

Example 3: There are four words:01, 011, 0111, and01111. All combinations
of these symbol sequences are allowed, and (5.37) becomes

1 =
1

X2
+

1

X3
+

1

X4
+

1

X5

The solution isX0 = 1.534158, hT = 0.427982.

5.11.5 Subtemplates Involving Tongues

Some dynamical systems do not follow a simple stretch and fold route to chaos as
exhibited by the R̈ossler system. The best known of these is the van der Pol oscillator,
but it is one of many dissipative systems that follow an alternative route. In this route
a Hopf bifurcation occurs, followed eventually by some kindof transition to chaos.
The inertial manifold has the topology of a hollow donut:(I1 × S1) × S1 In this
topology the secondS1 parameterizes a periodic driving term. A Poincaré section
is easily defined. In a Poincaré section the intersectionI1 × S1 is topologically an
annulus (I1 is an interval). By the Birman–Williams theorem this projects down to a
one-dimensional set that is topologically a circle (S1). The return map is then a map
of the circle to itself. The properties of the circle map weresummarized in Section
2.12.

Invertibility is lost when the circle folds over on itself during the return map.
Because of the boundary conditions (S1 is topologically different fromR1), two
folds must occur. The flow fromS1 to its folded over image is described by a three-
branch manifold. BranchesL andR are orientation preserving. On branchL the
rotation angle increases by less than2π, on branchR it increases by more than2π.
BranchC occurs between the two folds and is orientation reversing.

While the circle map is still invertible, mode locking occurs. Each mode-locked
region is characterized by a rational fractionω = p/q, with 0 ≤ ω ≤ 1 for the case
of zero global torsion. In the rational fraction,q is the number of times the orbit goes
around the long circumference of a torus andp is the number of times it goes around
the short circumference:q is the period andp is the winding number.

The symbol sequence of the saddle-node pair in the Arnol’d tonguep/q is W (1)
W (2) · · ·W (q), where

W (i) =

[

i × p

q

]

−
[

(i − 1) × p

q

]

=

(

0
1

)

−→
(

W (i) = L
W (i) = R

)
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where[x] is the integer part ofx. For p/q = 3
5 , W (1)W (2)W (3)W (4)W (5) →

LRLRR. The partner orbit is obtained by replacing the penultimatesymbol byC
(e.g.,LRLCR).

Chaotic behavior occurs when the map loses the invertibility property and the
Arnol’d tongues begin to overlap. We describe the chaotic behavior when tongues
described by rational fractionsω1 = p1/q1 andω2 = p2/q2 just begin to overlap.
We assume thatω1 < ω2 and

det

[

p1 p2

q1 q2

]

= ±1

At this point the behavior is chaotic and the vocabulary contains three words. These
are:

A The symbol sequence for the left-hand tonguep1/q1

B The symbol sequence for the right-hand tonguep2/q2

B The partner ofB
Not every symbol sequence is allowed, forB must be preceded byA. Each

word labels a branch in a branched manifold. This is a subtemplate of the branched
manifold that describes the dynamics in the fully expansivecase (L, R, andC have
a fully expansive incidence matrix). The incidence matrix for the three wordsA, B,
andB is

A
B
B





1 1 1
1 1 0
1 1 0





Applying this information to Eq. (5.38), we find that

det





1
Xq1

− 1 1
Xq1

1
Xq1

1
Xq2

1
Xq2

− 1 0
1

Xq2

1
Xq2

−1



 = 0

This reduces to

Xq1+q2 − Xq1 − Xq2 − 1 = 0 or
1

Xq1
+

1

Xq2
+

1

Xq1+q2
= 1

Example 1: Compute the vocabulary and the topological entropy for the strange
attractors that occur when the tonguesp1/q1 andp2/q2 just overlap, for the pairs
(1
2 , 2

3 ), (1
2 , 3

5 ), (3
5 , 2

3 ).

B
p1/q1 p2/q2 A B X0 hT

1
2

2
3 LR LRR 1.429108 0.357051

LCR
1
2

3
5 LR LRLRR 1.307395 0.268037

LRLCR
3
5

2
3 LRLRR LRR 1.252073 0.224801

LCR
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Example 2: Compute the topological entropy for the low-period Arnol’dtongues
for which p1q2 − q1p2 = ±1. Solution: The results depend only on the periodsq1

andq2. To period 9, here they are. Entries for which the periods arenot relatively
prime have been left blank.

3 4 5 6 7 8 9

2 0.357051 0.268037 0.219131 0.187366
3 0.253442 0.224801 0.186002 0.172048
4 0.196620 0.164136 0.142458
5 0.160664 0.148188 0.137920 0.129277
6 0.135847
7 0.117680 0.110713
8 0.103803

5.12 SUMMARY

Branched manifolds were introducedby Birman and Williams [83,84]as a simple tool
to describe completely the organization of all the unstableperiodic orbits in the Lorenz
dynamical system [83]. Their theorem guarantees that branched manifolds can be
used to describe the organization of unstable periodic orbits in any three-dimensional
dissipative dynamical system with a (hyperbolic) strange attractor. However, one
of the first branched manifolds discussed in detail by Birmanand Williams, the
figure 8 knot-holder, describes the topological organization of all the closed magnetic
field lines generated by a constant current flowing in a wire knotted into a figure 8
shape [84]. This is a conservative dynamical system. It is not clear that the Birman–
Williams theorem can be appliedonly to dissipative systems.

As stated, the Birman–Williams theorem is not immediately useful for the analysis
of chaotic data. Two of the input assumptions are too restrictive. Both assumptions
(hyperbolicity, three-dimensional flow) can be relaxed. Once these modifications
were made, the Birman–Williams theorem became a key component in the topological
analysis of chaotic data and the classification of strange attractors.

We have described the branched manifolds for the four standard testbeds of dy-
namical systems theory: the Duffing, van der Pol, Lorenz, andRössler attractors.
Each branched manifold has an algebraic representation in terms of three matrices.
The topological matrixT determines how the various branches twist and cross each
other. The joining arrayA identifies the order in which two or more branches are
joined at a branch line. The transition or incidence matrixI determines the flow
ordering: which branches flow into which other branches.

The location of periodic orbits on branched manifolds can bedetermined by knead-
ing theory. Once orbits have been located, their linking numbers and relative rotation
rates can be determined algorithmically. The inputs to the algorithm are the two
matricesT andA. Conversely, a symbolic coding of the orbits in a flow determines
I, and information about the linking numbers of these orbits can be used to construct
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the two matricesT andA. The result is that branched manifolds can be identified on
the basis of properties of unstable periodic orbits identified in the flow.


