
The Ehrenfest Theorems
Robert Gilmore

1 Classical Preliminaries

A classical system with n degrees of freedom is described by n second order
ordinary differential equations on the configuration space (n independent coor-
dinates) in the Lagrangian representation

d

dt

∂L

∂q̇j
−
∂L

∂qj
= 0 (1)

and 2n first order ordinary differential equations on the phase space (n inde-
pendent coordinates and the conjugate momentum of each coordinate) in the
Hamiltonian representation

dqj
dt

= +
∂H

∂pj

dpj
dt

= −
∂H

∂qj
(2)

The first set of equations is called the Euler-Lagrange equations and the second
set is called the Hamiltonian equations of motion.

Functions describing particles depend on time implicitly through the time
dependence of the particle’s coordinates and momenta; they may also depend
explicitly on time: f = f(q(t), p(t), t). The time derivative of such functions
has the form

df

dt
=

∂f

∂t
+
∂f

∂qi

dqi
dt

+
∂f

∂pi

dpi
dt

=
∂f

∂t
+
∂f

∂qi

∂H

∂pi
−
∂f

∂pi

∂H

∂qi

=
∂f

∂t
+ {f,H} (3)

The partial derivative provides information about the explicit time dependence
of the function. The implicit time dependence, depending on the motion of the
particle, is provided by the Poisson bracket:

{f, g} ≡
∑

j

∂f

∂qj

∂g

∂pj
−
∂f

∂pj

∂g

∂qj
(4)
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2 Classical - Quantum Correspondence

An elegant formulation of Quantum Theory is given in terms of a relation be-
tween the Poisson bracket of Classical Mechanics and the commutator (Lie)
bracket of Quantum Mechanics:

Classical Mechanics QuantumMechanics

{f, g} ↔
[f̂ , ĝ]

ih̄

(5)

The hat ˆ on the right hand side indicates that the correspondents are operators.
To see how this works, we observe directly from Equ.(4) that {qj , pk} = δjk.

From this and the Classical → Quantum mapping Equ.(5) we observe that
[q̂j , p̂k] = ih̄δjk. Thiss relation can be satisfied in one of two obvious ways, one
emphasizing the coordinates (the usual), the other emphasizing their conjugate
momenta:

Representation q̂j p̂k

Coordinate qj
h̄

i

∂

∂qk

Momentum −
h̄

i

∂

∂pj
pk

(6)

A final piece of the puzzle that we need is the time-dependent Schrödinger
equation. For a free particle with wavefunction ψ(x) = eikx the momentum is
h̄k by looking at the eigenvalue of the momentum operator p̂ = (h̄/i)∂/∂x. If we
would like to represent the time-dependence of a free particle moving to the right
with a momentum h̄k in the form eikx−ωt we must choose the time-dependent
form of the Schrödinger equation to be

Hψ(x, t) = +ih̄
∂ψ(x, t)

∂t

3 Ehrenfest Theorems

The “Ehrenfest Theorem” comprises a whole class of results, all of which assume
the same form:

Classical Mechanics → Quantum Mechanics

d

dt
A = B →

d

dt
〈Â〉 = 〈B̂〉

(7)

To show this, we write down the time derivative of an expectation value as
follows:
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d

dt
〈Â〉 =

d

dt

∫

ψ∗(x, t)Âψ(x, t)dV =

∫

ψ∗(x, t)
∂Â

∂t
ψ(x, t)dV +

∫

∂ψ∗(x, t)

∂t
Âψ(x, t)dV +

∫

ψ∗(x, t)Â
∂ψ(x, t)

∂t
dV (8)

In the expression above we can replace ∂ψ(x,t)
∂t

by H/ih̄ and we can replace
∂ψ∗(x,t)

∂t
by −H/ih̄. The result is

d

dt
〈Â〉 = 〈

∂Â

∂t
〉 + 〈

[Â,H]

ih̄
〉 (9)

Equation (9) for Quantum systems is identical to Equ. (3) for Classical systems
through the Quantum-Classical correspondence of Equ. (5). This is “Ehrenfest’s
Theorem.”

4 Simple Applications

The following results are immediate:

d

dt
〈x〉 = 〈

p

m
〉

d

dt
〈p〉 = 〈−

∂V

∂x
〉 = 〈F〉

d

dt
〈L〉 = 〈r × F〉 (10)

The Hamiltonian equations of motion are obtained as follows. Set Â = q̂j .
In this case

d

dt
〈qj〉 =

1

ih̄
〈[qj ,H]〉 =

1

ih̄
〈ih̄

∂

∂pj
H〉 = 〈

∂H

∂pj
〉 (11)

The replacement of the commutator [qj ,H] by the derivative ih̄ ∂
∂pj

H is a direct

application of Equ. (6). In a similar way we find Ehrenfest’s limit for the other
of Hamilton’s equations. The symmetry is

dqj
dt

= +
∂H

∂pj
→

d〈qj〉

dt
= +〈

∂H

∂pj
〉 (12)

(13)

dpk
dt

= −
∂H

∂qk
→

d〈pk〉

dt
= −〈

∂H

∂qk
〉 (14)

(15)
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If there is any uncertainty about taking the partial derivative of the operator H
with respect to a coordinate or a momentum, the commutator (over ±ih̄) can
be taken instead.

5 Virial Theorem

The Virial of Clausius is defined by

G =
∑

j

pjqj = p · q (16)

The Virial has the dimensions of Action (dA =
∑

pdq). Its time derivative has
expressions in terms of useful physical quantities (kinetic energy, force)

dG

dt
=

∑

j

dqj
dt
pj + qj

dpj
dt

=
p

m
·p + r · F = 2T − r · ∇V (17)

and in terms of Euler-like operators on the Hamiltonian

dG

dt
=

∑

j

pj
dqj
dt

+ qj
dpj
dt

=
∑

j

(

pj
∂

∂pj
− qj

∂

∂qj

)

H (18)

The Virial Theorem is different from classical expressions given in previous
sections in that it is a statistical statement. It is an expression of long time
averages:

G = lim
τ→∞

1

τ

∫ τ

0

dG

dt
dt = lim

τ→∞

1

τ

∫ τ

0



2T −
∑

j

qj
∂

∂qj
V



 dt = 2T − q · ∇V

(19)
If the motion is periodic or, more generally it is bounded, G(q(τ), p(τ)) −
G(q(0), p(0)) is bounded so the limit above vanishes. If the potential is a ho-
mogeneous function of the coordinates, so that V (q) = α|q|n, then by Euler’s
theorem and the boundedness of the motion we find

2T − nV = 0 (20)

This is the standard equipartition of energy theorem for systems in thermody-
namic equilibrium. For Coulomb potentials (n = −1) this result tells us that
the mean value of the potential energy is twice the mean value of the kinetic
energy, and of opposite sign.

The Quantum Mechanical statement of this theorem is also different from
expressions given previously, in that it must involve two averaging operations.
Spatial averages are denoted by 〈 〉 and temporal averages are denoted by .
The Virial is defined as a symmetrized generalization of the classical expression:
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Ĝ =
∑

j

1

2
[p̂j , q̂j ]+ =

∑

j

1

2
(p̂j q̂j + q̂j p̂j) (21)

The time derivative is given by the usual expression

d

dt
〈Ĝ〉 = 〈[Ĝ,H]〉 (22)

The commutators are easily computed. They give 2T and r · F as before. Inte-
grating the time derivative, we find for bound states

〈2T − q · ∇V 〉 = 0 (23)

The result for a homogeneous potential of degree n is

〈2T 〉 = n〈V 〉 (24)

We observe that spatial expectation values are time-dependent in general, but
expectation values in an eigenstate are time independent. In an eigenstate the
statement above is true at all times, not only on average, so we find for a bound
eigenstate in a homogeneous potential

〈2T 〉 = n〈V 〉 (25)
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