Nonlinear Dynamics

PHYS 471, 571

Problem Set \# 3
 Distributed Jan. 24, 2013
 Due January 31, 2013

Undergraduates: Problems 1, 2, 3 and 4a.
Graduates: Problems 1, 2, 3 and 4a,b,c.
All students: Solutions must contain enough words so that I can understand what you think you did, and you will be able to understand what you did in 12 months. No words $=$ No credit!

1. Bifurcation Diagram: Construct a bifurcation diagram for the logistic map $y^{\prime}=a-y^{2}$ for $-\frac{1}{4}<a \leq 2$.
2. Escape Clause: Set $\lambda=4.1$ in the map $x^{\prime}=\lambda x(1-x)$. Choose uniformly spaced initial conditions in the range (0,1), count the number of iterates it takes for an iterate to become negative. Bin this number. Plot the binned distribution.
3. Caustics: Choose uniformly spaced initial conditions in the range $x \in(0,1)$ for $x^{\prime}=\lambda x(1-x)$. Plot $f^{(3)}(x ; \lambda)$ for the map $1<\lambda \leq 4$. Say something useful about the structure of this plot. (Words like singularity are welcome.) Class questions about what to calculate and how to plot are welcome.
4. Orbit Order: Plot caustics for the fifth and sixth iterations of the logsitic map $y^{\prime}=a-y^{2}$.
a. Predict the relative order in which the (three) period five windows and the five period-six windows appear in the bifurcation diagram.
b. Compare with the results of Problem \#1.
c. Determine the control parameter values a at which the three period five orbits are superstable (Newton's method or divide and conquer are recommended).
5. Lyapunov Exponent: Construct and plot the Lyapunov exponent for the map $y^{\prime}=a-y^{2}$. Estimate the Lyapunov exponent at $a=2$. Say something useful about the (negative) spikey structure of this plot.
