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Boundary Conditions

Binding Scattering Periodic

Fig. 41.2 The triplet and quartet of bound state energies (over Bg)cine offset horizon-
tally. They interleave. Similarly for the resonance peakse( Scattering). Each resonance
peak lies slightly above the corresponding bound staté, fieotthe quartet and the triplet. All
levels and resonances lie within the edges of the correspgiband (shown over Periodic) of
the corresponding periodic potential.






WWavefunctions and
Probability Distributions

The transfer matricés = M; M-, which were used in chapters 37 and 38, relate the
amplitudes of the trigonometric/hyperbolic cosines angsin adjacent unit cells of

a periodic lattice. We make this point explicit here. Sugmposit celli consists of
two regions, 1 and 2, in which the potential is constant, asvshin Fig. 42.1. We
choosé/; = —5.0eV, V>, =0.0eVandE > Vi, E < V5. Inregions 1 and 2 of cell

i and region 1 of cell + 1 the wavefunctions are

Yi(x) = Ajcoskz + Bjjsinkz,
Yi(x) = Cjcoshkr + Diisinhkz, (42.1)
wzl+1 (.Z‘) = AH-I coskxr + Bi-&-l% sin kx .

Within each region, the value af ranges from O at the left edge Ig = 8.0 Ain
region 1 andL, = 2.0 A in region 2. When the boundary conditions are imposed,
we obtain the following equations:

coskLy  gsinkLy A ([ C

( —ksinkL; coskL, ) < B)~\D)~ (42.2)
coshkL,  +sinhkLy c\ (A

( ksinhkLs  cosh kLo ) ( D )i - ( B >i+1 . (42.3)

These equations are easily inverted

A — Co8 kLl _% sin kLl C _ C
( B )z B < ksin kL cos kL, D i_Ml D) (42.4)
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C _ cosh kLo —% sinh kLo A Y A
D J, ~ \ —ksinhkL» cosh kLs B i1 -2\ B ;

As aresult

+1
(42.5)

<g>i:M1M2<g>m:T<g>m- (42.6)

Wavefunctions in a Lattice
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Fig.42.1 Realand imaginary parts for one eigenstate in each of théofivest bands of the
periodic potential shown. The real parts are identified.

Remark: If we had used 4, B) as amplitudes for the right- and left-propagating
exponentialg™** e~ and(C, D) as amplitudes for the exponentially decaying
and growing exponentiats "%, e™*%, then we would have found the following rela-
tion

AN A 1
() mom(d), wo[h ] e
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The quantization condition (i.e., (37.3)) is valid whether useT” or its similarity
transformed versiod ~' T K. However, wavefunction calculations areich easier
with the cosine and sine basis set.

42.1 UNIT CELL PHASE SHIFT

The wavefunctions in any part of céland the corresponding part of célt- 1 are

o) = (0 2@) ()
b = (0w @) (5 ) @2.9

A
= ( <I>1(;E) (1)2(.1’) )Til ( B >i .
The last equation was obtained by inverting (42.6). If thepkitodes(A, B) are

chosen as eigenvectors Bfwith eigenvalue), thenT ! ( g > =t < g >

As aresult

Yip1(x) = X () - (42.9)
In an allowed band) = . This means that the wavefunction in cel- 1 is
simply a phase-shifted version of the wavefunction in ¢elf the wavefunction in
celli is known, it can be used to construct the wavefunction in thacent cells. For
example, if we write the wavefunctions in terms of their rtadl imaginary parts and
choose\™! = ¢, then

R (@) +ipl,, (z) = e (pf(z) + iyl (2)) (42.10)
P (z) [ cos¢p —sing YR (x)
( ! (x) >i+1 a < sin ¢ cos ¢ ) < Yl(x) >Z : (42.11)

42.2 WAVEFUNCTIONS

The wavefunction in any part of celican be written as a linear superposition of the
basis function®, (x), ®,(x) in that region:

Yi(z) = Ai®1(z) + Bi®2(2) , (42.12)
where the amplitude&, B); satisfy the appropriate eigenvalue equation:

(5),=(5),
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To compute the unnormalized amplitudels B);, we rewrite this equation as follows

t11 — e'® t12 A _ (t11 — ew)A +t12B = 0
{ (23] tay — €' } { B | 0= b A+ (taz —€)B = 0 .
(42.13)

The two equations on the right are not independent. They earsed to determine

AandB
AN () (e (42.14)
B t21 e —t1 ) '

The two expressions for the amplitudes are proportionath @ther. Using the first
expression, we find

1 1
Yi(z) = = (t11 — ta2) coskx + toy — sinkz +isin ¢ cos kx . (42.15)
2 k —_—
Vi) Vi

The wavefunctions in other regions of titl cell are computed using the transfer
matricesM,, M, and so on (see equation (42.6)). The wavefunctions in adfac
regions are computed using the phase shift property (42.10)

In Fig. 42.1 we show wavefunctions computed for one stateachef the five
lowest bands in the periodic potential shown. The real arayimary parts of each
wavefunction are plotted and are labeled withfaor an/. All wavefunctions have
been normalized so that the integral|ofz)|*> over a unit cell is the same for each
eigenfunction.

In fact, the real and imaginary parts of these wavefunctaresnterchangeable.
If a wavefunction obtained using the angl@ is multiplied bys, then we obtain

i x (pP(z) — iyl () = +ipF(a). (42.16)

This is the wavefunction obtained using the anglend interchanging the real and
imaginary parts.

The nondegenerate eigenfunctions at the edges of each haradays be made
real, since the eigenvalues are- +1. The corresponding wavefunctions are stand-
ing waves, whereas the degenerate eigenfunctions des@iles traveling to the left
and right.

42.3 PROBABILITY DISTRIBUTIONS

Since the wavefunctionin celk-1 is just a phase-shifted version of the wavefunction
in cell, the probability distributionin cefl+ 1 is equal to the probability distribution
in cell i
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Pig1(2) = [t (2)]* = |9i(2)] = [ |pi(2)]> = [¢i(@)]* = Pi(x) .
(42.17)
As a result, the probability distribution is invariant frazall to cell.

In Fig. 42.2 we plot the probability distributions for ongyenstate in each of the
five lowest bands of the potential shown in Figs. 42.1 and.42tese distributions
have all been properly normalized (the integral over eveiyaell is1/N for each of
the probabilities). Although the nodal structure of the @fawctions is not obvious
fromFig. 42.1,itismuch clearerin Fig. 42.2. The numbenafdes’ within each well
increases by one for each successive band. The energieschtttv computations
were done for Figs. 42.1 and 42.2 differ slightly.

Probability Distribution on a Lattice
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Fig. 42.2 Probability distributions for one eigenstate in each offthe lowest bands of the
potential shown. The number of “nodes” increases with bamdbrer. It is clear that in an
eigenstate, the probability distribution is the same irhezad| of the lattice.

Remark: For E < 0 the bound state wavefunctions in Fig. 42.2 are real and
exhibit nodes in the wells. The probability distributionegdo zero at the nodes. The
lowest three states have zero-, one-, and two nodes/Eef) the wavefunctions do
not have nodes (they are complex). The lowest two statesivithO have three- and
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four “pseudo-nodes,” where the probability distributicastieep, nonzero minimaiin
the wells.



Alloys

An alloy consists of a homogeneous mixture of two or more wulzes, usually
metals. Energy bands can be computed for alloys just as #repe computed for
pure substances.

In this chapter we will consider energy bands only for thgdést one-dimensional
alloys. The alloys we consider are composed of equal nundidrgo substances
A and B in a periodic lattice of typé AB)~. In Fig. 43.1 (top left) we show the
potential for the unit cell ofd, with (V,d) = (-5.0,8.0), (0.0,2.0). The bound
states for the corresponding single well potential are shohey occur at- —4.6,
—3.4, and—1.6 eV. To the right of this potential we show the density of sdétar
the latticeA™N. The three bound states have been spread out into three. bEinels
density of states also shows a fourth band freth2 to~1.7 eV that arises from the
first transmission resonance, and the lower part of a fifttdlihat arises from the
second transmission resonance of the single well potential

The potential for the unit cell aB ((V, §) = (—2.0,3.0), (0.0, 1.0)) is shown on
the second line of Fig. 43.1. The single bound state for tlmeesponding binding
potential occurs just abovel.0 eV. To the right of this potential is the density of
states plot for the periodic latticB” . The band arising from the single bound state
extendsfrom-1.6to+0.4 eV. The upper levels in this band are unbound, even though
the band arises from a bound state. The second band, exgeatutine 1.2 eV, arises
from the lowest transmission resonance.

The potential for the unit celll B of the alloy with lattice{ AB)” is shown on the
bottom line of Fig. 43.1. The corresponding binding potrtas four bound states.
The two lower ones are essentially where they were in the glbimding potential.
The two upper levels have repelled each other slightly froeirtoriginal positions
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Alloys
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Fig.43.1 Top, Potential4, eigenstates of corresponding single well potential, amcity of
states for corresponding periodic lattidd’. Middle, Similar to top line, except for potential
B. Bottom, Potentials4d and B form the unit lattice potentiall B. Eigenvalues and density of
states for corresponding potential are shown.

in the A well and theB well. The third bound state is mostly confined to thevell
and the fourth is mostly confined to tli2well. This was determined by computing
the eigenfunctions for thd B well.

The density of states for the periodic latticéB)" is shown to the right of the
AB potential. The two lowest bands, derived from thevell, have been squeezed
and are now so narrow that they cannot be resolved. Theseadwdsthave been
squeezed because the classically forbidden region bedjacentd wells has been
greatly increased by inserting ttizpotential. The thirdd band 1.95to —1.3 eV)
has been squeezed to the regionof-1.8 eV, while the lowestB band (1.6 to
+0.4 eV) has been squeezed inte((.9 to —0.5 eV), below the ionization threshold.
The three bands that appear above 0.0 eV are not confinedrlyitoaeither the A
well or the B well.

These results, and the conclusions drawn from them, aretmooigdy dependent
on the actual shapes of the potentials. In Fig. 43.2 we ra@peatalculations shown
in Fig. 43.1 for smoother versions of potentialeandB. The potentialsi and B of
Fig. 43.1 have been replaced by smoother potentials wignéadly the same bound
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state spectra. The major differences are that the third bthe modified4 potential
extends above the ionization threshold while the first bdtiteomodifiedB potential
does not. The two lowest bands of the modified3)" potential are not as narrow
as the corresponding bands in the origindB)™ potential (Fig. 43.1) because the
classically forbidden region between two adjacéntells is smaller. Otherwise, the
density of states for the periodic potenti&B)”~ in Fig. 43.1 and Fig. 43.2 are
very similar.
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Fig. 43.2 Similar to Fig. 43.1 but with smoothed versions of potestihland B, as shown.
The modified potentials have bound state spectra simildr@@bmodified potentials.






SQuperlattices

A one-to-one alloy containing unit cells of typeand B in a regular lattice has the
one-dimensional spatial structure

..ABABABABABABABABABARB.... (44.1)

Imperfectionsin this regular structure often occur. Theytake the form of inserting

or deleting atoms of typel or B at various points in the lattice. In this chapter we
consider imperfections that are caused by deleting atonfse dEletions involve
alternating atoms of typd and B spaced at regular intervals. These deletions lead
to regular lattices with a more complicated structure thendriginal lattice. For
example, if every third atom is deleted from the regulardetwith unit cell( AB),

..ABABABABABABABABABAB ---=[(AB)(BA]",
(44.2)
we find a regular lattice with unit cel{AB)(BA)]. A lattice of this type is called a
superlattice.
Other superlattices can be obtained by deleting every §iétenth, . ., (2d+1)th
atoms

d 2d+1 Regular Lattice

1 3 [(AB)l(BA)l]N/4

2 5 [(AB)?(BA)?|N/8 (44.3)
3 7 [(AB)3(BA)3]N/12

d 2d+1 [(AB)Y(BA)?)N/4d

201



202 SUPERLATTICES

Each of the superlattices above has a totaNohtoms, half of typed and half of
type B. Since a superlattice obeys periodic boundary condititesallowed energy
levels occur in bands. It may be expected that the band steuof a superlattice is
closely related to the band structure of the parent latticB)™/>.

To explore this question, we can compute the band strucfuaeseries of super-
lattices with increasing. We choose unit cell parameters as follows

A B
Vv 4] Vv 4]
Region 1 0.0 1.0 0.0 0.5 (44.4)
Region2 —5.0 8.0 —6.5 3.0
Region3 0.0 1.0 0.0 0.5

In Fig. 44.1 we describe the changes that take place in aesbagid of the original
(AB)N/? lattice when the alloy is converted to a superlattice with $ame total
number of atoms, as a function of increasihgrhe (AB)™/? band that is presented
in Fig. 44.1 extends from 3.5 to 4.6 eV. As usual, all bandsaigelin the same way,
and this behavior is independent of the details of the patisndf A andB.

The regular lattic§ AB)"Y/? has a band extending from 3.5 to 4.6 eV. For the
superlattice withd = 1, the original band is split into two subbands. The two
subbands are separated by a rather large band gap.

Forthe superlattice witli = 2, the original band has separated into four subbands.
The two outer subbands are separated from the inner two ¢ zand gaps. The
inner two are separated by a very small gap at 4.1 eV.

In the superlattices withl = 3, 4, and 5, the original band has split into six, eight,
and ten subbands. Fdr= 3 the six subbands are separated by three large and two
small gaps at 3.8 and 4.45 eV. Fér= 4 the eight subbands are separated by four
large and three small gaps. Fbe= 5 there are five large and four small gaps.

In the case of the superlattifed B)¢(BA)4]N/*?, the original band has split into
2d subbands that are separateddy— 1 band gaps, of which are large and — 1
are small. The large and small band gaps alternate with eheh o

The structure of superlattice subbands can be viewed frohglatlg different
perspective. In going from the regular latticd B)¥/? to thed = 1 superlattice
[(AB)'(BA)|N/* the original band splits into two subbands. In going from the
d = 1to thed = 2 superlattice, a new subband appears inserted between dhe tw
d = 1 subbands, squeezing these two outer subbands furthehpastnd edges of
the original(AB)™N/? band. This new subband, extending from 3.8 to 4.5 eV, agtuall
consists of two subbands separated by a narrow gapdat eV.

In going from thed = 2 to thed = 3 superlattice, the narrow gap-at4.1 between
the two middled = 2 subbands grows wider, extending frem4.0 to 4.2 eV. Each
of the two new well-separated subbands (3.7 to 4.0 eV and#27teV) is split by
a narrow gap (at 3.8 and 4.45 eV, respectively).

In progressing from thé = 3 to thed = 4 superlattice, a new band is inserted in
the middle of the subband structure of the- 3 superlattice. This new band extends
from ~ 3.9 to 4.3 eV and actually consists of two subbands split by aomagap at
~4.1eV.



203

The changes in the subband structure in going fromdthe 4 to thed = 5
superlattice are similar to the changes that take placeiimggoom thed = 2 to the
d = 3 superlattice.

As Fig. 44.1 makes clear, it is useful to regard each bandeofAlB)"¥/? lattice
as breaking up intd + 1 “fat subbands” in thé(AB)¢(B A)?)V/*¢ superlattice. The
two outer fat subbands are not split while the inder 1 “fat subbands” each consist
of two subbands separated by a narrow gap.

When the number of fat subbands is evén< 1,3,5,...), a new fat subband
is inserted right in the middle of the fat subbands in goirmgrfthed to thed + 1
superlattice. When the number of fat subbands is add @, 4, .. .), then in going
from thed to thed + 1 superlattice, the middle fat subband of #heuperlattice
“splits.” That is, the narrow band gap in that fat subbandiee large, and each of
the two resulting subbands develops a narrow band gap.
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Fig.44.1 Band structure of theAB)"/? lattice, and the superlatticgsd B)* (B A)4]N/4¢
ford=1,2,3,4,5.



lmpurities

In the previous chapters we have seen how energy levels iadiepotentials of
the type A occur in bands, with each band containing a total\btates. The
same is true for regular alloys of tygel B)N/2, as well as superlattices of type
[(AB)?(BA)YN/ (1),

It is difficult to grow crystal lattices of very high purity. ddally a crystal lattice
contains impurities. We should therefore ask:

e Does the energy band structure of a pure lattidé persist in a lattice with
impurities: AN ~1B?

e How are the electron wavefunctions affected by the presehicepurities?

These questions can be addressed relatively easily if werigewe have learned in
previous chapters to simplify our computations as much asipte.
We exploit the following observations

e The band structure of aregular lattidé’ (V large) is apparent even for small
values of N (N ~ 5).

e The band structure is unaffected by the type of boundaryitiond imposed
(bound state, scattering, periodic), for all practicalgmnses.

These observations suggest that we can determine thesaféctpurities on the band
structure and wavefunctions of a regular lattice by conmuutihe band structure and
wavefunctions for the bound states of a relatively smallesysd™ —' B, (V small).
To explore the effect of an impurity atof on the properties of a regular lattice
AN we have computed the bound state spectrum for two lattidgpe A BA. The
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results are shown in Fig. 45.1 and Fig. 45.2. In both figureptitentialB depends
on a parameter.

Impurity Levels
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Fig. 45.1 Spectrum of bound state levels for the potentidlB A as the width of theB
impurity is varied. Thed bands are represented by quartets of levels. Note thatgeewglues
do not cross. For this potentidl, = Vz = 10.0 eV.

In Fig. 45.1 both potentiald andB are 5.0 eV deep. The tops of the potentials
are at 0.0 eV and the bottoms are-at.0 eV. The width of potentiald is 6.0A while
B has a width of 6.8-D A. The barriers separating wells are uniformly thick, at 2.0
A. The asymptotic potentials; andV are 10.0 eV to ensure that we see only bound
states in the range scanned>(0 to +5.0 eV). ForD = 0 the lattice isA®, and the
bound state energies below 5.0 eV are gathered into foupgrolquintets. We can
easily see the effect that varying the width Bfhas on the energy-level structure.
For D negative, the narrou8 well has energies higher than the energies in a single
A well. As D is increased, the lowed? level settles into the top of the lowedt
band. The nexB level, pressed up against the bottom of the thirdband, peels
off and settles onto the top of the secatdand. The next higheB level behaves
similarly. ForD > 0, the B well is wider than thed well and its spectrum has
lower-lying levels. This behavior is reflected in Fig. 45As D increases through
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0.0A, the lowest-lying level in each band falls away from thetbot of the band and
approaches the top of the next lowétband. Of course, the lowest level has no
lower A band to settle onto.

E Impurity Levels
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Fig. 45.2 Spectrum of bound state levels for the potentdlBA as the depth of thé3
impurity is varied. Thed bands are represented by quartets of levels. Note the teevailgies
do not cross. For this potentigl, = Vz = 10.0 eV.

Fig. 45.2 tells a similar story. Here the wells all have thasavidth (6.04). The
barriers at 0.0 eV have width 2. EachA well is 5.0 eV deep, while the bottom
of the B well is at —5.0 + V' eV. The B well is varied in depth from-10.0 eV
(V= -5.0eV)to—-2.0eV (V = +3.0 eV). Once again, the band structuredt
is represented by four groups of quintets fratV = 0.0 eV. As the bottom of the
B well is increased from-10.0 eV to —2.0 eV, the bound state energyies dueio
increase almost linearly (with a slope of + 1). However, théevels do not cross
the A bands. Rather, & level approaches the bottom of anband, and then, at a
slightly greater value of", the highest level in thel band peels off and rises linearly
with increasing/” until it runs into the bottom of the next highdrband.

These two figures make it clear that, in some sense, therederesérvation of
number of levels” in going from a regular lattiggé" to a lattice with impurityAV ' B
(or some cyclic permutation). The band structure is not tastely perturbed. Bands
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with N levelsinA™ are replaced by bands witfi—1 levels inAV—! B, and additional
B levels are scattered in appropriate places in the enekgygpectrum.

The energy eigenfunctions are perturbed as follows. Famne@ues in a band
of levels, the corresponding wavefunctions extend ovethallA atoms. For any
eigenstate in adl band, the probability distribution is essentially the samevery
cell of type A, except possibly in thd cells adjacent to th® impurity. However, the
nondegenerate states betwekhands have wavefunctions that are largely localized
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Fig. 45.3 Bands and impurity levels in a lattice of typE't BA™2 B’ A™3. The bands are
shown extending over the entire lattice. The donor levedy &/ with depth 5.5 eV, lies slightly
below the lowest unfilled or partly filledl band. The acceptor level, ové& with depth 4.5

eV, lies slightly above the highest filled or almost fillddoand.

In Fig. 45.3 we show a latticd™ BA™2 B’ A"s. The A levels occur in the bands
indicated. Since thel-like eigenstates extend over the entire lattice, the bangls
shown extending over the lattice. Tlitlevel at—4.5 eV provides three levels that
occur above thel bands. Since the wavefunctions, with= 0, 1, 2 nodes, are largely
confined to this well, the energy level is shown extending ovdy this well and its
adjacent barriers. ThB' level at—5.5 eV provides four levels that occur beneath
the A bands. Since the wavefunctions, with= 0, 1, 2, 3 nodes, are largely confined
to this well, the energy level is shown extending over thiswell and its adjacent
barriers.
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Impurity levels that occur below an energy band that costééw or no electrons
are called donor levels. If these impurity levels contairefctron, that electron is
“stuck” to the impurity site. However, that electron can lvemoted (donated) into
the empty band just above the donor level at relatively loergncost. In the empty
band, the electron is mobile: it can move relatively freetynfi A atom to A atom.
The level of theB’ well (with depth 5.5 eV) just below the lowest emptyband is a
donor level.

An empty impurity level just above a filled band is called an acceptor level. At
relatively low energy cost, this level can remove (acceptglectron from the filled
band just below it. This leaves a “hole” in the filled band. §hble acts in many
ways like an electron of opposite charge. The level offtheell (with depth 4.5 eV)
just above the highest-filled band is an acceptor level.

Careful control of the concentrations and types (donorepimr) of dopants in
semiconductors have been responsible in large part forutrert computer revolu-
tion.






Quantum Engineering

The availability of energy resourses will be one of the mpjmnts of political friction
in the twenty-first century.

46.1 ENERGY SOURCES

The energy resources that currently contribute more thanfamitesimal fraction of
the world’s energy needs are listed in Table 46.1.

Coal, oil, and gas are the major sources of energy in todapeamy. They are
“nonrenewable” and are currently being rapidly depleteck Mlieve these energy
sources are of fossil origin. This means that the energwedtor these resources
derives ultimately from the transformation of solar enetgyiomass, at very low
efficiency, followed by death, sedimentation, conversamy storage (also at very
low efficiency) over a very long period of time. These resesrbave been cre-
ated by natural processes that continue to this day. Thedoake for creation of
these resources is millions of years; the time scale foradigpl is hundreds of years.
Therefore, although these resources are in principle rableywthey are in practice
nonrenewable unless we learn how to accelerate the crgatimess by factors in
excess ofi0*. Burning these fossil fuels releases large amounts of @@l other
pollutants into the atmosphetelt is widely believed that this has a negative envi-
ronmental impact. In addition, it destroys a reservoir @i raaterials for industry.

IM. I. Hoffeert et al., Advanced Technology Paths to Globair@te Stability: Energy for a Greenhouse
Planet,Science 298 (2002): 981-87.
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Table 46.1 Energy resources

Energy Source Comment

Coal “Nonrenewable”
Oil

Gas

Fission Radioactive
Fusion

Geothermal

Tidal Gravitational
Hydroelectric  Gravitational/solar
Wind Solar

Biomass

Solar

Some people regard this loss as even more severe than passdative impact on
our atmosphere.

The next three energy sources listed in Table 46.1 involedeian transforma-
tions. Nuclear fission (“splitting”) involves splitting bey nuclei into lighter nuclei,
releasing energy. This process, initially demonstratetherearth in atomic bomb
explosions, has successfully been tamed. It is now the basisergy production
in nuclear power plants that generate a substantial fracfcelectrical energy in
the industrial nations of the earth. When not handled cdyefouclear accidents
can occur (Three Mile Island, Chernobyl,. ). The worst accidents have lead to
environmental catastrophes. That is, large areas areneshdainhabitable for long
periods by high levels of radiation. Although the radioaityilevels gradually die
away (along with the population), the half-life for decayc@mparable to or longer
than the human time scale (70 years). This renders fission a problematic energy
source for the future.

Nuclear fusion involves combining lighter elements to foneavier elements,
releasing energy in the process. Fusion of hydrogen torneliu

p++p+ - d++€++l/e,
dt +p* - SHett + 1, (46.1)
SHett 43 Hett — “*Hett 42t 420, ,

is the principle fusion process that powers our star, the s process was demon-
strated on the earth with the explosion of the first hydrogemia Since then, it has
been a goal to tame this reaction and allow it to run in a cdietfpcontinuous way in
order to generate energy for the world’s needs. An enormmasiat of time, money,
and intellectual energy has been devoted to this goal. Bisrof the amount of time
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and money required to reach a commercially viable resulé loiwerged rather than
converged—the end is nowhere in sight and receeding fuirtn@rreach all the time.

Geothermal energy is a natural resource that is derive@onskorder from nuclear
fission. Long-lived radioactive isotopes within the cord arantle of the earth decay,
releasing energy that heats up the surroundings. The hatiptaaterial of the core
and mantle flows with a geological time scale. This materéahes close to the
surface at some parts of the earth’s surface, principallyoandaries between the
earth’s plates. The temperature difference between thantestor magma and the
cooler fluids on the earth’s surface can be used in the usyalowgenerate heat and
electrical energy. Although this resource is nonrenewatsdime scale is so long
that, for all practical purposes, it can be considered anpeent.

The motion of the earth and moon about their center of magyfdhe earth-moon
system about the sun, raises diurnal tides on the surfadeeadarth. The differing
physical properties of the material on the earth’s surfacadr, rock) allows us to
create differences in gravitational potential energy tti@hately can be transformed
to electrical energy. Tidal energy will never provide mdnar a small percentage
of the earth’s energy needs. It is essentially perpetuahangolluting. However, it
does require modification of parts of the earth’s surfaceiatitht sense does have a
nontrivial environmental impact.

Hydroelectric energy is derived from the conversion of thergy in falling water
into electrical energy. Water is raised from sea level byevation (solar energy) and
deposited at higher altitudes by precipitation as rain omsrAt higher elevations it
possesses gravitational potential energy. Since thiggmenversion process occurs
naturally,

All the rivers run into the sea;

Yet the sea is not full;

Unto the place from whence the rivers come,

Thither they return again. Ecclesiastes 1.7

Hydroelectric conversion is nonpolluting. It is also ‘petgal,’ or at any rate will
last as long as there is water on the surface of the earth. Woyie also involves
modifying selected parts of the earth’s surface, so in thise it also has nontrivial
environmental impact.

Wind motion and biomass conversion are energy sources tlgihate almost
entirely with the conversion of incident solar radiatiofinc they are also naturally
occurring processes, they are renewable and nonpollutitoyvever, they also in-
volve modification of the environment, so to some extent abgext to political and
environmental constraints.

Tidal, hydroelectric, and wind power sources will not pa®/imore than a small
percentage of the earth’s energy requirements. Biomas®rgion has the potential
to make a more substantial contribution, although it is ikety to.

The sun is ultimately the source of all but the radioactivergn sources. Solar
energy can be converted directly to industrially usefukrgpé two ways (neglecting
conversion to biomass):
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1. directly to heat
2. directly to electrical energy.

In the former case, a large number of concentrating mirrgpsead over an area
the size of one or more soccer fields, are used to focus samfitha very small
volume. Within this volume the temperature can re&@b0 K. Such solar furnaces
can be used to drive electrical turbines or used as reseaciitiés. More mundane
but commercially much more important applications invoiasorbing sunlight to
produce hot&§0°C) water rather than wasting electricity to heat water.

Sunlight can be transformed directly to electrical energybbing absorbed in
crystals that are designed to allow the absorbed energyparate positive from
negative charges. Solar panels composed of such cryseats@inely used in the
space program. They are also used, with increasing freguesnmosts drop in places
where cost or maintenance is more of a problem for other tgpenergy sources.

We will describe how to design crystals for direct solar cnsion later in this
chapter.

46.2 ENERGY CONSUMPTION

The total energy that has been consumed by the earth’s gipuila the year 2000
has been estimated to be about 500 exajoules & 10'® J). It is convenient to
convert this energy consumption per year into power medsaré/atts (joules/sec).
This is done by dividing by the number of seconds in a years ®8.15 x 107 sec
(mnemonic:7 x 107 sec). The rate of energy consumption in 2000 is then about
1.58 x 1013 W.

We compare this energy consumption rate with the rate atlwdidar radiation
energy is incident at the top of the earth’s atmosphere. mhisber, the “solar
constant,” is 1368 W/maccording to earth satellite measureméntis number is
not actually constant: it varies primarily because of smallations in solar energy
output (fluctuations of order 0.01%, or one part i, are observed) and variation in
the earth-sun distance due to the eccentricity of the eaothit. For this reason, we
will refer to this measured value as the “solar irradiandene total power received
by the earth at its mean solar distance is

P = 1368W/m” x 7(6370km)? = 1.74 x 10'"W , (46.2)

where the earth’s radius is approximately 6370 km. Ab})mﬁ this energy filters
down to the surface of the earth as radiation in the visibteqfahe spectrum.

It is instructive to compare the rate at which energy is caometi by the world’s
population to the rate at which radiant energy is receivethfthe sun by the earth.
This ratio is

2K. J. H. Phillips,Guide to the Sun, Cambridge, UK: Cambridge University Press, 1992.



SIMPLE SOLAR CELLS 215

_ Power consumed  1.58 X 108w

Power received  1.74 x 1017 W

~107%. (46.3)

That is, mankind’s energy consumption is comparable to dktadns in the sun’s
energy output or, more accurately, the solar irradianee, (including changes due
to the earth’s orbital parameters). So if we believe, as sdmehat changes in
insolation (solar radiation received by the earth) due tngfes in the earth’s orbital
parameters are responsible for the ice ages that the earéxparienced over the last
several million years, then it is just a short additionapdie believe that twentieth-
century industry’s contribution to the earth’s energy betdmpuld also be responsible
for dramatic earth climate changes.

Direct conversion of solar radiation to electrical energg bwo benefits that are
worth mentioning explicitly.

1. The fusion processipt —*Hett + 2et + 2v, + 27) that liberates energy
also produces radioactivity in the surrounding environméihwe were able
to control fusion on the earth’s surface, we would still fabe problem of
caring for the nearby material made radioactive by this @sec As it is, any
radioactivity produced is produced in the sun. We do not ltaweorry about
it.

2. Direct conversion of sunlight to electrical energy is @utral” process. It
neither adds to nor subtracts energy from the earth’s nabudget (in first
order). At most, it redistributes energy from one geogreahiocation to
another. Because of this redistribution, there may be amsktooder effect on
the earth’s energy budget. In short, this process is nouradl but could have
local environmental impacts.

46.3 SIMPLE SOLAR CELLS

The spectrum of visible (to humans) solar radiation extdraia the violet (400 nm

or 4000A) to the red (700 nm or 7008). The peak intensity is in the yellow at about
580 nm or5800 A. The sun behaves to a reasonable approximation as a bldgkbo
with a temperature abo@?78 K. (This blackbody looks yellow!)

Radiation in the violet at a wavelength of 400 nm consist$wotpns, each carrying
an energy of about 3.1 eV. Similarly, “red photons” at 700 reméhan energy of 1.8
eV. Yellow photons carry 2.1 eV. We therefore expect sotatesdevices that are
designed to absorb solar radiation and convert it into Béadtenergy to have band
gapsinthe range of 1to 3 eV.

A relatively simple solar conversion device is shown in M.1. In this device
two layers of impurity-doped silicon are placed over a glasisstrate. One layer
is doped with electron donors type), the other is doped with electron acceptors
(p type). Both layers are bound to conducting metal contabtsékternal leads, or
wires). An antireflection coating is applied to the top of ttedl to reduce losses
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of incident solar radiation by suppressing reflection. Tlasg substrate is usually
designed to be reflective. This reflects unabsorbed sol&atiaa back through the
cell, so the cell is effectively “twice as thick.”

Anti-Reflection Coating

¥3| ——— Metal Contact

<—— n -Type Silicon Layer

| e— p - Type Silicon Layer

<+—— Metal Contact

%/////////////////////////////////////// <+— Glass Substrate

Fig. 46.1 Simple solar celln- andp-doped silicon layers are sandwiched between metallic
contacts. The top of the cell is coated with an antireflectioating, and the glass substrate is
usually reflective. Incident light creates an electrorehmdir. The electron is attracted to the
n-type silicon layer, the hole is attracted to {éype silicon layer.

The energy band structure for this device is shown scheailtim Fig. 46.2.
Two energy bands are shown. At zero temperature the lowkr(®@) band is filled
and the upper (conduction) band is empty. At finite tempeesgsome electrons are
excited from the valence band to the conduction band. Thegitity that a state
with energyF is filled is given by the Fermi-Dirac function

1
FD(ET)=—— ——. (46.4)
o(E—p) /KT | q

HereT is the temperature, measured in kelvigsis Boltzmann’'s constant =
1.38 x 10716 erg/K = 8.616x107° eV/K, kT is an energy, ang is a chemical
potential. At room temperatur&'(= 300K) kT = 0.0258 ~ % eV.

Under equilibrium conditions, the probability that an ¢tea is in any state in the
conduction orvalence bandis determined by a single chépotential. However, the
absorption problem is not an equilibrium problem. Rathiés,a dynamic process for
which we seek a steady state solution. Under this condtieptobability distribution
for electrons in the valence band is determined by one cre@patential z,, while
that for the conduction band is determined by another chedmputential uc:

1
FDyg(E,T) = : 46.5
veBT) = (46:5)
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Fig. 46.2 Energy band diagram for a simple solar cell operating with detive bands,
a conduction band and a valence band. The chemical poteptiabnd v, defining the
nonequilibrium steady state populations in the two bandshown.

1
FDcp(E,T) = . 46.6
csl ) elE—nc)/kT 4 q ( )

The potential differencéd/, at which the cell operates, is determined by

qV = po — pv - (46.7)

We now define:(v, z) to be the number of photons of frequencyhat occur a
distancez inside the cell £ = 0: front surfacez = 1: back surface). This number
changes as we progress through the crystal for two reasons:

1. Photons of frequenayare absorbed.

2. Photons of frequenayare reemitted.

In the absorption process, an electron is removed from gtatehe valence band
and deposited in statein the conduction band. The rate at which this happens is
proportional to

1. the probability that state; is occupied:F Dy, (E,T')

2. the probability that stat€’; is not occupiedl — F D¢, (E,T)
3. atransition matrix elementic, v,

4. the number of photonsi(v, z)
5

. the factom/c, n = index of refraction.
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dn(v, z)

Absorption : — = _% 3" He,v, n(v,2)FDy,(1 - FDc,) .
z i.j

(46.8)

Photons are also reemitted into the field according to

dn(v, z)
Emission : T:‘F%ZHVJ(—CI [TL(I/,Z)-{—I]FDCZ(I—FDVJ)
z i.j

(46.9)

The emission contribution comes from two processes: stitadlemission (propor-
tional ton(v, z)), the process responsible for laser action; and spontarenission
(proportional to 1 within the square brackets). The matexents for the absorption
and emission processes are complex conjugates of each éther v, = Hy ¢,

By integrating these equations through the crystal, froaftbnt to the back, and
then back to the front again, and imposing suitable bounctamditions, it is possible
to compute;V (the energy delivered), the power output, and the operafiigency
of the solar cell, as a function of the band gap. This was dgn8Hockley and
Queisser in 196%.The result is that at room temperature, the theoretical mai
conversion efficiency is 40.7%. This occurs with a band gap beV.

Increasing the efficiency of a solar cell means that a smg#egraphic area is
required to produce an equivalent amount of electricalgnefo be explicit, the
world’s energy could be supplied by about 130,000°ksolar cells on the earth
surface operating at 50% efficiency. By increasing the cmiwr efficiency by 1%
we could produce the same energy with about 3000 gmaller area.

Luque and Mait have explored the possibility of increasing the conversitfin
ciency of a solar cell by inserting an impurity band betwéenalence and conduction
bands (Fig. 46.3). They set up equations describing abiearphd reemission of
photons between all three pairs of bands and explored thgyeband parameters
that maximized the conversion efficiency of incident sodaliation to output electri-
cal energy. In this configuration, the maximum theoreticalversion efficiency is
63.1%. This occurs when the band gap between the valenceaddation bands is
1.93 eV and the impurity band is 0.7 eV above the top of thencddand.

46.4 THE DESIGN PROBLEM

We now describe how to design a quantum mechanical deviteafipmoximately
meets these specifications.

3W. Shockley and H. J. Queissegurnal of Applied Physics 32 (1961): 510-5?7.
4A. Lugue and A. Mant Increasing the Efficiency of Ideal Solar Cells by Photoduced Transitions at
Intermediate LevelsPhysical Review Letters 78 (1997): 5014-5017.



THE DESIGN PROBLEM 219

Conduction Band

e

]
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Fig. 46.3 Energy band diagram for a solar cell operating with threattands: a conduc-
tion band, a valence band, and an impurity band between the The chemical potentials
defining the nonequilibrium steady state populations inttihee bandsy.c, pr, anduy, are
shown.

The stepsinvolved in designing a device meeting the spatiits just proposed—
a gap of 1.93 eV between the valence band and the conductiaieral an impurity
band 0.7 eV above the valence band—are relatively simplea #st step, we look
for an “atom” whose lowest unoccupied state is more than d\98bove the highest
occupied state. When many atoms of this type are broughthegato a regular
lattice, the bound states are spread out into bands, andhérgyebetween the top
of the highest occupied (valence) band the the bottom ofdwedt unoccupied or
unfilled (conduction) band is reduced. For such substaneesompute the band
structure. Those atomsA” atoms) for which the band gap is near 1.93 eV are of
interest. We then search for atomsB(*atoms) for which there is an unoccupied
orbital 0.7 eV above the top of the valence band. This orbié&ld not be the lowest
empty orbital. Such atoms can serve as impurity atoms. Witetiee of A atoms is
doped withB atoms, an impurity band will be produced betweenAhtype valence
and conduction bands. If the doping percentage is smalijbarity band will be
very narrow and the locations of thieatom valence and conduction bands will be
essentially unaffected.

To illustrate this process, we consider.afiatom” represented by a well of depth
7.0 eV and width8.0 A. Such atoms have four bound stateFat —6.58, —5.35,
—3.37,and—0.87 eV, where we have chosen the potentiatat to be 0.0 eV. If the
lowest three levels are occupied, then the energy gap bettheehighest occupied
level at—3.37 eV and the lowest unoccupied level a0.87 eV is 2.5 eV. If the unit
cell fortheA atom in a lattice is described by potentials and widths ag/slio Table
46.2, then each of the four levels is broadened into a bansh@sn in Table 46.3.
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Table 46.2 Parameters for potentials of typeand B

A B
V (eV) 5(4) V (eV) 5(4)
0.0 1.0 0.0 1.0
-7.0 8.0 -4.8 6.0
0.0 1.0 0.0 1.0

Table 46.3 Bound states and bands for atoms of type

Level Single Particle Top of Band Band Band
Number Energy Bottom of Band Width Gap

-0.16
4 -0.87 1.08
-1.19
1.93
—-3.12
3 -3.37 0.45
—-3.57
1.68
-5.25
2 —-5.35 0.17
—5.42
1.14
—6.56
1 —6.58 0.04
—6.60

This table shows that the gap between the third (valencefrafdurth (conduction)
bandis 1.93 eV.

With A as host atom, an atom of typ@ should have an unoccupied level at
—3.12+40.70 = —2.42 eV. The potentiaB shown in Table 46.2 has bound states at
E = —4.19,-2.44,and—0.14 eV. If the second level at2.44 eV is unoccupiedB
atoms will serve as impurity atoms in a latticeAftype atoms to achieve the desired
specifications. In Fig. 46.4 we show part of a one-dimenglattae of A-type atoms
with a single impurity atom of typ&. Above this potential we show the four bands
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that arise from the four levels that the potentigbossesses, as well as the three levels
(dashed lines) provided by atoms. As long as the doping level is small (few percent
or less) the location of the bands and impurity levels is fataéd by the doping
level—it is only the number of impurity states that changéb the doping density.

Solar Cell Band Structure

Conduction Band

Impurity Band

Valence Band
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Fig. 46.4 A lattice of A atoms with a low density aB atoms produces a band structure as
shown. Chemical potentials for the three bands are indidayedashed lines. The potential
parameters for the two “atoms” are presented in Table 46hi& ifpurity-doped lattice meets
the design criteria for a solar cell with maximum possibfeafncy under the conditions stated.

In the real world we cannot design atomic potentials: we &wekswith what
nature gives us. However, in the real world the basic ideagdsigning devices are
not much different from those described above.
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