Nonlinear Dynamics

PHYS 471, 571

Problem Set # 5 Distributed Feb. 12, 2013 Due February 19, 2013

Undergraduates: Problems 1 and 3. Graduates: Problems 2 and 4.

All students: Solutions must contain enough words so that I can understand what you think you did, and you will be able to understand what you did in 12 months. No words = No credit!

1. Rössler Equations: The Rössler equations are

$$\dot{x} = -y - z
\dot{y} = x + ay
\dot{z} = b + z(x - c)$$
(1)

For the value of the control parameters use (a, b, c) = (0.398, 2.0, 4.0).

a. Find the fixed points.

b. Determine the stability of each fixed point.

c. Integrate these equations. Use as initial conditions (x, y, z) = (1, 1, 1) and allow transients to die out before beginning to record data. Provide a plot, orientation optional.

d. Record and plot successive intersections with the halfplane y = 0, x < 0.

2. Lorenz Equations: The Lorenz equations are

$$\dot{x} = \sigma(-x+y)
\dot{y} = Rx - y - xz
\dot{z} = -bz + xy$$
(2)

For the value of the control parameters use $(\sigma, b) = (10.0, 8/3)$.

- **a.** Find the fixed points as a function of $R \ge 0$
- **b.** Determine the stability of each fixed point.

c. Integrate these equations for R = 28.0. Allow transients to die out before beginning to record data. Provide a plot, orientation optional.

- **d.** Record and plot successive intersections with the plane z = R 1.
- 3. Conservative Map: The mapping

$$\begin{array}{rcl}
x' &=& x^2 - y \\
y' &=& x + a
\end{array} \tag{3}$$

describes an area-conserving system, since $J = \partial(x', y')/\partial(x, y) = 1$.

a. Compute $J = \partial(x', y') / \partial(x, y)$ and show that it is equal to +1 for all a.

b. Set a = -0.4224. Choose an initial condition, allow transients to die out, and record about 100 iterations.

c. Repeat step b. about 40 times with different initial conditions.

d. Plot all iterates from step **c.** on a single plot.

e. Have you "reproduced" the figure that accompanies Feigenbaum's paper in *Los Alamos Science*?

4. Henon-Heiles Equations: These equations represent one of the simplest nonintegrable systems possible, and have been used in an astrophysical context to model planar motion of a star around the center of the galaxy (See Henon-Heiles / Wolfram for exciting plots.). Both Henon and Heiles are astrophysicists.

$$\ddot{x} = -x - 2xy
\ddot{y} = -y + y^2 - x^2, \text{ or } (4)
V(x,y) = \frac{1}{2}(x^2 + y^2) + x^2y - \frac{1}{3}y^3$$

a. Set $E = \frac{1}{12}$ or $E = \frac{1}{8}$ and integrate these equations. Take an initial condition near the origin and allow transients to die out. Record the values of (y, \dot{y}) whenever x = 0. Record about 100 points.

b. Repeat step **a.** about 50 times.

- c. Plot all the data recorded in b. on a single graph.
- d. Can you discern ellipses and regions of chaotic behavior?