Nonlinear Dynamics

PHYS 471, 571

Problem Set \# 7
Distributed Feb. 28, 2013
Due March 7, 2013

Undergraduates: Problems 1 and 2

Graduates: Problems 1, 2 and 3.
All students: Solutions must contain enough words so that I can understand what you think you did, and you will be able to understand what you did in 12 months. No words $=$ No credit!

1. Devil's Staircase: Construct the "Devil's Staircase" for the circle map by plotting $\rho(\omega, K)$ vs. ω for $K=1$ (Notes, Eq. (7.3)). Use

$$
\theta_{n+1}=\theta_{n}+\omega+\frac{K}{2 \pi} \sin 2 \pi \theta_{n} \quad \bmod 1
$$

2. Saddle-Node Bifurcation Bounds: Construct the $p^{\text {th }}$ iterate of the circle map and find the range of values of ω between a lower value at which a saddle-node bifurcation creates a pair of periodic orbits with rotation number $1 / p$ and a larger value at which a(n inverse) saddle-node bifurcation destroys this resonance.

Undergraduates: $p=2$
Graduates: $p=3$
3. Farey Sequence: Between circle map resonances identified by rational fractions p / q and p^{\prime} / q^{\prime} there is a "fattest resonance" identified by the Farey fraction $\frac{p+p^{\prime}}{q+q^{\prime}}$ when $\operatorname{det}\left[\begin{array}{cc}p & p^{\prime} \\ q & q^{\prime}\end{array}\right]= \pm 1$. Construct the Farey resonance tree to level 5 starting with the resonances $0 / 1$ and $1 / 1$.

