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Abstract

Schrödinger’s solution of both the relativistic and the nonrelativistic Coulomb problem in

its Wave Mechanics formulation is reviewed.

1 The Wave Equations

Schrödinger’s derivation of a wave equation for a particle of mass m began with the relativistic
dispersion relation for the free particle: pµpµ = gµνp

µpν = (mc)2. In terms of the energy E and the
three-momentum p this is

E2 − (pc)2 = (mc2)2 (1)

Interaction of a particle of charge q with the electromagnetic field is described by the Principle of
Minimal Electromagnetic Coupling: pµ → πµ = pµ− q

cAµ, where the four-vector potential A consists

of the scalar potential Φ and the vector potential A. These obey B = ∇× A and E = −∇Φ− 1
c

∂A

∂t .
For an electron q = −e, where e is the charge on the proton, positive by convention. In the Coulomb
field established by a proton, Φ = e/r and A = 0, so that E → E+e2/r. Here r is the proton-electron
distance. The Schrödinger prescription for converting a dispersion relation to a wave equation is
to replace p → (~/i)∇ and allow the resulting equation to act on a spacial function ψ(x). This
prescription results in the wave equation

Klein-
Gordon

Equation:

{

E2 − (mc2)2 + 2E

(

e2

r

)

+

(

e2

r

)2

− (−i~c∇)2

}

ψ(x) = 0 (2)

This equation exhibits spherical symmetry in the sense that it is unchanged (invariant) in form under
rotations: 〈S′|H |S′〉 = 〈S|H |S〉, where 〈S′|S〉 ∈ SO(3). Schrödinger solved this equation, compared
its predictions with the spectral energy measurements on the hydrogen atom, was not convinced his
theory was any good, and buried this approach in his desk drawer.

Sometime later he reviewed this calculation and took its nonrelativistic limit. Since the binding
energy is about 13.6 eV and the electron rest energymc2 is about 510, 000 eV, it makes sense to write
E = mc2 +W , where the principle part of the relativistic energy E is the electron rest energy and
the nonrelativistic energy W is a small perturbation of either (≃ 0.0025%). Under this substitution,
and neglecting terms of order (W + e2/r)2/mc2, we obtain the nonrelativistic form of Eq. (14.4):

Schrödinger
Equation:

{

p · p
2m

− e2

r
−W

}

ψ(x) =

{

− ~
2

2m
∇2 − e2

r
−W

}

ψ(x) = 0 (3)

Eq.(2) is now known as the Klein-Gordon equation and its nonrelativistic limit Eq.(3) is known as
the Schrödinger equation, although the former was derived by Schrödinger before he derived his
namesake equation.
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Remark: Schrödinger began his quest for a theory of atomic physics with Maxwell’s Equations,
in particular, the eikonal form of these equations. It is no surprise that his theory inherits key
characteristics of electromagnetic theory: solutions that are amplitudes, the superposition principle
for solutions, and interference effects that come about by squaring amplitudes to obtain intensities.
Had he started from classical mechanics, there would be no amplitude-intensity relation and the
only superposition principle would have been the superposition of forces or their potentials. The
elegant but forced relation between Poisson brackets and commutator brackets ([A,B]/i~ = {A,B})
is an attempt to fit quantum mechanics into the straitjacket of classical mechanics.

2 Quantization Conditions

The standard approach to solving partial differential equations is to separate variables. Since the
two equations derived above have spherical symmetry, it is useful to introduce spherical coordinates:
(r, θ, φ). In this coordinate system the Laplacian is

∇2 =

(

1

r

∂

∂r
r

)2

+
L2(S2)

r2
(4)

L2(S2) =
1

sin θ

∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂φ2
(5)

The second order differential operator L2(S2) is the Laplacian on the sphere S2. Its eigenfunctions
are the spherical harmonics Y l

m(θ, φ) and its spectrum of eigenvalues is L2(S2)Y l
m(θ, φ) = −l(l +

1)Y l
m(θ, φ). The integers (l,m) satisfy l = 0, 1, 2, · · · and −l ≤ m ≤ +l. The negative sign and

discrete spectrum characteristically indicate that S2 is compact.
The partial differential equations Eqs.(2) and (3) are reduced to ordinary differential equations

by substituting the ansatz

ψ(r, θ, φ) → 1

r
R(r)Y l

m(θ, φ) (6)

into these equations, replacing the angular part of the Laplacian by the eigenvalue −l(l + 1), and
multiplying by r on the left. This gives the simple second order ordinary differential equation

(

d2

dr2
+
A

r2
+
B

r
+ C

)

R(r) = 0 (7)

The values of the coefficients A,B,C that are obtained for the Klein-Gordon equation and the
Schrödinger equation are

Equation A B C

Klein-Gordon −l(l + 1) + (e2/~c)2 2Ee2/(~c)2
[

E2 − (mc2)2
]

/(~c)2

Schrödinger −l(l+ 1) 2me2/~2 2mW/~2
(8)

There is a standard procedure for solving simple ordinary differential equations of the type
presented in Eq.(7). This is the Frobenius method. The steps involved in this method, and the
result of each step, are summarized in Table 1.

The energy eigenvalues for the bound states of both the relativistic and nonrelativistic problems
are expressed in terms of the radial quantum number n = 0, 1, 2, · · · and the angular momentum
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Table 1: Left column lists the steps followed in the Frobenius method for finding the square-integrable
solutions of simple ordinary differential equations. Right column shows the result of applying the
step to Eq.(7).

Procedure Result
1 Locate singularities 0,∞
2 Determine analytic behavior r → 0 : R ≃ rγ , γ(γ − 1) +A = 0

at singular points r → ∞ : R ≃ eλr, λ2 + C = 0

3 Keep only L2 solutions γ = 1
2 +

√

(1
2 )2 −A, λ = −

√
−C

4 Look for solutions with proper R = rγeλrf(r)
asymptotic behavior

5 Construct DE for f(r)
[(

rD2 + 2γD
)

+ (2λγ +B + 2λrD)
]

f(r) = 0

6 Construct recursion relation fj+1 = − 2λ(j+γ)+B
j(j+1)+2γ(j+1) fj

7 Look at asymptotic behavior f ≃ e−2λr if series doesn’t terminate
≃ e+1λr if series does terminate (λ < 0)

8 Construct quantization condition 2λ(n+ γ) +B = 0 or

n+
1

2
+

√

(
1

2
)2 −A =

B

2
√
−C

9 Construct explicit solutions
E = mc2√

1+(α/N ′)2
W = − 1

2mc
2α2 1

N2

N ′ = n+ 1
2 +

√

(l + 1
2 )2 − α2 N = n+ l + 1

quantum number l = 0, 1, 2, · · · , mass m of the electron, or more precisely the reduced mass of the
proton-electron pair m−1

red = m−1
e +M−1

p , and the fine structure constant

α =
e2

~c
=

1

137.035 999 796(70)
= 0.007 297 352 531 3(3 8) (9)

This is a dimensionless ratio of three physical constants that are fundamental in three “different”
areas of physics: e (electromagnetism), ~ (quantum mechanics), and c (relativity). It is one of the
most precisely measured of the physical constants. The bound state energy eigenvalues are

Klein-Gordon Equation Schrödinger Equation

E(n, l) =
mc2

√

1 + (α/N ′)2
W (n, l) = −1

2
mc2α2 1

N2

N ′ = n+
1

2
+

√

(

l +
1

2

)2

− α2 N = n+ l + 1

(10)

Both the nonrelativistic and relativistic energies have been plotted in Fig. 1. The nonrelativistic
energies for the hydrogen atom appear as the darker lines. The nonrelativistic energy has been
normalized by dividing by the hydrogen atom ground state energy |W1| = 1

2mc
2α2. These normalized

energy levels decrease to zero like 1/N2, where N = n+ l+1 is the principle quantum number. The
energies are displayed as a function of the orbital angular momentum l. The relativistic energies of
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Figure 1: Spectrum of the hydrogen atom, normalized by the energy of the nonrelativistic ground
state. The nonrelativistic spectrum is darker. The relativistic spectrum has been computed for
Z = 50. These energies are computed by replacing α→ Zα everywhere.

the bound states for the proton-electron system converge to the rest energy mc2 as N ′ increases.
When this limit is removed these energies (also rescaled by dividing by 1

2mc
2α2) can be plotted on

the same graph. At the resolution shown, the two sets of rescaled energies are indistinguishable.
To illustrate the difference, we have instead computed and plotted the bound state spectrum for a
single electron in a potential with positive charge Z. The energies in this case are obtained by the
substitution α → Zα everywhere. The energies of these bound states have been renormalized by
subtracting the limit mc2 and dividing by the nonrelativistic energy for the same ion: 1

2mc
2(Zα)2.

The energy difference between the 1s ground states is pronounced; this difference decreases rapidly
as the principle qunatum number increases.
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