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The effective quantum mechanical Hamiltonian for a multielectron atom was derived in 1965
by Takashi Itoh. Itoh derived the Hamiltonian by treating the multielectron atom as a system
of electrons in a static electromagnetic field moving at velocities small compared to the speed of
light [1].

I. INTRODUCTION

This paper will describe Takashi Itoh’s derivation of
the effective quantum mechanical Hamiltonian for a sys-
tem of electrons in a static electromagnetic field. Itoh
derived the Hamiltonian from quantum electrodynamics
assuming that the velocities of the electrons were much
smaller than the speed of light. The resulting multiple-
term Hamiltonian provides a good approximation of the
Hamiltonian for a multielectron atom.

In Itoh’s paper ”Derivation of Nonrelativistic Hamilto-
nian for Electrons from Quantum Electrodynamics,” [1]
the Hamiltonian is derived for a system of n electrons in a
static external electromagnetic field. The terms in Itoh’s
Hamiltonian each involve the interaction of the electrons
with four space-time fields. Two of these fields are the

scalar potential, Φ(~r, t), and the vector potential, ~A(~r, t),
which describe the electromagnetic field. The other two

fields are the electric field, ~E(~r, t), and the magnetic field,
~B(~r, t). These fields are related by Maxwell’s equations:

~E = −∇Φ (1)

~B = ∇× ~A (2)

In order to deal with electron-field interactions and
electron-electron interactions separately, the four fields
can be decomposed into an extrinsic part and an intrin-
sic part:

Φ(~r, t)→ Φext(~r, t) + Φint(~r, t) (3)

~A(~r, t)→ ~Aext(~r, t) + ~Aint(~r, t) (4)

~E(~r, t)→ ~Eext(~r, t) + ~Eint(~r, t) (5)

~B(~r, t)→ ~Bext(~r, t) + ~Bint(~r, t) (6)

The extrinsic part of each field is the contribution of
the static external electromagnetic field, and the intrin-
sic part of the the fields is the contribution of the elec-
tromagnetic fields produced by the electrons. Thus, the
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electron-field interactions describe the interaction of the
electrons with the extrinsic part of the fields; and the
electron-electron interactions describe the interaction of
the electrons with the intrinsic part of the fields. The
complete Hamiltonian is a summation of each electron’s
interactions with the intrinsic and extrinsic parts of the
fields. This paper will provide a physical and mathemat-
ical description of the resulting Hamiltonian.

II. DERIVATION

A. Electron-Field Interactions

The first term to consider in the Hamiltonian is the
relativistic energy of each electron. For a single electron,
this energy can be expressed as:

Ee =
√

(mec2) + (pc)2 (7)

Ee = mec
2

√
1 + (

pc

mec2
)2 (8)

where me is the mass of an electron, p is the electron’s
momentum, and c is the speed of light. Using the bino-
mial expansion, this expression can be written as:

Ee = mec
2[1 +

1

2
(
pc

mec2
)2 − 1

8
(
pc

mec2
)4 + ...] (9)

By distributing the factor ofmec
2 and ignoring the higher

order terms, the relativistic energy can be given by the
first three terms in the expansion:

E0 = mec
2 (10)

E1 =
p2

2me
(11)

E2 = − p4

8m3
ec

3
(12)

where p2 is (~p · ~p) and p4 is (~p · ~p)2. The first term, E0,
is the rest energy of the electron; the second term, E1,
is the electron’s kinetic energy; and the last term, E2,
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is the first order relativistic correction to the kinetic en-
ergy. These terms describe the energy of a single electron
moving with momentum p in free space.

In a static electromagnetic field, a moving electron
will interact with the magnetic field via the Lorenz force

FB = q~v × ~B. Using the principle of minimal electro-
magnetic coupling, this interaction can be derived from
the electron’s free kinetic energy using the guage trans-

formation ~p→ ~p− ( q
c ) ~Aext, where q is the charge of the

particle (in this case -e). Using this quage transforma-
tion, the energy E1 becomes:

E1 =
p2

2me
+

e2

2mec2
~Aext· ~Aext+

e

c

~p · ~Aext + ~Aext · ~p
2me

(13)

The electron will also interact with the external electric
field via the Coloumb interaction FE = q ~E. The energy
of this interaction is given by:

EE = −eΦext (14)

For a system of n electrons, the Hamiltonian is the
sum of the each individual electron’s interactions with
the external field. Therefore:

Ĥ =

n∑
j

p2j
2me

−
n∑
j

p4j
8m3

ec
3

+

n∑
j

e

mec
~pj · ~Aext(~rj)

+

n∑
j

e2

2mec2
~Aext(~rj)

2 −
n∑
j

eΦext(~rj) (15)

In addition to these terms, there is a contribution from
the interaction of the electron’s spin angular momentum
and the external magnetic field. Classically, the Hamil-
tonian of an electron in an external magnetic field is

Ĥ = −µ · ~Bext, where µ is the electron’s magnetic mo-

ment. In quantum mechanics, µ = − gee
2mec

~S, where ge is

the Dirac magnetic moment (ge ' 2) and ~S is the spin
magnetic moment of the electron. Thus, the contribution
of the spin-magnetic field coupling to the Hamiltonian is
given by:

Ĥ =

n∑
j

e

mec
~Sj · ~Bext(~rj) (16)

Because the electron is moving, the magnetic field that
the electron ”sees” or interacts with is the external mag-
netic field with a correction term for relativistic effects
(time dilation,etc.). An electron moving in an external

magnetic field ~Bext will see an effective magnetic field:

~Beff = γ( ~Bext +
~v

c
× ~Eext) (17)

Because we are assuming that the electrons are moving
at speeds much lower than the speed of light, the Lorenz
factor γ ' 1. Substituting the effective magnetic field
into equation (16) and replacing the electron’s velocity

vector ~v with ~p
m gives the complete spin-magnetic field

interaction:

Ĥ =

n∑
j

e

mec
~Sj · ~Bext(~rj)+

n∑
j

e

2m2
ec

2
~Sj ·[ ~Eext×~pj ] (18)

where the second factor was multiplied by the Thomas
precession factor (' 1

2 ).
The final electron-field interaction term is an expan-

sion on the electrons’ interaction with the external elec-
tric field. Previously, this term was found by treating
the electron as a point particle. In reality, electron’s are
extended particles; therefore, the charge of the electron
is spread out with a charge density ρ(~r) with its cen-
ter at the electron’s location, ~r0. The charge density
has spherical symmetry and must satisfy the condition∫
ρ(~r)dV = 1. By expanding the scalar potential Φ(~r)

around the ~r0, the electric field interaction can be writ-
ten as:

EE = −
∫
eρ(~r)Φ(~r) (19)

EE = −e
∫
ρ(~r)[Φ(~r0)+∆~riΦi(~r0)+

1

2
∆~ri∆~rjΦij(~r0)+...]dV

(20)
where ∆~r is a small displacement from ~r0. After integrat-
ing and simplifying, the first term in the expansion is the
electric field interaction previously calculated, −eΦ(~r0);
the second term disappears due to symmetry; and the
third term in the expansion becomes:

EE,3 =
e

2

∆r2

3
Φijδij (21)

where Φijδij = Φii = ∇2Φ. The scalar potential, Φext,
is produced by a distribution of charges, ρext(~r), ex-
cluding the electrons. The scalar potential is related to
the external charge distribution by Poisson’s equation
∇2Φext = −4πρext. Assuming ∆r is on the order of the
Compton wavelength of an electron, λCompton = ~

mec
,

then ∆r2 = 3
4 ( ~

mec
)2. Using this information, EE,3 can

be expressed as:

EE,3 = (
πen~2

2m2
ec

2
)ρext(~rj). (22)

With this last term in place, the Hamiltonian for only
the electron-field interactions in this system is:

Ĥ =

n∑
j

p2j
2me

−
n∑
j

p4j
8m3

ec
3

+

n∑
j

e

mec
~pj · ~Aext(~rj)

+

n∑
j

e2

2mec2
~Aext(~rj)

2 −
n∑
j

eΦext(~rj)

+

n∑
j

e

mec
~Sj · ~Bext(~rj) +

n∑
j

e

2m2
ec

2
~Sj · [ ~Eext × ~pj ]

+

n∑
j

(
πen~2

2m2
ec

2
)ρext(~rj) (23)
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B. Electron-Electron Interactions

The Hamiltonian obtained in the previous section fully
described the interactions of the n electrons with the ex-
ternal electromagnetic field. To completely describe the
system, the Hamiltonian must also account for the inter-
actions of each electron with the other n-1 electrons in
the system.

The first interaction to consider is the Coloumb repul-
sion between each pair of electrons. For the interaction
between the jth and kth electron, the energy is given by:

EColoumb =
e2

~rjk
(24)

where ~rjk = |~rj − ~rk| is the distance between the two
electrons. In order to account for every pair without
double counting, the Hamiltonian is the sum of Coloumb
repulsion for each each pair with j < k:

Ĥ =
∑
j<k

e2

~rjk
(25)

The other electron-electron interactions are similar in
form to the terms derived for the electron-field interac-
tions in the previous section. The electron-field interac-
tions were derived from the interactions of each electron
with the external electromagnetic field. For electron-
electron interactions, the electrons interact with the fields
created by the other electrons in the system. For the kth
electron, the effective vector potential taking into account
the electron’s translational motion but neglecting spin,
~Ak(~r), is:

~Ak = − e

2mec
[
(~r − ~rk)(~r − ~rk) + ~pk(~r − ~rk)2

|~r − ~rk|3
] (26)

At the position of the jth electron this potential can be
written as:

~Ak = − e

2mec
[
(~rj − ~rk)(~rj − ~rk)

~r3jk
+

1

~rjk
] · ~pk (27)

The jth electron will interact with this field in the same
way it interacted with the external field. Using the po-
tential given above and summing over each individual
pair of electrons gives:

Ĥ = −
∑
j<k

e2

2m2
ec

2
~pj · [

(~rj − ~rk)(~rj − ~rk)

~r3jk
+

1

~rjk
] ·~pk (28)

The next electron-electron interaction contribution
comes from the interaction between the spin of the jth

electron, ~Sj , and the magnetic field created by the orbital
motion of the kth electron. Using the Biot-Savart Law,

the magnetic field, ~Bk, produced at the position of the
jth electron is:

~Bk(~rj) =
e

mec

(~rj − ~rk)× ~pk
|~rj − ~rk|3

(29)

The jth electron is in motion when it is interacting with
this field, so it will in fact interact with effective magnetic

field, ~Beff (~rj) given by:

~Beff (~rj) = γ( ~Bk(~rj)− ~vj × ~Ek(~rj)) (30)

where γ ' 1 as before. The electric field of the kth
electron at the position of the jth electron is given by:

~Ek(~rj) = −e(~rj − ~rk)

|~rj − ~rk|3
(31)

Replacing the jth electron’s velocity vector ~vj with
~pj

me

gives the effective magnetic field produced by the kth
electron as seen by the jth electron.

~Beff (~rj) =
e

mec

(~rj − ~rk)× ~pk
|~rj − ~rk|3

− e

mec
(
~pj × (~rj − ~rk)

|~rj − ~rk|3
)

(32)
The spin of the jth electron will interact with this field
the same way it ineracted with the effective external mag-
netic field. Therefore, the contribution of all n electrons
is given by:

Ĥ =
∑
j 6=k

e

mec
~Sj · ~Beff (~rj) (33)

Ĥ = −
∑
j 6=k

e2

m2
ec

2

1

~r3jk
~Sj · [(~rk − ~rj)× ~pk]

−
∑
j 6=k

e2

2m2
ec

2

1

~r3jk
~Sj · [(~rj − ~rk)× ~pj ] (34)

where the extra factor of 1
2 in the second term comes

from the Thomas precession factor.
Additional contributions to the Hamiltonian come

from the interactions amongst the electrons’ spin mag-
netic moments. By calculating the magnetic fields pro-
duced by the electrons’ spin magnetic moments, the spin-
spin interaction can be treated as a spin-field interaction.

The vector potential, ~Ak, produced by the spin of the kth
electron at the general position, ~r, is:

~Ak(~rj) =
e

mec

~Sk × ~r
~r3

(35)

The magnetic field given by ~Bk = ∇× ~Ak is then:

~Bk = − e

mec
[
3(~Sk · ~r)~r − ~Sk(~r · ~r)

~r5
] (36)

Thus, the spin-spin interaction of the jth and kth elec-
trons’ spin magnetic moments is equivalent to the inter-
action of the jth electron’s spin magnetic moment with
the magnetic field created by the kth electron’s spin mag-

netic moment at the position of the jth electron, ~Bk(~rj).

Ĥ =
e

mec
~Sj · ~Bk(~rj) (37)
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Then substituting the expression for the magnetic field
and summing over all interacting pairs give:

Ĥ = −
∑
j<k

e2

m2
ec

2
~Sj · [

3(~rj − ~rk)(~rj − ~rk)

~r5jk
− 1

~r3jk
] · ~Sk (38)

This term accounts for the spin-spin interactions of all the
electrons in the system. However, there is a small cor-
rection term needed to take into account that electrons
cannot penetrate other electrons and therefore ~rj 6= ~rk.
To correct for all of the points where ~rj = ~rk, the inter-
action of the spins at these points is subtracted:

Ĥ = −
∑
j<k

8πe2

3m2
ec

2
δ(~rj − ~rk)~Sj · ~Sk (39)

The final contribution to the Hamiltonian comes from
treating the electrons as extended particles rather than
point charges. By using the same expansion of the vector
potential that we used previously, and keeping only the
third term as before, the energy is once again:

EE,3 =
e

2

∆r2

3
Φijδij (40)

Again, it will be assumed that ∆r2 = 3
4 ( ~

mec
)2. The vec-

tor potential created by the kth electron at the position
of the jth electron is:

Φk(~rj) = − e

|~rj − ~rk|
(41)

Therefore:

Φij(~rj)δij = ∇2 −e
~rj − ~rk

= −4πδ(~rj − ~rk) (42)

Combining terms gives the correction as:

Ĥ = −
∑
j<k

πe2~2

m2
ec

2
δ(~rj − ~rk) (43)

Summing the Hamiltonians derived in this section will
completely account for all electron-electron interactions
in the system.

III. CONCLUSION

The nonrelativistic Hamiltonian for a system of n elec-
trons in an external electromagnetic field originally de-
rived by Takashi Itoh is obtained by adding up all of the

electron-field and electron-electron interactions derived
in the previous sections. The complete Hamiltonian is
therefore:

Ĥ =

n∑
j

p2j
2me

−
n∑
j

p4j
8m3

ec
3

+

n∑
j

e

mec
~pj · ~Aext(~rj)

+

n∑
j

e2

2mec2
~Aext(~rj)

2

−
n∑
j

eΦext(~rj)

+

n∑
j

e

mec
~Sj · ~Bext(~rj)

+

n∑
j

e

2m2
ec

2
~Sj · [ ~Eext × ~pj ]

+

n∑
j

(
πen~2

2m2
ec

2
)ρext(~rj)

+
∑
j<k

e2

~rjk
(44)

−
∑
j<k

e2

2m2
ec

2
~pj · [

(~rj − ~rk)(~rj − ~rk)

~r3jk
+

1

~rjk
] · ~pk

−
∑
j 6=k

e2

m2
ec

2

1

~r3jk
~Sj · [(~rk − ~rj)× ~pk]

−
∑
j 6=k

e2

2m2
ec

2

1

~r3jk
~Sj · [(~rj − ~rk)× ~pj ]

−
∑
j<k

e2

m2
ec

2
~Sj · [

3(~rj − ~rk)(~rj − ~rk)

~r5jk
− 1

~r3jk
] · ~Sk

−
∑
j<k

8πe2

3m2
ec

2
δ(~rj − ~rk)~Sj · ~Sk

−
∑
j<k

πe2~2

m2
ec

2
δ(~rj − ~rk) (45)
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