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The study of Lie groups can be greatly facilitated by linearizing the group
in the neighborhood of its identity. This results in a structure called a Lie
algebra. The Lie algebra retains most, but not quite all, of the properties
of the original Lie group. Moreover, most of the Lie group properties can
be recovered by the inverse of the linearization operation, carried out by
the EXPonential mapping. Since the Lie algebra is a linear vector space,
it can be studied using all the standard tools available for linear vector
spaces. In particular, we can define convenient inner products and make
standard choices of basis vectors. The properties of a Lie algebra in the
neighborhood of the origin are identified with the properties of the original
Lie group in the neighborhood of the identity. These structures, such as
inner product and volume element, are extended over the entire group
manifold using the group multiplication operation.

4.1 Why Bother?

Two Lie groups are isomorphic if:

(i) Their underlying manifolds are topologically equivalent;
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62 Lie Algebras

(ii) The functions defining the group composition laws are equivalent.

Two manifolds are topologically equivalent if they can be smoothly

deformed into each other. This requires that all their topological in-

dices, such as dimension, Betti numbers, connectivity properties, etc.,

are equal.

Two group composition laws are equivalent if there is a smooth change

of variables that deforms one function into the other.

Showing the topological equivalence of two manifolds is not neces-

sarily an easy job. Showing the equivalence of two composition laws

is typically a much more difficult task. It is difficult because the group

composition law is generally nonlinear, and working with nonlinear func-

tions is notoriously difficult.

The study of Lie groups would simplify greatly if the group composi-

tion law could somehow be linearized, and this linearization retained a

substantial part of the information inherent in the original group com-

position law. This in fact can be done.

Lie algebras are constructed by linearizing Lie groups.

A Lie group can be linearized in the neighborhood of any of its points,

or group operations. Linearization amounts to Taylor series expansion

about the coordinates that define the group operation. What is being

Taylor expanded is the group composition function. This function can

be expanded in the neighborhoods of any group operations.

A Lie group is homogeneous — every point looks locally like every

other point. This can be seen as follows. The neighborhood of group

element a can be mapped into the neighborhood of group element b by

multiplying a, and every element in its neighborhood, on the left by

group element ba−1 (or on the right by a−1b). This maps a into b and

points near a into points near b.

It is therefore necessary to study the neighborhood of only one group

operation in detail. Although geometrically all points are equivalent, al-

gebraically one is special — the identity. It is very useful and convenient

to study the neighborhood of this special group element.

Linearization of a Lie group about the identity generates a new set

of operators. These operators form a Lie algebra. A Lie algebra is a

linear vector space, by virtue of the linearization process.

The composition of two group operations in the neighborhood of the

identity reduces to vector addition. The construction of more compli-

cated group products, such as the commutator, and the linearization

of these products introduces additional structure in this linear vector
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space. This additional structure, the commutation relations, carries in-

formation about the original group composition law.

In short, the linearization of a Lie group in the neighborhood of the

identity to form a Lie algebra brings about an enormous simplification

in the study of Lie groups.

4.2 How to Linearize a Lie Group

We illustrate how to construct a Lie algebra for a Lie group in this

section. The construction is relatively straightforward once an explicit

parameterization of the underlying manifold and an expression for the

group composition law is available. In particular, for the matrix groups

the group composition law is matrix multiplication, and one can con-

struct the Lie algebra immediately for the matrix Lie groups.

We carry this construction out for SL(2; R). It is both customary

and convenient to parameterize a Lie group so that the origin of the

coordinate system maps to the identity of the group. Accordingly, we

parameterize SL(2; R) as follows

(a, b, c) −→M(a, b, c) =





1 + a b

c (1 + bc)/(1 + a)



 (4.1)

The group is linearized by investigating the neighborhood of the identity.

This is done by allowing the parameters (a, b, c) to become infinitesimals

and expanding the group operation in terms of these infinitesimals to

first order

(a, b, c)→ (δa, δb, δc)→M(δa, δb, δc) =





1 + δa δb

δc (1 + δbδc)/(1 + δa)





(4.2)

The basis vectors in the Lie algebra are the coefficients of the first order

infinitesimals. In the present case the basis vectors are 2× 2 matrices

(δa, δb, δc)→ I2 + δaXa + δbXb + δcXc =





1 + δa δb

δc 1− δa



 (4.3)
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Xa =

[

1 0

0 −1

]

=
∂M(a, b, c)

∂a

∣

∣

∣

∣

(a,b,c)=(0,0,0)

Xb =

[

0 1

0 0

]

=
∂M(a, b, c)

∂b

∣

∣

∣

∣

(a,b,c)=(0,0,0)

Xc =

[

0 0

1 0

]

=
∂M(a, b, c)

∂c

∣

∣

∣

∣

(a,b,c)=(0,0,0)

(4.4)

Lie groups that are isomorphic have Lie algebras that are isomorphic.

Remark: The group composition function φ(x, y) is usually linearized

in one of its arguments, say φ(x, y) → φ(x, 0 + δy). This generates a

left-invariant vector field. The commutators of two left-invariant vector

fields at a point x is independent of x, so that x can be taken in the

neighborhood of the identity. It is for this reason that the linearization

of the group in the neighborhood of the identity is so powerful.

4.3 Inversion of the Linearization Map: EXP

Linearization of a Lie group in the neighborhood of the identity to form

a Lie algebra preserves the local group properties but destroys the global

properties — that is, what happens far from the identity. It is important

to know whether the linearization process can be reversed — can one

recover the Lie group from its Lie algebra?

To answer this question, assume X is some operator in a Lie algebra

— such as a linear combination of the three matrices spanning the Lie

algebra of SL(2; R) given in (4.4). Then if ǫ is a small real number,

I + ǫX represents an element in the Lie group close to the identity.

We can attempt to move far from the identity by iterating this group

operation many times

lim
k→∞

(I +
1

k
X)k =

∞
∑

n=0

Xn

n!
= EXP (X) (4.5)

The limiting and rearrangement procedures leading to this result are

valid not only for real and complex numbers, but for n×n matrices and

bounded operators as well.

Example: We take an arbitrary vector X in the three-dimensional

linear vector space of traceless 2× 2 matrices spanned by the generators
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Xa, Xb, Xc of SL(2; R) given in (4.4)

X = aXa + bXb + cXc =

[

a b

c −a

]

(4.6)

The exponential of this matrix is

EXP (X) = EXP (aXa+bXb+cXc) =

∞
∑

n=0

1

n!

[

a b

c −a

]n

= I2 cosh θ+X
sinh θ

θ

=





cosh θ + a sinh(θ)/θ b sinh(θ)/θ

c sinh(θ)/θ cosh θ − a sinh(θ)/θ



 (4.7)

θ2 = a2 + bc

The actual computation can be carried out either using brute force or

finesse.

With brute force, each of the matrices Xn is computed explicitly, a

pattern is recognized, and the sum is carried out. The first few powers

are X0 = I2, X1 = X [given in (4.6)], and X2 = θ2I2. Since X2

is a multiple of the identity, X3 = X2X1 must be proportional to X

(= θ2X), X4 is proportional to the identity, and so on.

Finesse involves use of the Cayley-Hamilton theorem, that every ma-

trix satisfies its secular equation. This means that a 2× 2 matrix must

satisfy a polynomial equation of degree 2. Thus we can replace X2 by

a function of X0 = I2 and X1 = X . Similarly, X3 can be replaced by

a linear combination of X2 and X , and then X2 replaced by I2 and X .

By induction, any function of the 2× 2 matrix X can be written in the

form

F (X) = f0(a, b, c)X0 + f1(a, b, c)X1 (4.8)

Furthermore, the functions f0, f1 are not arbitrary functions of the three

parameters (a, b, c), but rather functions of the invariants of the matrix

X . These invariants are the coefficients of the secular equation. The

only such invariant for the 2× 2 matrix X is θ2 = a2 + bc. As a result,

we know from general and simple considerations that

EXP (X) = f0(θ
2)I2 + f1(θ

2)X (4.9)

The two functions are f0(θ
2) = 1 + θ2/2! + θ4/4! + θ6/6! + · · · = cosh θ

and f1(θ
2) = 1+θ2/3!+θ4/5!+θ6/7!+· · · = sinh(θ)/θ. These arguments

are applicable to the exponential of any matrix Lie algebra.
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The EXPonential operation provides a natural parameterization of

the Lie group in terms of linear quantities. This function maps the

linear vector space — the Lie algebra — to the geometric manifold that

parameterizes the Lie group. We can expect to find a lot of geometry in

the EXPonential map.

Three important questions arise about the reversibility of the process

represented by

Lie group

ln

⇋

EXP

Lie algebra (4.10)

(i) Does the EXPonential function map the Lie algebra back onto

the entire Lie group?

(ii) Are Lie groups with isomorphic Lie algebras themselves isomor-

phic?

(iii) Is the mapping from the Lie algebra to the Lie group unique, or

are there other ways to parameterize a Lie group?

These are very important questions. In brief, the answer to each of

these questions is ‘No.’ However, as is very often the case, exploring

the reasons for the negative result often produces more insight than a

simple ‘Yes’ response would have. They will be treated in more detail

in Chapter 7.

4.4 Properties of a Lie Algebra

We now turn to the properties of a Lie algebra. These are derived from

the properties of a Lie group. A Lie algebra has three properties:

(i) The operators in a Lie algebra form a linear vector space;

(ii) The operators close under commutation: the commutator of two

operators is in the Lie algebra;

(iii) The operators satisfy the Jacobi identity.

If X and Y are elements in the Lie algebra, then g1 = I + ǫX is an

element in the Lie group near the identity for ǫ sufficiently small. In

fact, so also is I + ǫαX for any real number α. We can form the product

(I + ǫαX)(I + ǫβX) = I + ǫ(αX + βY ) + higher order terms (4.11)

If X and Y are in the Lie algebra, then so is any linear combination of

X and Y . The Lie algebra is therefore a linear vector space.
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The commutator of two group elements is a group element:

commutator of g1 and g2 = g1g2g
−1
1 g−1

2 (4.12)

If X and Y are in the Lie algebra, then for any ǫ, δ sufficiently small,

g1(ǫ) = EXP (ǫX) and g1(ǫ)
−1 = EXP (−ǫX) are group elements near

the identity, as are g2(δ)
±1 = EXP (±δY ). Expanding the commutator

to lowest order nonvanishing terms, we find

EXP (ǫX)EXP (δY )EXP (−ǫX)EXP (−δY ) =

I + ǫδ (XY − Y X) = I + ǫδ [X, Y ] (4.13)

Therefore, the commutator of two group elements, g1(ǫ) = EXP (ǫX)

and g2(δ) = EXP (δY ), which is in the group G, requires the commu-

tator of the operators X and Y , [X, Y ] = (XY − Y X), to be in its Lie

algebra g

g1g2g
−1
1 g−1

2 ∈ G⇔ [X, Y ] ∈ g (4.14)

The commutator (4.12) provides information about the structure of a

group. If the group is commutative then the commutator in the group

(4.12) is equal to the identity. The commutator in the algebra vanishes

g1g2g
−1
1 g−1

2 = I ⇒ [X, Y ] = 0 (4.15)

If H is an invariant subgroup of G, then g1Hg−1
1 ⊂ H . This means that

if X is in the Lie algebra of G and Y is in the Lie algebra of H

g1Hg−1
1 ∈ H ⇒ [X, Y ] ∈ Lie algebra of H (4.16)

If X, Y, Z are in the Lie algebra, then the Jacobi identity is satisfied

[X, [Y, Z]] + [Y, [Z, X ]] + [Z, [X, Y ]] = 0 (4.17)

This identity involves the cyclic permutation of the operators in a double

commutator. For matrices this identity can be proved by opening up the

commutators ([X, Y ] = XY − Y X) and showing that the 12 terms so

obtained cancel pairwise. This proof remains true when the operators

X, Y, Z are not matrices but operators for which composition (e.g. XY

is well-defined, as are all other pairwise products) is defined. When

operator products (as opposed to commutators) are not defined, this

method of proof fails but the theorem (it is not an identity) remains true.

This theorem represents an integrability condition on the functions that

define the group multiplication operation on the underlying manifold.

To summarize, a Lie algebra g has the following structure:
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(i) It is a linear vector space under vector addition and scalar mul-

tiplication. If X ∈ g and Y ∈ g then every linear combination of

X and Y is in g.

X ∈ g, Y ∈ g, αX + βY ∈ g

(ii) It is an algebra under commutation. If X ∈ g and Y ∈ g then

their commutator is in g.

X ∈ g, Y ∈ g, [X, Y ] ∈ g

This property is called ‘closure under commutation.’

(iii) The Jacobi identity is satisfied. If X ∈ g, Y ∈ g, and Z ∈ g, then

[X, [Y, Z]] + [Y, [Z, X ]] + [Z, [X, Y ]] = 0

Example: The three generators (4.4) of the Lie group SL(2; R) obey

the commutation relations

[Xa, Xb] = 2Xb

[Xa, Xc] = −2Xc

[Xb, Xc] = Xa

(4.18)

It is an easy matter to verify that the Jacobi identity is satisfied for this

Lie algebra.

4.5 Structure Constants

Since a Lie algebra is a linear vector space we can introduce all the

usual concepts of a linear vector space, such as dimension, basis, inner

product. The dimension of the Lie algebra g is equal to the dimension of

the manifold that parameterizes the Lie group G. If the dimension is n,

it is possible to choose n linearly independent vectors in the Lie algebra

(a basis for the linear vector space) in terms of which any operator in

g can be expanded. If we call these basis vectors, or basis operators

X1, X2, · · · , Xn, then we can ask several additional questions such as:

Is there a natural choice of basis vectors? Is there a reasonable definition

of inner product (Xi, Xj)? We return to these questions shortly.

Since the linear vector space is closed under commutation, the commu-

tator of any two basis vectors can be expressed as a linear superposition

of basis vectors

[Xi, Xj] = C k
ij Xk (4.19)

The coefficients C k
ij in this expansion are called structure constants.
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The structure of the Lie algebra is completely determined by its structure

constants. The antisymmetry of the commutator induces a correspond-

ing antisymmetry in the structure constants

[Xi, Xj] + [Xj , Xi] = 0 C k
ij + C k

ji = 0 (4.20)

Under a change of basis transformation

Xi = A r
i Yr (4.21)

the structure constants change in a systematic way

C′ t
rs = (A−1) i

r (A−1) j
s C k

ij A t
k (4.22)

(second order covariant, first order contravariant tensor). This piece of

information is surprisingly useless.

Example: The only nonzero structure constants for the three basis

vectors Xa, Xb, Xc (4.4) in the Lie algebra sl(2; R) for the Lie group

SL(2; R) are, from (4.18)

C b
ab = −C b

ba = +2, C c
ac = −C c

ca = −2, C a
bc = −C a

cb = +1

(4.23)

4.6 Regular Representation

A better way to look at a change of basis transformation is to determine

how the change of basis affects the commutator of an arbitrary element

Z in the algebra

[Z, Xi] = R(Z) j
i Xj (4.24)

Under the change of basis (4.21) we find

[Z, Yr] = S(Z) s
r Ys (4.25)

where

S s
r (Z) = (A−1) i

r R(Z) j
i A s

j (4.26)

In this manner the effect of a change of basis on the structure constants

is reduced to a study of similarity transformations.

The association of a matrix R(Z) with each element of a Lie algebra

is called the Regular representation

Z

Regular

−→

Representation

R(Z) (4.27)
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The regular representation of an n-dimensional Lie algebra is a set of

n×n matrices. This representation contains exactly as much information

as the structure constants, for the regular representation of a basis vector

is

[Xi, Xj ] = R(Xi)
k

j Xk = C k
ij Xk (4.28)

so that

R(Xi)
k

j = C k
ij (4.29)

The regular representation is an extremely useful tool for resolving a

number of problems.

Example: The regular representation of the Lie algebra sl(2; R) is

easily constructed, since the structure constants have been given in

(4.23)

R(X) = R(aXa+bXb+cXc) = aR(Xa)+bR(Xb)+cR(Xc) =





0 −2b 2c

−c 2a 0

b 0 −2a





(4.30)

The rows and columns of this 3×3 matrix are labeled by the indices a, b

and c, respectively.

4.7 Structure of a Lie Algebra

The first step in the classification problem is to investigate the regular

representation of the Lie algebra under a change of basis. We look for

a choice of basis that brings the matrix representative of every element

in the Lie algebra simultaneously to one of the three forms shown in

Fig. 4.1. The first term (nonsemisimple, ...) is applied typically to Lie

groups and algebras while the second term (reducible, ...) is typically

applied to representations.

Example: It is not possible to simultaneously reduce the regular rep-

resentatives of the three generators Xa, Xb, and Xc of sl(2; R) to either

the nonsemisimple or the semisimple form. This algebra is therefore

simple. However, the Euclidean group E(2) with structure

E(2) =





cos θ sin θ t1
− sin θ cos θ t2

0 0 1



 (4.31)
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non semisimple semisimple simple
reducible fully reducible irreducible

Fig. 4.1. Standard forms into which a representation can be reduced

has a Lie algebra with three infinitesimal generators

Lz =





0 1 0

−1 0 0

0 0 0



 Px =





0 0 1

0 0 0

0 0 0



 Py =





0 0 0

0 0 1

0 0 0





(4.32)

and regular representation

R(θLz + t1Px + t2Py) =





0 −θ 0

θ 0 0

−t2 t1 0



 (4.33)

where the rows and columns are labeled successively by the basis vec-

tors Px, Py, and Lz. This regular representation has the block diagonal

structure of a nonsemisimple Lie algebra. The algebra, and the original

group, are therefore nonsemisimple.

There is a beautiful structure theory for simple and semisimple Lie

algebras. This will be discussed in Chapter 9. A structure theory exists

for nonsemisimple Lie algebras. It is neither as beautiful nor as complete

as the structure theory for simple Lie algebras.

4.8 Inner Product

Since a Lie algebra is a linear vector space, we are at liberty to impose

on it all the structures that make linear vector spaces so simple and

convenient to use. These include inner products and appropriate choices

of basis vectors.

Inner products in spaces of matrices are simple to construct. A well-

known and very useful inner product when A, B are p × q matrices is
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the Hilbert-Schmidt inner product

(A, B) = Tr A†B (4.34)

This inner product is positive definite, that is

(A, A) =
∑

i

∑

j

|A j
i |

2 ≥ 0, = 0⇒ A = 0 (4.35)

If we were to adopt the Hilbert-Schmidt inner product on the regular

representation of g, then

(Xi, Xj) = Tr R(Xi)
†R(Xj) =

∑

r

∑

s

R(Xi)
s∗

r R(Xj)
s

r =
∑

r

∑

s

C s∗

ir C s
jr

(4.36)

This inner product is positive semidefinite on g: it vanishes identically on

those generators that commute with all operators in the Lie algebra (Xi,

where C ∗
i⋆ = 0) and also on all generators that are not representable as

the commutator of two generators (Xi, where Ci
∗⋆ = 0).

The Hilbert-Schmidt inner product is a reasonable choice of inner

product from an algebraic point of view. However, there is an even

more useful choice of inner product that provides both algebraic and

geometric information. This is defined by

(Xi, Xj) = Tr R(Xi)R(Xj) =
∑

r

∑

s

R(Xi)
s

r R(Xj)
r

s =
∑

r

∑

s

C s
ir C r

js

(4.37)

This inner product is called the Cartan-Killing inner product, or

Cartan-Killing form. It is in general an indefinite inner product. It

is used extensively in the classification theory of Lie algebras.

The Cartan-Killing metric can be used to advantage to make further

refinements on the structure theory of a Lie algebra. The vector space

of the Lie algebra can be divided into three subspaces under the Cartan-

Killing inner product. The inner product is positive-definite, negative-

definite, and identically zero on these three subspaces:

g = V+ + V− + V0 (4.38)

The subspace V0 is a subalgebra of g. It is the largest nilpotent in-

variant subalgebra of g. Under exponentiation, this subspace maps onto

the maximal nilpotent invariant subgroup in the original Lie group.

The subspace V− is also a subalgebra of g. It consists of compact (a

topological property) operators. That is to say, the exponential of this

subspace is a subset of the original Lie group that is parameterized by

a compact manifold. It also forms a subalgebra in g (not invariant).
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Finally, the subspace V+ is not a subalgebra of g. It consists of non-

compact operators. The exponential of this subspace is parameterized

by a noncompact submanifold in the original Lie group.

In short, a Lie algebra has the following decomposition under the

Cartan-Killing inner product

g

Cartan−Killing

−→

inner product

V0 nilpotent invariant subalgebra

V− compact subalgebra

V+ noncompact operators

(4.39)

We return to the structure of Lie algebras in Chapter 8 and the classi-

fication of simple Lie algebras in Chapter 10.

Example: The Cartan-Killing inner product on the regular represen-

tation (4.30) of sl(2; R) is

(X, X) = Tr R(X)R(X) = Tr





0 −2b 2c

−c 2a 0

b 0 −2a





2

= 8(a2 + bc)

(4.40)

From this we easily drive the form of the metric for the Cartan-Killing

inner product:

8(a2 + bc) =
(

a b c
)





8 0 0

0 0 4

0 4 0









a

b

c



 (4.41)

A convenient choice of basis vectors is one that diagonalizes this metric

matrix: Xa and X± = Xb ±Xc. In this basis the metric matrix is





8 0 0

0 8 0

0 0 −8





Xa

X+

X−

(4.42)

In this representation it is clear that the operator X− spans a one-

dimensional compact subalgebra in sl(2; R) and the generators Xa, X+

are noncompact.

We should point out here that the inner product can also be computed

even more simply in the defining 2× 2 matrix representation of sl(2; R)

(X, X) = Tr

[

a b

c −a

]2

= 2(a2 + bc) (4.43)

This gives an inner product that is proportional to the inner product

derived from the regular representation. This is not an accident, and this
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observation can be used to compute the Cartan-Killing inner products

very rapidly for all matrix Lie algebras.

4.9 Invariant Metric and Measure on a Lie Group

The properties of a Lie algebra can be identified with the properties of

the corresponding Lie group at the identity.

Once the properties of a Lie group have been determined in the neigh-

borhood of the identity, these properties can be translated to the neigh-

borhood of any other group operation. This is done by multiplying

the identity and its neighborhood on the left (or right) by that group

operation.

Two properties that are useful to define over the entire manifold are

the metric and measure. We assume the coordinates of the identity

are (α1, α2, · · · , αn) and the coordinates of a point near the identity are

(α1 + dα1, α2 + dα2, · · · , αn + dαn). If (x1, x2, · · · , xn) represents some

other group operation, then the point (α1+dα1, α2+dα2, · · · , αn +dαn)

is mapped to the point (x1+dx1, x2+dx2, · · · , xn+dxn) under left (right)

multiplication by the group operation associated with (x1, x2, · · · , xn).

The displacements dx and dα are related by a position-dependent linear

transformation

dxr = M(x)r
idαi (4.44)

Suppose now that the distance ds between the identity and a point

with coordinates αi +dαi infinitesimally close to the identity is given by

ds2 = gij(Id)dαidαj (4.45)

Any metric can be chosen at the identity, but the most usual choice is

the Cartan-Killing inner product. Can we define a metric at x, grs(x),

with the property that the arc length is an invariant?

grs(x)dxrdxs = gij(Id)dαidαj (4.46)

In order to enforce the invariance condition, the metric at x, g(x), must

be related to the metric at the identity by

g(x) = M−1(x)tg(Id)M−1(x) (4.47)

The volume elements at the identity and x are

dV (Id) = dα1 ∧ dα2 ∧ · · · ∧ dαn

dV (x) = dx1 ∧ dx2 ∧ · · · ∧ dxn =‖M ‖ dα1 ∧ dα2 ∧ · · · ∧ dαn(4.48)
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The two volume elements can be made equal by introducing a measure

over the manifold and defining an invariant volume

dµ(x) = ρ(x)dV (x) = ρ(x) ‖M(x) ‖ dV (Id)⇒ ρ(x) =‖M(x) ‖−1

(4.49)

Example: Under the simple parameterization (4.1) of the group

SL(2; R) the neighborhood of the identity is parameterized by (4.3).

We move a neighborhood of the identity to the neighborhood of the

group operation parameterized by (x, y, z) using left multiplication as

follows
[

1 + x y

z 1+yz
1+x

]

×

[

1 + dα1 dα2

dα3 1− dα1

]

=

[

1 + (x + dx) y + dy

z + dz 1+(y+dy)(z+dz)
1+(x+dx)

]

=









(1 + x)(1 + dα1) + ydα3 (1 + x)dα2 + y(1− dα1)

z(1 + dα1) +
(1 + yz)dα3

(1 + x)
zdα2 +

(1 + yz)(1− dα1)

(1 + x)









(4.50)

The linear relation between the infinitesimals (dα1, dα2, dα3) in the

neighborhood of the identity and the infinitesimals (dx, dy, dz) in the

neighborhood of the group operation (x, y, z) can now be read off, ma-

trix element by matrix element




dx

dy

dz



 =





1 + x 0 y

−y 1 + x 0

z 0 1+yz
1+x









dα1

dα2

dα3



 (4.51)

From this linear transformation we immediately compute the invariant

measure by taking the inverse of the determinant

dµ(x) = ρ(x, y, z)dx ∧ dy ∧ dz =
dx ∧ dy ∧ dz

1 + x
(4.52)

The invariant metric is somewhat more difficult, as it involves computing

the inverse of the linear transformation (4.51). The result is





2 0 0

0 0 1

0 1 0





left translation

−→

by (x, y, z)













2(1 + yz)

(1 + x)2
−

z

(1 + x)
−

y

(1 + x)

−
z

(1 + x)
0 1

−
y

(1 + x)
1 0













(4.53)

The invariant measure (4.52) can be derived from the invariant metric

(4.53) in the usual way (cf. Problem (4.11)).
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4.10 Conclusion

The structure that results from the linearization of a Lie group is called

a Lie algebra. Lie algebras are linear vector spaces. They are endowed

with an additional combinatorial operation, the commutator [X, Y ] =

(XY − Y X), and obey the Jacobi identity. Since they are linear vector

spaces, many powerful tools are available for their study. It is possible

to define an inner product that reflects not only the algebraic properties

of the original Lie group, but its topological properties as well. The

properties of a Lie algebra can be identified with the properties of the

parent Lie group in the neighborhood of the identity. These structures

can be moved to neighborhoods of other points in the group manifold

by a suitable group multiplication.

The linearization procedure is more or less invertible (a little less than

more). The inversion is carried out by the EXPonential mapping.

4.11 Problems

1. Carry out the commutator calculation for g1 = (I + ǫX), g−1
1 =

(I + ǫX)−1 = I − ǫX + ǫ2X2 − · · · , with similar expressions for g2, to

obtain the same result as in (4.13). In other words, this local result is

independent of the parameterization in the neighborhood of the identity.

2. The inner product of two vectors X and X ′ in a linear vector space

can be computed if the inner product of a vector with itself is known.

This is done by the method of polarization. For a real linear vector

space the argument is as follows:

(X ′, X) =
1

2
[(X ′ + X, X ′ + X)− (X ′, X ′)− (X, X)]

a. Verify this.

b. Extend to complex linear vector spaces.

c. Use the result from Eq. (4.43) that (X, X) = 2(a2 + bc) to show

(X ′, X) = 2a′a + b′c + c′b.

3. Suppose that the n×n matrix Y is defined as the exponential of an

n×n matrix X in a Lie algebra: Y = eX . Show that “for Y sufficiently

close to the identity” the matrix X can be expressed as

X = −

∞
∑

n=1

(I − Y )n

n
(4.54)
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Show that this expansion converges when X and Y are symmetric if

the real eigenvalues λi of Y all satisfy 0 < λi < +2. Show that if

Y ∈ SL(2; R) and tr Y < −2 this expansion does not converge. That

is, there is no 2× 2 matrix X ∈ sl(2; R) with the property tr eX < −2.

4. The Lie algebra of SO(3) is spanned by three 3× 3 antisymmetric

matrices L = (L1, L2, L3) = (X23, X31, X12), with

θ · L =





0 θ3 −θ2

−θ3 0 θ1

θ2 −θ1 0



 =





0 θ12 θ13

θ21 0 θ23

θ31 θ32 0



 = X (4.55)

Use the Cayley-Hamilton theorem to show

eθ·L = I3f0(θ) + Xf1(θ) + X2f2(θ) (4.56)

where θ is the single invariant that can be constructed from the matrix

X = θ · L: θ2 = θ2
1 + θ2

2 + θ2
3 . Show

f0(θ) = cos θ or f0(θ) = cos θ

f1(θ) = sin(θ)/θ θf1(θ) = sin(θ)

f2(θ) = (1− cos(θ))/θ2 θ2f2(θ) = 1− cos(θ)

5. The Lie algebra for the matrix group SO(n) consists of antisym-

metric n×n matrices. Show that a useful set of basis vectors (matrices)

consists of the n(n − 1)/2 matrices Xij = −Xji (1 ≤ i 6= j ≤ n) with

matrix elements (Xij)αβ = δiαδjβ − δiβδjα.

a. Show that these matrices satisfy the commutation relations

[Xij , Xrs] = Xisδjr + Xjrδis −Xirδjs −Xjsδir (4.57)

b. Show that the operators Xij = xi∂j − xj∂i satisfy isomorphic com-

mutation relations.

c. Show that bilinear products of boson creation and annihilation op-

erators Bij = b†ibj − b†jbi (1 ≤ i 6= j ≤ n) satisfy isomorphic

commutation relations.

c. Show that bilinear products of fermion creation and annihilation op-

erators Fij = f †
i fj − f †

j fi (1 ≤ i 6= j ≤ n) satisfy isomorphic

commutation relations.
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6. The Jacobi identity for operators D, Y, Z (replace X → D in Eq.

4.17) can be rewritten in the form

[D, [Y, Z]] = [[D, Y ], Z] + [Y, [D, Z]] (4.58)

Show this. Compare with the expression for the differential operator

d(f ∧ g) = (df) ∧ g + f ∧ (dg)

It is for this reason that the Jacobi identity is sometimes called a differ-

ential identity.

7. For the matrix Lie algebra so(4) the defining matrix representation

consists of 4×4 antisymmetric matrices while the regular representation

consists of 6 × 6 antisymmetric matrices. Construct the defining and

regular matrix representations for the element aijXij in the Lie algebra:

X =
∑

ij

aijXij →

def(X) =
∑

aijdef(Xij)

reg(X) =
∑

aijreg(Xij)

(4.59)

Construct the Cartan-Killing inner product using these two different

matrix representations:

tr def(X)def(X)← (X, X)→ tr reg(X)reg(X) (4.60)

Show that the two inner products are proportional. What is the propor-

tionality constant? How does this result extend to SO(n)? to SO(p, q)?

Is there a simple relation between the proportionality constant and the

dimensions of the defining and regular representations?

8. Assume a Lie algebra of n × n matrices is noncompact and its

Cartan-Killing form splits this Lie algebra into three subspaces:

g→ V0 + V− + V+

Show that the subspace V− exponentiates onto a compact manifold. Do

this by showing that the basis matrices in V− have eigenvalues that

are imaginary or zero, so that EXP (V−) is multiply periodic. Ap-

ply this construction to the noncompact groups SO(3, 1) and SO(2, 2).

Show EXP (V−) is a two-sphere S2 for SO(3, 1) and a two-torus T 2 for

SO(2, 2).

9. Construct the infinitesimal generators for the group SO(3) using

the parameterizations proposed in Problems 13 and 15 in Chapter 3.
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10. Use the exponential parameterization of SO(3) to construct the

linear transformation M (Eq. 4.44) describing displacements from the

identity to displacements at the group operator eθ·L ∈ SO(3). From

this construct the invariant density ρ(θ) and the metric tensor gµν(θ).

Give a reason for the strange behavior (singularities) that these invariant

quantities exhibit.

11. Compute the determinant of the metric tensor (4.53) on the group

SL(2; R). Show that the square root of the determinant is equal to the

measure, in accordance with the standard result of Riemannian geometry

that dV (x) =‖ g(x) ‖1/2 dnx. Discuss the additional factors of 2 and

−1 that appear in this calculation.

12. An inner product is (x,x) is imposed on a real n-dimensional

linear vector space. It is represented by a real symmetric nonsingular

n× n matrix grs = (er, es), where x = eix
i. The inverse matrix, grs, is

well defined.

a. Lie group G preserves inner products. If y = Gx, (y,y) = (x,x).

Show GtgG = g.

b. Show the Lie algebra H of G satisfies Htg + gH = 0.

c. Show that the infinitesimal generators of G are Xrs = grtx
t∂s −

gstx
t∂r.

d. Show that the operators Xrs satisfy commutation relations

[Xij , Xrs] = +Xisgjr + Xjrgis −Xirgjs + Xjsgir

13. Every real unimodular 2× 2 matrix M can be written in the form

M = SO, where S is a real symmetric unimodular matrix and O is a

real orthogonal matrix.

In Group Relation In Algebra

St = S+1 det(S) = +1 S = eΣ Tr Σ = 0 Σt = +Σ

Ot = O−1 det(O) = +1 O = eA Tr A = 0 At = −A

a. Show that MM t = S2 = e2Σ.

b. Show O = S−1M = e−ΣM

c. Write S as a power series expansion in Σ.

d. Write Σ as a power series expansion in S − I2.

Under what conditions are these expansions valid?
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14. Extend the result of the previous problem to complex n×n matri-

ces M = HU , with M arbitrary but nonsingular, H† = H+1 hermitian

and U † = U−1 unitary.

15. Transfer matrices have been described in Chapter 3, Problem 24.

In one dimension the transfer matrix for a scattering potential, with free

particles incident from the left or right with momentum ~kL or −~kR,

has the form [34]

[

αR + iαI βR + iβI

βR − iβI αR − iαI

]

(4.61a)

The matrix elements are given explicitly by

2αR = +m11 +
kR

kL
m22 2αI = +m12kR − k−1

L m21

2βR = +m11 −
kR

kL
m22 2βI = −m12kR − k−1

L m21

(4.61b)

The real quantities mij are the four matrix elements of a group operation

in SL(2; R). They are energy dependent. By appropriate choice of

~kL = ~kR and the matrix elements mij , construct three infinitesimal

generators for the group of the transfer matrix for scattering states.

Show that they are

[

i 0

0 −i

] [

0 i

−i 0

] [

0 −1

−1 0

]

(4.61c)

Show that these three matrices span the Lie algebra of the group SU(1, 1).

16. The transfer matrix for a potential that possesses bound states

has the form

[

α1 + α2 β1 + β2

β1 − β2 α1 − α2

]

(4.62a)

The matrix elements are given explicitly by

2α1 = +m11 +
κR

κL
m22 2α2 = −m12κR − κ−1

L m21

2β1 = +m11 −
κR

κL
m22 2β2 = +m12κR − κ−1

L m21

(4.62b)
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The parameters κR and κL describe the decay length of the exponentially

decaying wavefunction in the asymptotic left and right hand regions of

the potential. The real quantities mij are the four matrix elements of

a group operation in SL(2; R). They are energy dependent. By appro-

priate choice of κL = κR and the matrix elements mij , construct two

infinitesimal generators for the group of the transfer matrix for bound

states. Show that they are

[

1 0

0 −1

] [

0 1

−1 0

] [

0 1

1 0

]

(4.62c)

Show that these three matrices span the Lie algebra of the group SL(2; R).

Argue that there ought to be interesting relations (e.g., analytic con-

tinuations) between the scattering states (e.g., resonances) and bound

states through the relation between the groups SL(2; R) and SU(1, 1),

which are isomorphic. How are the matrices (4.61a) and (4.62a), the

matrix elements (4.61b) and (4,62b), and the infinitesimal generators

(4.61c) and (4.62c) related to each other by analytic continuation? (Hint:

k∗ =
√

2m(E − V∗)/~2 for E > V∗ and κ∗ =
√

2m(V∗ − E)/~2 for

E < V∗, ∗ = L, R.)


