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Abstract

Classical Thermodynamics has a beautiful formulation which is “rigid”, simple, and elegant.
It has been formulated in terms of thermodynamic potentials, in particular the internal energy,
U , and the entropy, S. Both are extensive variables which scale with the mass of the system.
At equilibrium, the constrained potential is a minimum in the energy representation and a
maximum in the entropy representation. We discuss the properties of Thermodynamics in the
energy representation in detail. In the last section we construct the transformation from the
energy to the entropy representation.

To each extensive variable, Eα (S, V, Nj , · · ·), there corresponds a conjugate intensive vari-
able, iα = ∂U/∂Eα (T,−P, µj , · · ·). The First Law of Thermodynamics expresses the change in
energy as dU =

∑

α
iαdEα (dU = TdS + (−P )dV + µjdNj + · · ·). The Second Law of Ther-

modynamics is equivalent to the statement that the stability matrix, Uα,β = ∂2U/∂Eα∂Eβ, is
positive definite. The matrix elements of this matrix of mixed second partial derivatives can
be measured because they are susceptibilities, giving the linear response of intensive thermody-
namic variables to changes in the extensive thermodynamic variables: ∆iα =

∑

β
Uα,β∆Eβ. A

large number of equalities and inequalities are obeyed by these linear response functions. Some
equalities are consequences of the symmetry relations among the matrix elements Uα,β = Uβ,α

(Maxwell Relations). The remainder are a consequence of the relation between the stability
matrix and its inverse, Uα,β . The inequalities are consequences of the Second Law requirement
that Uα,β (and its inverse, Uα,β) are positive definite.

A systematic way for constructing a change of basis transformation in the tangent plane
to the equilibrium manifold is described. This leads directly to a systematic procedure for
computing thermodynamic partial derivatives. They are simply expansion coefficients in a
preferred basis set. The algorithm is simple and can be carried out in a finite (small) number of
steps. A computer implementation of this algorithm is presented in the Appendix. A systematic
procedure for constructing new potentials (Gibbs, Helmholtz, Enthalpy) from U is described.
These new potentials are not positive-definite. Their metrics are block-diagonal and related to
the matrix Uα,β in a precisely defined way.

1 Introduction

The formal structure of classical thermodynamics is simple, elegant, and beautiful. The properties
of a physical system in thermodynamic equilibrium, and the fluctuations around thermodynamic
equilibrium, are described by a single scalar function. This function can be regarded as a potential.
The secrets of this potential can be unlocked by taking its first and second derivatives. In the most
useful representations of thermodynamics, the potential is chosen as the total internal energy (U)
or the total entropy (S) of the physical system.

Classical Thermodynamics was developed in the energy representation. The most important
questions at that time concerned the conversion of heat into work. These questions are by now well-
understood. The next set of questions to be addressed concern the effect of heat on information.
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Figure 1: Extensive variables scale with the size (mass) of the subsystem. Intensive variables are
scale independent.

We therefore expect the pendulum to swing from the energy to the entropy representation during
the coming century. This transition is currently under way.

We will formulate classical thermodynamics in the energy representation. Modifications required
for the formulation in the entropy representation are minor. They will be exhibited at the end of
the chapter.

2 Internal Energy U

The internal energy, U , of a physical system is a function of the natural extensive variables required
to describe the system. For a single component fluid, for example, these are S (entropy), V (volume),
and N (particle number): U = U(S, V, N). The function U is concave as seen from above. Concave
means that the line segment joining any two points in the surface lies entirely above the surface.

The internal energy, as well as its natural variables, is extensive. This means that these variables
scale with the ‘size’ of the system. To make this explicit, we consider a system as well as a small
part of it, within the curved boundary of Fig. 3.1. Assume the mass of the entire system is M
and that of the subsystem is λM . If the natural variables of the entire system are S, V, N and the
internal energy is U , then the values of these extensive variables for the subsystem are λS, λV, λN
and its internal energy is λU . The energy function obeys the important scaling property

U(λS, λV, λN) = λU(S, V, N) (1)

In the general formulation of classical thermodynamics the internal energy U is a function of its
natural extensive variables

U = U(E1, E2, · · ·) = U(Eα) (2)

This function obeys the scaling relation

U(λE1, λE2, · · ·) = U(λEα) = λU(Eα) (3)

The extensive variables are homogeneous of degree +1.
The First Law of Thermodynamics states that energy is conserved. It expresses the differential

change in the internal energy as a sum over products of intensive variables multiplied by differentials
of their conjugate intensive variables:

dU =
∑

α

iαdEα (4)
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The intensive variables are the derivatives of the potential with respect to the extensive variables:

iα =
∂U

∂Eα
(5)

The intensive variables are “scale independent,” that it, homogeneous functions of degree 0.
Table 3.1 presents a list of commom extensive variables and their conjugate intensive variables.

The physical interpretation of the intensive variables is as follows. The variable iα is the amount
of energy required to add one unit of the extensive variable Eα to the system, holding all other
extensive variables constant. For example, the chemical potential is the amount of energy required
to add one particle to a system, holding the entropy, volume, ... , constant. The angular velocity Ω

is the amount of energy required to add one unit of angular momentum J to the system, holding all
other extensive variables constant.

We will discuss equilibrium and stability by constructing the Taylor series expansion of the
potential U . First derivates are independent of scale:

∂(λU)

∂(λEα)
=

∂U

∂Eα
(6)

Second derivatives scale like λ−1:

∂2(λU)

∂(λEα)∂(λEβ)
= λ−1 ∂U2

∂Eα∂Eβ
(7)

The nth derivatives scale like λ1−n.

3 Taylor Series Expansion

The potential U can be expanded in the neighborhood of any point (E1
0 , E2

0 , · · ·) in the usual way:

U(Eα) = ∆(0)U + ∆(1)U + ∆(2)U + h.o.t. (8)

∆(0)U = U(Eα
0 )

∆(1)U =
∑

α

∆Eα ∂U

∂Eα
(9)

∆(2)U =
1

2

∑

α,β

∆Eα∆Eβ ∂2U

∂Eα∂Eβ
(10)

where ∆Eα = Eα − Eα
0 . All derivatives are evaluated at (E1

0 , E2
0 , · · ·).

4 Conservation of Extensive Quantities

We now consider two systems, 1 and 2, which are in thermodynamic equilibrium with each other.
The sums of their extensive variables are conserved:

S1 + S2 = STot

V1 + V2 = VTot
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N1 + N2 = NTot

...

Eα
1 + Eα

2 = Eα
Tot (11)

The total internal energy is the sum of the internal energies of the two systems:

UTot(Eα
Tot) = U (1)(Eα

1 ) + U (2)(Eα
2 ) (12)

Any fluctuation which increases Eα in system 1 does so at the expense of Eα in system 2, so that
fluctuations are conserved:

δEα
1 + δEα

2 = 0 (13)

We now expand the total energy around the thermodynamic equilibrium

UTot = U (1)(Eα
1 +δEα

1 )+U (2)(Eα
2 +δEα

2 ) = ∆(0)(U (1)+U (2))+∆(1)(U (1)+U (2))+∆(2)(U (1)+U (2))+h.o.t.
(14)

Using the conservation of fluctuations, δEα
1 = −δEα

2 = δEα, the first and second order terms can
be expressed

∆(1)(U (1) + U (2)) =
∑

α

(

∂U (1)

∂Eα
1

−
∂U (2)

∂Eα
2

)

δEα (15)

∆(2)(U (1) + U (2)) =
1

2

∑

α,β

(

∂2U (1)

∂Eα
1 ∂Eβ

1

+
∂2U (2)

∂Eα
2 ∂Eβ

2

)

δEαδEβ (16)

(17)

5 Equilibrium

Equilibrium requires that all first derivatives vanish. At equilibrium, ∆(1)(U (1) + U (2)) = 0, so that
the intensive variables of the two systems are equal:

i(1)α =
∂U (1)

∂Eα
1

=
∂U (2)

∂Eα
2

= i(2)α (18)

In particular, when two substances are in thermodynamic equilibrium they have the same temper-
ature, pressure, chemical potentials, angular velocity, ... .

6 Stability

Stability at an equilibrium requires that all fluctuations away from equilibrium increase the value of
the potential. Stability requires that the sum of the two matrices of mixed second partial derivatives,
∂2U (1)/∂Eα

1 ∂Eβ
1 + ∂2U (2)/∂Eα

2 ∂Eβ
2 , is positive definite. Each matrix separately must be positive

definite by the following simple argument. Assume that the two systems are the subsystem of mass
λM shown in Fig. 3.1 and its complement of mass (1 − λ)M . Then, by scaling, the sum of the two
matrices of mixed second partial derivatives is

∂2U (1)

∂Eα
1 ∂Eβ

1

+
∂2U (2)

∂Eα
2 ∂Eβ

2

−→

(

1

λ
+

1

1 − λ

)

∂2U

∂Eα∂Eβ
(19)
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This argument can be applied to any system. The positive-definiteness condition is equivalent to
the condition that the function U(Eα) is concave as seen from above.

Remark: It is often assumed that system 1 is of interest and system 2 is a “reservoir.” One way
of enforcing this assumption is to allow M → ∞, λ → 0, and λM → finite. Then (1 − λ)M → ∞.
In this case, at thermodynamic equilibrium

• First Derivatives: The intensive variables of the system are equal to those of the reservoir.

• Second Derivatives: Fluctuations around the equilibrium are determined entirely by fluctu-
ations in the system of interest.

Most discussions of thermodynamics have been carried out in the system-reservoir dichotomy.
In the more interesting case of finite interacting systems, small modifications must be made at the
level of the stability matrix (second derivatives).

7 Gibbs-Duhem Duality

Homogeneous functions of degree n are well-studied and have magical properties. Euler’s Theorem
states that, for a homogeneous function of degree n, defined by f(λx1, λx2, · · ·) = λnf(x1, x2, · · ·),

∑

i=1

xi
∂

∂xi
f(x) = nf(x) (20)

This theorem can be applied to the thermodynamic potential U , which is homogeneous of degree
+1:

∑

α

Eα ∂

∂Eα
U(E) =

∑

α

Eαiα = U (21)

This form for the potential function emphasizes the duality between the intensive and extensive
variables. For many purposes they should be treated on an equal footing.

In particular, the differential of U can be constructed treating the extensive variables Eα and
conjugate intensive variables iα as independent:

dU =
∑

α

iαdEα +
∑

α

Eαdiα (22)

The First Law of Thermodynamics (4) can be used to simplify this equation. The result is that
∑

α

Eαdiα = 0 (23)

This is known as the Gibbs-Duhem relation. For a simple single component fluid it is

SdT + V d(−P ) + Ndµ = 0 (24)

This means that there is some functional relation among the intensive variables T,−P, µ: f(T, P, µ) =
0, where S = ∂f/∂T , V = −∂f/∂P , and N = ∂f/∂µ.

Remark: It is suggestive to write the First Law of Thermodynamics and the Gibbs-Duhem
relation in the following forms

∑

α

iαdEα = dU
∑

α

Eαdiα = 0 (25)

In this form the duality between the two laws become apparent. Further, these two relations have
the same structure as Maxwell’s equations ∂µFµν = 4π

c jν , ∂µFµν = 0: One equation has a source
term, the dual equation has none. This observation raises an obvious question.
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8 Linear Response Coefficients

Intensive thermodynamic variables have a natural interpretation as derivatives of the thermodynamic
potential U by the conjugate extensive thermodynamic variables: iα = ∂U/∂Eα. As a next step
in understanding thermodynamics, we seek the physical interpretation of the stability coefficients:
Uα,β = ∂2U/∂Eα∂Eβ. These are the matrix elements of the thermodynamic stability matrix. Nor-

mally, to determine curvature coefficients (k in p2

2m + 1
2kx2) we would perturb the system and monitor

the dynamics of its return to equilibrium. However, in Thermodynamics there is no Dynamics, so
we must resort to alternative methods.

We will determine the stability coefficients Uα,β as linear response coefficients. The idea is
as follows. At an equilibrium Eα

0 , the conjugate thermodynamic variables iα(E0) have well-defined
values. If we move to a nearby equilibrium with extensive coordinates Eα = Eα

0 +∆Eα, the intensive
parameters will change as well, to

iα(E0 + ∆E) =
∂U

∂Eα
(E0 + ∆E) =

∂U

∂Eα
(E0) +

∑

β

∂2U(E0)

∂Eα∂Eβ
∆Eβ

iα(E0) + ∆iα = iα(E0) +
∑

β

Uα,β∆Eβ

∆iα =
∑

β

Uα,β∆Eβ (26)

As a result, the matrix elements Uα,β have two important interpretations:

1. They are linear response coefficients relating changes in intensive thermodynamic variables
produced by changes in the extensive variables under equilibrium conditions:

∂iα
∂Eβ

= Uα,β = Uβ,α =
∂iβ
∂Eα

(27)

(Maxwell Relations).

2. They are stability coefficients in the positive-definite matrix of mixed second partial deriva-
tives Uα,β = ∂2U/∂Eα∂Eβ which guarantees the stability of thermodynamic systems at their
equilibria.

We can measure these linear response coefficients. Therefore we can measure the matrix elements
of the thermodynamic stability matrix.

Example: For the simple single component fluid with fixed number of particles, U = U(S, V ),
T = ∂U/∂S and −P = ∂U/∂V . The second derivatives can be expressed in terms of four pairs of
linear response functions:

Susceptibility Definition Constraint

Specific Heat C = T

(

∂S

∂T

)

X

X = (V, P )

Thermal Expansion Coefficient α =
1

V

(

∂V

∂T

)

X

X = (S, P )

Compressibility β = −
1

V

(

∂V

∂P

)

X

X = (S, T )

Heat of Pressure Variation Γ = T

(

∂S

∂P

)

X

X = (V, T )
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The linear relationship is specifically

[

dT
−dP

]

=







T

CV

1

V αS

−
T

ΓV

1

V βS







[

dS
dV

]

(28)

These relations are determined as follows. By holding V constant, we find −dP = UV,SdS, so that
1

UV,S
= −

(

∂S
∂P

)

V
= − 1

T ΓV . The others are computed similarly.

The four matrix elements use only four of the eight susceptibilities: those four in which an
extensive variable is held constant. The remaining four can be conveniently placed into a matrix
describing changes in extensive variables due to changes in intensive variables:

[

dS
dV

]

=

[

CP

T
−

ΓT

T
V αP V βT

]

[

dT
−dP

]

(29)

These two matrices have a certain symmetry:

Uα,β →

(

∂iα
∂Eβ

)

E

= 1/(Susceptibility)E

Uβ,α →

(

∂Eβ

∂iα

)

i

= (Susceptibility)i

For example, US,V = ∂(∂U/∂S)/∂V = (∂T/∂V )S = 1/V αS while UV,S = (∂V/∂T )i = V αP .
Corresponding symmetry-related off-diagonal matrix elements of the inverse and direct matrices
Uα,β and Uβ,α involve a susceptibility measured at constant i and its inverse measured at constant
E. This applies also to the diagonal matrix elements.

9 Inner Products

For many purposes it is useful to use the matrix Uα,β to define an inner product on the space of
displacements (∆Eα, ∆iβ, · · ·) near an equilibrium. This space is actually the tangent space to the
surface U = U(Eα) at equilibrium. This can be done since Uα,β is positive-definite (and therefore
invertible). The inverse matrix Uα,β relates changes in extensive variables to changes in intensive
variables:

∆iα =
∑

β

Uα,β∆Eβ

∆Eβ =
∑

α

Uβ,α∆iα (30)

The two matrices are defined by

Uα,β =

(

∂iα
∂Eβ

)

E

Uβ,α =

(

∂Eβ

∂iα

)

i

(31)

The inner product is defined by any one of the three equivalent relations

(∆Eα, ∆Eβ) = Uα,β

(∆Eα, ∆iβ) = δα
β (32)

(∆iα, ∆iβ) = Uα,β
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The Schwartz inequality (u, u)(v, v) ≥ (u, v)2 can then be applied to vector displacements. Using
u = ∆Eα and v = ∆iβ we find

Uα,αUβ,β ≥ δα
β (33)

10 Equalities and Inequalities

With the structure so far developed, it is possible to exhibit a number of thermodynamic equalities
and inequalities. There are four types.

10.1 Maxwell Relations

The stability coefficients are symmetric: Uα,β = Uβ,α. Therefore, there must be symmetry relations
among the linear response functions. These are called Maxwell Relations. Both the original matrix
Uα,β and its inverse Uβ,α generate Maxwell Relations. For the simple single component fluid, these
two relations are

−ΓV

T
= V αS From US,V = UV,S

−ΓT

T
= V αP From US,V = UV,S (34)

10.2 Additional Thermodynamic Equalities

There are additional equalities. This can be seen in the case of the simple single component fluid:
there are three independent elements of the stability matrix but eight linear response coefficients.
The Maxwell Relations reduce this number by two. There must therefore be three additional equal-
ities among these eight susceptibilities.

The additional set of equalities is forced by the relation between the original matrix and its
inverse:

∑

β Uα,βUβ,γ = δ γ
α . For the simple single component fluid these relations assume the form







T

CV

1

V αS

−
T

ΓV

1

V βS







[

CP

T
−

ΓT

T
V αP V βT

]

=







CP

CV
+

αP

αS

βT

αS
−

ΓT

CV
αP

βS
−

CP

ΓV

βT

βS
+

ΓT

ΓV






=

[

1 0
0 1

]

(35)

Alternatively, either of the matrices can be inverted and equated to the other. This results in the
following equivalent set of equalities

CP − CV = −
αP ΓT

βT

βT − βS = −
αP ΓT

CP

αP − αS = −
CP βT

ΓT

ΓT − ΓV = −
CP βT

αP
(36)
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10.3 Thermodynamic Inequalities Describing Stability

None of the equalities above depend in any way on the positive-definiteness of the matrices Uα,β

or Uβ,α. In fact, positive-definiteness produces thermodynamic inequalities. These inequalities are
in fact stability conditions. One basic set of inequalities is a direct consequence of the Schwartz
inequality (33). For the simple single component fluid the “diagonal” inequalities are

CP

CV
≥ 1 From US,SUS,S ≥ 1

βT

βS
≥ 1 From UV,V UV,V ≥ 1 (37)

The “off-diagonal” inequalities come from correlations among off-diagonal matrix elements in the
direct and inverse matrices: Uα,βUβ,α ≥ 0 (no sum, and α 6= β). For the example above, these are

ΓT

ΓV
≥ 0 From US,V UV,S ≥ 0

αP

αS
≥ 0 From UV,SUS,V ≥ 0 (38)

For n > 2 independent variables, there are more off-diagonal inequalities than diagonal inequalities.

10.4 Additional Inequalities

There are additional inequalities determined by the requirement that the inner product of any
nonzereo displacement with itself must be positive. One simple way to address these “nondiagonal
inequalities” is to renormalize the stability matrix by multiplying each row and column by the
inverse of the square root of the diagonal matrix element in that row/column. This produces the
substitution

Uα,β →
Uα,β

√

Uα,αUβ,β

The resulting matrix will have entries +1 along the diagonal and nonzero values elsewhere. For
example, for the simple single component fluid with non-fixed number of particles this produces the
result





US,S US,V US,N

UV,S UV,V UV,N

UN,S UN,V UN,N



 =





US,S 0 0
0 UV,V 0
0 0 UN,N





1/2 



1 x y
x 1 z
y z 1









US,S 0 0
0 UV,V 0
0 0 UN,N





1/2

(39)
The parameters x, y, z (i.e., x = US,V /

√

US,SUV,V ) then obey relations required to guarantee that
the canonical matrix with +1 on the diagonal is positive-definite. These relations have not yet been
written down even for 3× 3 matrices. In the 2 × 2 case the result is −1 < x < +1, which translates
to

−1 <
1/V αS

√

(T/CV )(1/V βS)
< +1 From Uα,β

−1 <
V αP

√

(CP /T )(V βT )
< +1 From Uα,β

(40)
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11 Change of Variables

If the thermodynamic potential U is a function of n independent variables, their displacements ∆Eα

span the tangent plane to the potential surface at an equilibrium. The displacements ∆iα constitute
another set of n vectors in this plane. Additional vectors can be introduced into this linear vector
space, such as ∆U = T∆S−P∆V , and additional thermodynamic potentials to be introduced below
(e.g., ∆G = −S∆T + V ∆P ). Of this ensemble, only n can be linearly independent and chosen as
a basis set of vector displacements for this plane. One often chooses all extensive variables or all
intensive variables. However, other choices are often motivated by experimental conditions.

There is a systematic procedure for choosing a convenient set of independent variables and ex-
pressing all others in terms of this basis set. The coefficients in these expansions are thermodynamic
partial derivatives with respect to the new basis set.

The procedure for changing the basis set is represented in the equation









Uα,β −In 0

k × n k × n k × k











































dE1

...
dEn

di1
...

din
dU
...

dG



































= 0 (41)

The first n equations are simply diα =
∑

β Uα,βdEβ . The remaining k equations describe any k
additional potentials, displacements, dualities, or constraints that are useful. The 2n + k displace-
ments in the column vector are partitioned into n independent displacements, which constitute the
coordinate system of choice, and the remaining n + k dependent displacements:













(n + k) × (n + k)

























(n + k) × 1

Dep.













+













(n + k) × n

























n × 1

Indep.













= 0 (42)

As long as the square matrix is nonsingular, simple matrix operations can then be used to expand
each of the dependent displacements in terms of the choice of independent displacements:













(n + k) × 1

Dep.













=













(n + k) × (n + k)













−1 











(n + k) × n

























n × 1

Indep.













(43)

12 Thermodynamic Partial Derivatives

The darkest hour in any thermodynamics course always occurs when it comes time to compute
thermodynamic partial derivatives. The simple algorithm presented above can be used to compute
any thermodynamic partial derivative systematically in a finite number of steps.
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It is possible to implement this algorithm on a computer. Appendix A contains a brief and
complete description of a computer implementation of this algorithm.

13 Covariance and Contravariance

The original extensive displacements ∆Eα can be expressed in terms of the new basis set ∆Bγ :
∆Eα =

∑

γ Mα
γ∆Bγ . In this new coordinate system the stability matrix is

∑

α,β

Uα,β∆Eα∆Eβ →
∑

α,β

∑

δ,γ

Uα,βMα
γMβ

δ∆Bγ∆Bδ

U ′ = M tUM (44)

The transformed matrix U ′ is positive definite whenever U is. This is a consequence of Sylvester’s
Theorem, which states that the index of a symmetric matrix S (number of positive eigenvalues −
number of negative eigenvalues) is unchanged under a transformation of the type M tSM , where M
is nonsingular.

The duality between the intensive variables iα and the extensive variables Eα carries over to a
duality between the new variables Bγ and their conjugate variables fγ . The duality is determined
by the usual methods

fγ =
∂U

∂Bγ
=
∑

α

∂U

∂Eα

∂Eα

∂Bγ
=
∑

α

iαMα
γ (45)

The First Law of Thermodynamics and the Gibbs-Duhem duality are invariant under the change of
basis:

∑

γ

fγdBγ = dU
∑

γ

Bγdfγ = 0 (46)

14 Useful Change of Basis

One particularly useful change of basis involves replacing one or more extensive variables by the
corresponding conjugate intensive variables. We will compute the change of basis matrix and the
matrix U∗,∗ for this new coordinate system.

We represent the first k extensive displacements by ∆X and the remaining n − k extensive
displacements by ∆Y . The corresponding conjugate intensities are represented by ∆p and ∆q. The
linear response matrix relating these displacements is partitioned into blocks

[

∆p
∆q

]

=

[

A B
Bt C

] [

∆X
∆Y

]

(47)

The new coordinate system consists of displacements [∆p, ∆Y ]t. It is a simple matter to show that
the change of basis matrix M is

[

∆X
∆Y

]

=

[

A−1 −A−1B
0 In−k

] [

∆p
∆Y

]

(48)

The metric in the new coordinate system is computed from U ′ = M tUM :

∆(2)U =
1

2

[

∆X ∆q
]

[

∆p
∆Y

]

=
1

2

[

∆p ∆Y
]

[

A−1 0
0 c−1

] [

∆p
∆Y

]

(49)
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Here c is the (n − k) × (n − k) submatrix of U−1:

[

A B
Bt C

]

−1

=

[

a b
bt c

]

(50)

The attractive feature of such coordinate systems is the zero off-diagonal blocks in the metric matrix.
For the simple single component fluid the four metrics of interest are

[

∆S ∆V
]

[

T
CV

1
V αS

−T
ΓV

1
V βS

]

[

∆S
∆V

]

[

∆T ∆V
]

[ CV

T 0
0 1

V βT

] [

∆T
∆V

]

(51)

[

−∆P ∆S
]

[

V βS 0
0 T

CP

] [

−∆P
∆S

]

[

∆T −∆P
]

[

CP

T
−ΓT

T
V αP V βT

] [

∆T
−∆P

]

(52)

15 Legendre Transformations

For some purposes it is even more useful to construct a new potential function than simply to choose
a new basis. The Gibbs’, Helmholtz, and Free Energy potentials are examples of such useful efforts.

The procedure is as follows. We subtract
∑k

α=1 iαEα from the internal energy U to create a new
potential K:

K = U −

k
∑

α=1

iαEα (53)

Its differential is

dK = dU −
k
∑

α=1

iαdEα −
k
∑

α=1

Eαdiα

= −
k
∑

α=1

Eαdiα +
n
∑

α=k+1

iαdEα (54)

The function K is homogeneous of degree +1. There is therefore a Gibbs-Duhem duality:

−

k
∑

α=1

Eαdiα +

n
∑

α=k+1

iαdEα = dK −

k
∑

α=1

iαdEα +

n
∑

α=k+1

Eαdiα = 0 (55)

The four standard potentials are summarized below:

Name Potential Differential Duality
U Internal Energy dU = TdS − PdV SdT − V dP = 0
F = U − TS Helmholtz Free Energy dF = −SdT − PdV −TdS − V dP = 0
H = U + PV Enthalpy dH = TdS + V dP SdT + PdV = 0
G = U − TS + PV Gibbs Free Energy dG = −SdT + V dP −TdS + PdV = 0

The second variation of K can be computed easily

∆(2)K =
1

2

(

−
k
∑

α=1

∆Eα∆iα +
n
∑

α=k+1

∆iα∆Eα

)

(56)
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This differs in sign from the corresponding expression in (49) in the first k places. The metric
matrix for ∆(2)K is then easily obtained from (49): identify ∆iα (α = 1 · · ·k) with ∆p and ∆Eα

(α = k + 1 · · ·n) with ∆Y

∆(2)K =
1

2

[

∆p ∆Y
]

[

−A−1 0
0 c−1

] [

∆p
∆Y

]

(57)

This matrix is

• Negative definite in the subspace spanned by its natural intensive variables.

• Positive definite in the subspace spanned by its natural extensive variables.

It is in general indefinite (k 6= 0, n).
The second variations of the Helmholtz potential F = U − TS and the enthalpy H = U + PV

are

∆(2)F =
1

2

[

∆T ∆V
]

[

−CP

T 0
0 T

V βT

] [

∆T
∆V

]

∆(2)H =
1

2

[

−∆P ∆S
]

[

−V βS 0
0 T

CP

] [

−∆P
∆S

]

(58)
We discuss the Gibbs Potential in the case that two chemical species are present and U = U(S, V, N1, N2).
Then G = U − TS − (−P )V . The metric is defined by

∆(2)G =
1

2

[

∆T −∆P ∆N1 ∆N2

]

[

−A−1 0
0 c−1

]









∆T
−∆P
∆N1

∆N2









(59)

The 2 × 2 submatrices A and c are

A =

[

T
CV,N1,N2

1
V αS,N1,N2

−T
ΓV,N1,N2

1
V βS,N1,N2

]

c =





(

∂N1

∂µ1

)

P,T,µ2

(

∂N1

∂µ2

)

P,T,µ1
(

∂N2

∂µ1

)

P,T,µ2

(

∂N2

∂µ2

)

P,T,µ1



 (60)

Both matrices (and their inverses) are positive-definite. At equilibrium, the Gibbs Potential is a
minimum in the subspace defined by ∆T = ∆P = 0 and a maximum in the subspace defined by
∆N1 = ∆N2 = 0.

16 Entropy as the Thermodynamic Potential

Classical Thermodynamics can also be formulated in the entropy representation. This formulation
is equivalent to the formulation in the energy representation. However, there are three reasons for
which it might be preferable:

1. In this formulation, it is closer to questions involving the relation between thermodynamics
and information.

2. The natural formulation of statistical mechanics (the big brother of thermodynamics) is in
terms of numbers of states, which is more directly related to entropy (by the log function)
than to energy.
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3. The formulation of nonequilibrium thermodynamics is in terms of entropy production and
dissipation, rather than energy production and dissipation.

The thermodynamic potential surface relating all the extensive variables can be written in the
form F (U, S, V, Nj , · · ·) = 0 for some function F . An n-dimensional tangent plane to this surface
can be constructed at an equilibrium. All such tangent planes lie on the same side of this surface. If
we solve F = 0 for U = U(S, V, · · ·) then U lies entirely below each surface, so that U is a minimum
(subject to constraints) at an equilibrium, and ∆(2)U is positive-definite. On the other hand, if we
solve F = 0 for S = S(U, V, · · ·) then S lies entirely above each surface, so that S is a maximum
(subject to constraints) at an equilibrium, and ∆(2)S is negative-definite.

The discussion in the early sections of this Chapter proceed in the entropy representation as they
did for the energy representation. The entropy function depends naturally on extensive variables
and their conjugate intensive variables. The potential is homogeneous of degree +1. The First Law
statements in the two representations are

dU = TdS − PdV + µdN + · · · (61)

dS =
1

T
dU +

P

T
dV −

µ

T
dN − · · · (62)

There is a duality, as before, between extensive and conjugate intensive variables. The pairs of
conjugate variables in the entropy representation are shown in Table 3.2. The intensive variables
have interpretations similar to those given earlier. For example, 1/T is the entropy cost to add one
unit of energy to the system; P/T is the entropy cost to change the volume by one unit; −Ω · J/T
is the entropy cost to add one unit of angular momentum J to the system.

The Gibbs-Duhem duality in the entropy representation is

1

T
dU +

P

T
dV −

µj

T
dNj − · · · = dS Ud

(

1

T

)

+ V d

(

P

T

)

− Njd
(µj

T

)

− · · · = 0 (63)

The intensive variables are equal for two systems at equilibrium.
The stability condition at equilibirum is that entropy is a maximum, or ∆S(2) is negative-definite.

The negative-definite matrix Sα,β = ∂2S/∂Eα∂Eβ is closely related to the positive-definite stability
matrix Uα,β. We derive this connection now.

The two matrices Uα,β and Sα,β are linear response matrices as follows:





dT
−dP

dµ



 =



 U∗,∗









dS
dV
dN



 d





1/T
P/T

−µ/T



 =



 S∗,∗









dU
dV
dN



 (64)

The differentials of the new intensive variables are

d





1/T
P/T

−µ/T



 = −
1

T





1
T 0 0
P
T 1 0
−µ
T 0 1









dT
−dP

dµ



 (65)

We have in addition

d





S
V
N



 =





1
T

P
T

−µ
T

0 1 0
0 0 1









dU
dV
dN



 (66)
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Putting these together, we find

d





1/T
P/T

−µ/T



 = −
1

T





1
T 0 0
P
T 1 0
−µ
T 0 1







 U∗,∗









1
T

P
T

−µ
T

0 1 0
0 0 1









dU
dV
dN



 (67)

In simple words, the result is that S∗,∗ = − 1
T M tU∗,∗M , where M t and M are the matrices given

in (65) and (66). As a result the negative-definite matrix S∗,∗ contains no information not already
present in the positive-definite matrix U∗,∗. The equalities and inequalities among the matrix ele-
ments of S∗,∗ and its inverse S∗,∗ are all immediate consequences of those obtained from U∗,∗ and
its inverse U∗,∗. It is comforting to know there is a simple relationship between these two definite
matrices.

The inverse S∗,∗ is easily obtained by taking the inverse of S∗,∗. Specifically, we find S∗,∗ =
−TM−1U∗,∗(M t)−1. For a simple single component fluid, the covariant and contravariant entropy
stability matrices are

Sα,β = −
1

T











1

TCv

P

TCV
+

1

TV αS

P

TCV
−

1

ΓV

P 2

TCV
−

P

ΓV
+

P

TV αS
+

1

V βS











(68)

Sα,β = −T





TCP − PV TαP + PΓT + P 2V βT −ΓT − PV βT

TV αP − PV βT V βT



 (69)
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Table 3.1

Conjugate Variables

Energy Representation

dU =
∑

α

iα dEα

= T dS − P dV + µj dNj + F dX + Tµν dSµν

+H· dM + E· dP + Φ dQ + Ω· dJ + κ dA

Intensive Variable Symbol Symbol Extensive Variable
Temperature T S Entropy
Pressure −P V Volume
Chemical Potentials µj Nj Particle Numbers
Force F X Displacement
Stress Tensor Tµν Sµν Strain Tensor
Magnetic Field H M Magnetization
Electric Field E P Polarization
Electric Potential Φ Q Charge
Angular Velocity Ω J Angular Momentum
B. H. Surface Gravity κ A Black Hole Surface Area
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Table 3.2

Conjugate Variables

Entropy Representation

dS =
∑

α

iα dEα

=
1

T
dU +

1

T
P dV −

1

T
µj dNj −

1

T
F dX −

1

T
Tµν dSµν

−
1

T
H· dM −

1

T
E· dP −

1

T
Φ dQ −

1

T
Ω· dJ −

1

T
κ dA

Intensive Variable Symbol Symbol Extensive Variable
Temperature 1/T U Energy
Pressure P/T V Volume
Chemical Potentials −µj/T Nj Particle Numbers
Force −F/T X Displacement
Stress Tensor −Tµν/T Sµν Strain Tensor
Magnetic Field −H/T M Magnetization
Electric Field −E/T P Polarization
Electric Potential −Φ/T Q Charge
Angular Velocity −Ω/T J Angular Momentum
B. H. Surface Gravity −κ/T A Black Hole Surface Area
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Appendix A

Simple Algorithm for

Thermodynamic Partial Derivatives

Robert Gilmore
Physics Department, Drexel University, Philadelphia, PA 19104

Abstract

A simple algorithm for computing arbitrary thermodynamic partial derivatives is described
and a computer implementation is presented.

PACS numbers: 05.70

Computing thermodynamic partial derivatives is the bête noire of a typical thermodynamics
course. The purpose of the present contribution is to point out that a simple algorithm exists for
computing any thermodynamic partial derivative in a fixed number of simple steps[1], and to present
a short code which implements this algorithm.

The algorithm will be presented for a substance described by n = 2 independent extensive
variables, S and V . The differentials of the extensive variables dS, dV , the differentials of the
conjugate intensive variables dT, − dP , differentials of potentials dU, dF, dG, dH , and other
differentials (e.g., dσ = −dP + mdT along coexistence curves) can be treated as vectors in a plane.
In fact, they are rigorously vectors in the tangent plane to the equilibrium surface U = U(S, V ).
Two linearly independent vectors may be chosen to span this plane. The remaining differentials
(vectors) can then be solved as linear combinations of the two independent basis vectors. The
desired thermodynamic partial derivative is an expansion coefficient, and can be determined by
inspection. Implementation of this procedure is straightforward using methods of linear algebra[1].
We present an even simpler implementation.

We illustrate the algorithm by computing the thermodynamic partial derivative (∂G/∂T )U . We
introduce three classes of relations among the differentials:

1. Linear response relations among the extensive and intensive thermodynamic variables:

[

dS
dV

]

=

[

CP /T V αP

V αP V κT

] [

dT
−dP

]

2. Expressions relating thermodynamic potentials to extensive and intensive variables, such as
dU = TdS − PdV , dF = −SdT − PdV .

3. Other constraints, such as displacements along coexistence curves: dσ = −dP + mdT .

The linear response constraints are introduced as eq[1] and eq[2] in Fig. 1, which presents a Maple
worksheet solution to the problem. The four potentials have been introduced as eq[3] through eq[6].
The coexistence constraint has been introduced as eq[7].

An appropriate subset of equations is chosen, depending on the derivative desired. The desired
derivative, (∂G/∂T )U , involves the potentials U and G. Therefore we must deal with eq[3], and eq[5],
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as well as eq[1] and eq[2], which are always used. The independent basis vectors are dT and dU .
The dependent basis vectors are therefore dS, dV, dP, dG. The callup solve({eq[1], eq[2], eq[3], eq[5]},
{dS, dV, dP, dG}) computes each of the four dependent vectors dS, dV, dP, dG as linear combinations
of the two independent vectors dT and dU . Coefficients in this expansion include the desired
thermodynamic partial derivative. The desired derivative can be determined by inspecting the
output of the solve callup or exhibited by computing a derivative. In particular, (∂G/∂T )U =
diff(dG, dT ), as shown in Fig. 1.

In the event that additional thermodynamic partial derivatives are desired with dU and dT as
independent variables, the entire matrix of thermodynamic partial derivatives can be output by
replacing the last two steps in Fig. 1 by the steps shown in Fig. 2.

> eq[1] := dS = (C[P ]/T ) ∗ dT − V ∗ alpha[P ] ∗ dP :
> eq[2] := dV = V ∗ alpha[P ] ∗ dT − V ∗ kappa[T ] ∗ dP :
> eq[3] := dU = T ∗ dS − P ∗ dV :
> eq[4] := dF = − S ∗ dT − P ∗ dV :
> eq[5] := dG = − S ∗ dT + V ∗ dP :
> eq[6] := dH = T ∗ dS + V ∗ dP :
> eq[7] := dsigma = − dP + m ∗ dT :
> solve({eq[1], eq[2], eq[3], eq[5]}, {dS, dP, dV, dG}) :
> der[U ] := diff(dG, dT );

derU :=
SαP T − SPκT − CP + PV αP

−αP T + PκT

Figure 2: Maple worksheet for computing the thermodynamic partial derivative (∂G/∂T )U .
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> #Input equations as in F ig. 1
> equs := {eq[1], eq[2], eq[3], eq[5]} :
> V ariables := {dS, dT, dP, dV, dU, dG} :
> DepV ars := {dS, dP, dV, dG} :
> IndepV ars := {dT, dU} :
> nV := 6 : nD := 4 : nI := 2 :
> for i from 1 to nD do n[i] := DepV ars[i] od :

for j from 1 to nI do d[j] := IndepV ars[j] od :
Symb := matrix(nD, nI , (i, j)− > n[i]/d[j]) :

> s := solve(equs, DepV ars) :
> assign(s) :
> for i from 1 to nD do nn[i] := DepV ars[i] od :
> M2 := matrix(nD, nI , (i, j)− > diff(nn[i], d[j]) :
> evalm(Symb) = evalm(M2);

























dS

dT

dS

dU

dP

dT

dP

dU

dV

dT

dV

dU

dG

dT

dG

dU

























=



























−
−CP P κT + αP

2 T P V

%1 T
−

αP

%1
−CP + P V αP

V %1

1

V %1

−
αP

2 T V − CP κT

%1
−

κT

%1
S αP T − S P κT − CP + P V αP

%1

1

%1



























%1 := −αP T + P κT

Figure 3: Maple worksheet for computing many thermodynamic partial derivatives with dT and dU
as independent variables.
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